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 Denial of Service (DoS) attacks constitutes one of the major threats and 
among the hardest security problems currently facing computer networks and 
particularly the Internet. A DoS attack can easily exhausts the computing and 
communication resources of its victim within a short period of time. Because 
of the seriousness of the problem many defense mechanisms have been 
proposed to fight these attacks. In this paper, we propose an approach that 
detects DoS attacks using data mining classification techniques. The 
approach is based on classifying “normal” traffic against “abnormal” traffic 
in the sense of DoS attacks. The paper investigates and evaluates the 
performance of J48 decision tree algorithm for the detection of DoS attacks 
and compares it with two rule based algorithms, namely OneR and Decision 
table. The selected algorithms were tested with benchmark 1998 DARPA 
Intrusion Detection data. Our research results show that both Decision tree 
and rule based classifiers deliver highly accurate results – greater than 99% 
accuracy – and exhibit high level of overall performance. 
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1. INTRODUCTION 

The explosive growth of computer networks and particularly of the Internet has created many 
stability and security problems. One of the greatest threats that network security faces nowadays is Denial of 
Service attacks. The need for a defense against Denial of Service attacks is becoming an important challenge 
and a difficult task at the same time. 

A Denial of Service DoS attack can be described as an attack designed to render a computer or 
network incapable of providing normal services [4]. A DoS attack is considered to take place only when 
access to a computer or network resource is intentionally blocked or degraded as a result of malicious action 
taken by another user. These attacks don’t necessarily damage data directly or permanently, but they 
intentionally compromise the availability of the resources. 

The most common DoS attacks target the computer networks bandwidth or connectivity. Bandwidth 
attacks flood the network with such a high volume of traffic that all available network resources are 
consumed and legitimate user requests cannot get through, resulting in degraded productivity. Connectivity 
attacks flood a computer with such a high volume of connection requests, that all available operating system 
resources are consumed and the computer can no longer process legitimate user requests. 

In this paper, we will be presenting a comparative study of three data mining techniques for 
classification. The first of those is J48 pruned decision tree, a new version for the famous C4.5 decision tree 
classifier model by Quinlan [9]. The other two are rule based classifiers; namely OneR and Decision table. 
The main purpose of our experiment is to find the best performing classifier in terms of speed and accuracy 
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for the detection of denial of service attack on subset of the DARPA 1998 Intrusion Detection Evaluation 
Data, the KDDCup’99 data set.  

There are many varieties of denial of service (or DoS) attacks in the KDD KDDCup’99 data set. 
Some DoS attacks (like a mailbomb, neptune, or smurf attack) abuse a perfectly legitimate feature. Others 
(teardrop, Ping of Death) create malformed packets that confuse the TCP/IP stack of the machine that is 
trying to reconstruct the packet. Still others (apache2, back, syslogd) take advantage of bugs in a particular 
network daemon. Table 1 provides an overview of the denial of service attacks used in our subset of the 1998 
DARPA intrusion detection evaluation. Each row represents a single type of attack. The six columns show 
the attack name, a list of the services that the attack exploits, the platforms that are vulnerable to the attack, 
the type of mechanism that is exploited by the attack (implementation bug, abuse of feature, masquerading, 
or misconfiguration), a generalization of the amount of time the attack took to implement, and a summary of 
the effect of the attack [6]. The rest of the paper is organized as follows. Section 2 gives the basic principles 
of the three classifier used in our research study. Section 3 explains our conducted experiments on building a 
classifier model for the detection of denial of service attack using the audit data from the DARPA evaluation 
program. Section 4 provides a summary of the results obtained and their significance on the detection of 
denial of service attacks. Finally, Section 5 concludes the paper and provide insight to future work. 
 
 

Table 1. Summary of Denial of Service Attacks 
Attack Service Platform Mechanism Time Effect 

Back http Apach Abuse/Bug Short Slow sever response 

SYN flood TCP All Abuse Short Deny service on one or more ports 

Pod Icmp None Bug Short None 

Smurf Icmp All Abuse Moderate/long Network slowdown 

Teardrop N/A Linux Bug Short Reboot machine 

 
 
2. DATA MINING CLASSIFICATION METHODS 

Classification is the process of finding a model (or function) that describes and distinguishes data 
classes or concepts, for the purpose of being able to use the model to predict the class of objects whose class 
label is unknown [3]. This model is based on the analysis of a set of training data and may be represented in 
various forms, such as classification (IF-THEN) rules, decision trees, mathematical formulae, or neural 
networks. In this section, we give an introduction to the classification techniques used for the detection of 
DoS attacks in the current research 

 
2.1. Decision Tree Classifier 

The decision tree classifier by Quinlan [9] is one of most well-known machine learning techniques. 
A decision tree is made of decision nodes and leaf nodes. Each decision node corresponds to a test X over a 
single attribute of the input data and has a number of branches, each of which handles an outcome of the test 
X. Each leaf node represents a class that is the result of decision for a case. 

The process of constructing a decision tree is basically a divide and-conquer process [14]. Initially a 
set of examples representing the training data set consists of a number of classes. First, an attribute is selected 
to be placed at the root node and one branch is made for each possible value. This splits up the example set 
into subsets, one for every value of the attribute. The process can then be repeated recursively for each 
branch, using only those instances that actually reach the branch. If at any time all instances at a node have 
the same classification, we stop developing that part of the tree. 

The problem here is how to choose the best attribute for each decision node during construction of 
the decision tree. The criterion that C4.5 chooses is Gain Ratio Criterion. The basic idea of this criterion is to 
choose an attribute which provides the maximum information gain at each splitting step while reducing the 
bias in favor of tests with many outcomes by normalization. 

Once a decision tree is built, it can be used to classify testing data that has the same features as the 
training data. Starting from the root node of decision tree, the test is carried out on the same attribute of the 
testing case as the root node represents. The decision process takes the branch whose condition is satisfied by 
the value of tested attribute. This branch leads the decision process to a child of the root node. The same 
process is recursively executed until a leaf node is reached. The leaf node is associated with a class that is 
assigned to the test case. [10] 
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2.2. OneR Classifier 
OneR, short for “One Rule”, is a simple classification algorithm that generates a one-level decision 

tree expressed in the form of a set of rules that all test one particular attribute. OneR is a simple, cheap 
method that often comes up with quite good rules for characterizing the structure in data. Comprehensive 
studies of OneR’s performance have shown it produces rules only slightly less accurate than state-of-the-art 
learning schemes while producing rules that are simple for humans to interpret. OneR is also able to handle 
missing values and numeric attributes showing adaptability despite simplicity 

The OneR algorithm creates one rule for each attribute in the training data, then selects the rule with 
the smallest error rate as its ‘one rule’. To create a rule for an attribute, the most frequent class for each 
attribute value must be determined. The most frequent class is simply the class that appears most often for 
that attribute value. A rule is simply a set of attribute values bound to their majority class; one such binding 
for each attribute value of the attribute the rule is based on. [14] 

 
2.3. Decision Table Classifier 

Decision tables provide an alternative way of representing knowledge in an understandable user-
friendly way [13]. The origin of decision tables springs partly from the general use of tables to present 
information effectively and partly from the development of truth tables to define logic [8]. 

A Decision table is a tabular representation used to describe and analyze decision situations (e.g., 
classification of network traffic), where the state of a number of conditions jointly determines the execution 
of a set of actions [12]. In the context of rule based classifier, the conditions correspond to the antecedents of 
the rules; whereas the actions correspond to the outcome classes. The condition subjects are the criteria that 
are relevant to the classification or decision-making process. They represent the attributes of the rule 
antecedents about which information is needed to classify a given network traffic as normal or attack. The 
action subjects describe the possible outcomes of the decision-making process (i.e. the classes of the 
classification problem).  

A Decision table is one type of classifier for which scheme-specific attribute selection is an essential 
part of the learning process. Therefore, the entire problem of learning decision tables consists of selecting the 
right attributes to include. Usually this is done by measuring the table’s cross-validation performance for 
different subsets of attributes and choosing the best-performing subset. Fortunately, leave-one-out cross-
validation is very cheap for this kind of classifier [14]. Obtaining the cross-validation error from a decision 
table derived from the training data is just a matter of manipulating the class counts associated with each of 
the table’s entries, because the table’s structure doesn’t change when instances are added or deleted. The 
attribute space is generally searched by best-first search because this strategy is less likely to become stuck in 
a local maximum than others, such as forward selection 
 
 
3. EXPERIMENTS 

The dataset used in our experiments is a subset of the KDD Cup 99 dataset, which derives from the 
DARPA (Defense Advanced Research Projects Agency) dataset. In the 1998 DARPA intrusion detection 
evaluation program, an environment was set up to acquire raw TCP/IP dump data for a network by 
simulating a typical US Air Force LAN. The LAN was operated like a real environment, but being blasted 
with multiple attacks. Each record representing a TCP/IP connection composed of 41 features that are either 
quantitative or qualitative in nature [11]. 

A complete description of the features is available in [5], [7]. Instead of describing all the features 
here, we divided them into three groups [2]. The first group of attributes is the basic features of network 
connection, which include the duration, prototype, service, number of bytes from source IP addresses or from 
destination IP addresses, and some flags in TCP connections. The second group of attributes in KDD99 is 
composed of the content features of network connections and the third group is composed of the statistical 
features that are computed either by a time window or a window of certain kind of connections. 
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Figure 1. Class Distribution in the Data Set 
 
 

In our experiments, we perform six-class classification representing normal traffic, and five denial 
of service attacks distributed as shown in figure 1. The (training and testing) data set contains a total of 19997 
records, unevenly distributed across the Normal and the DoS attacks used. During examination of the data it 
turned out that the values of two nominal features (land, is_host_login) were constantly unchanged and five 
numeric features of the 41 features (urgent, num_failed_logins, su_attemp, num_shells, 
num_outbound_cmds) were zero over all data records. Obviously these features could not have any effect on 
classification and only made it more complicated and time consuming. They were, hence, excluded from the 
data vector. Hence the data vector was a 35 dimensional vector.  

All experiments were performed in a computer with the configurations Intel(R) Core(TM) 2i5-2410 
CPU 2.3GHz, 4 GB RAM, and the operation system platform is Microsoft Windows 7. The three algorithms 
used for classification are compared with the help of Weka.Weka is an open source data mining software that 
contains java implementations of many popular machine learning-algorithms including some popular 
classification algorithms. We selected three of the data mining classification algorithm, namely:  J48 Pruned, 
OneR, and Decision table, for conducting our experiments. Though, prior to applying the selected 
classification algorithms, the target data set was transformed to the specific input data formats used by Weka.  

The performance of a classification algorithm is determined by how accurately it classifies a given 
set of examples. In the conducted experiment, we tested the generated classifiers models using the k-fold 
Cross Validation mode The k-fold CV refers to a widely used experimental testing procedure where the 
dataset is randomly divided into k disjoint blocks of objects, then the data mining algorithm is trained using 
k-1 blocks and the remaining block is used to test the performance of the algorithm; this process is repeated k 
times. At the end, the recorded measures are averaged. In our experiments we choose k = 10 that is we used a 
10 fold cross-validation for measuring the error rate of each classifier 
 
3.1. J4.8 Decision Tree Classifier 

The J48 Pruned decision tree is Weka implementation for the famous C4.5 decision tree classifier 
model by Quinlan [9]. In this experiment, we ran Weka J4.8 classifier to our dataset of 19997 instances, 35 
attributes in order to differentiate between Normal and five types of DoS attacks, unevenly clustered. J4.8 is 
used with its default parameter settings with confidence threshold = 0.25 for pruning and the minimum 
number of instances permissible at a leave = 2 and a numfold = 3 determining the size of the pruning set. The 
resulting tree, with a size of 16 nodes and 9 leaves took 0.73 seconds to be built. To test and evaluate the 
resulting classifier, we applied a 10-fold cross-validation and received an accuracy of 99.97% 
 
3.2. Rule-based Classifier 

In this experiment, two rule based algorithm, OneR and Decision rule, implemented in weka are 
used on our data set. The OneR was selected based on the “simplicity first” methodology when analyzing 
practical data sets [14]. It generates a one-level decision tree expressed in the form of a set of rules that all 
test one attribute. In this experiment we ran WekaOneR classifier with the default parameters on our dataset 
of 19997 instances, 35 attributes. The classifier selected the Src_Byte as the minimum error attribute for 
prediction and generates 9 rules using this attribute. To test and evaluate the resulting classifier, we applied a 
10-fold cross-validation and received an accuracy of 99.91%. 

The other rule based algorithm in this experiment was the decision table. Weka builds a decision 
table majority classifier. It evaluates feature subsets using best-first search and can use cross-validation for 
evaluation. The Decision table classifier was used with its default parameter setting (crossVal = 1; 
searchMethod = BestFirst and useIBk = False) on our data set. A Decision table, as discussed before, is one 
type of classifier for which scheme-specific attribute selection is an essential part of the learning process. In 
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this experiment, a feature set of three attributes; Src_Byte, Dst_Host_Srv_Serror_Rate, and class was 
extracted, and 13 rules were generated using this feature set. To test and evaluate the resulting classifier, we 
applied a 10-fold cross-validation and received an accuracy of 99.985% 
 
 
4. DISCUSSIONS AND RESULTS 

To measure the effectiveness of our classifiers three metrics were used: precision, recall, and 
overall accuracy. These measures have been widely used in the data mining literature to evaluate data 
classification algorithms [14]. For a given class, the number of correctly classified objects is referred to as the 
True Positives. The number of objects falsely identified as a class is referred to as the False Positives. The 
number of objects from a class that are falsely labeled as another class is referred to as the False Negatives. 
Table 2 

The precision of a classifier is the ratio of True Positives over the sum of True Positives and False 
Positives or the percentage of traffic flows that are properly attributed to a given class by this classifier. 

 

Precision = TP 
TP + FP 

 
Recall is the ratio of True Positives over the sum of True Positives and False Negatives, or the percentage of 
traffic flows in class that are correctly identified 
 

Recall = TP 
TP + FN 

 
 

Table 2. Standard metrics for evaluation of Attacks 
Confusion Matrix 
(Standard metrics) 

Predicted Class 
Normal Attack 

Actual Class Normal True Negative False Positive 
Attack False Negative True Positive 

 
 
Overall accuracy is an aggregate precision and is defined as the sum of all True Positives to the sum of all 
the True and False Positives for all classes. This measures the overall accuracy of the classifier. Note that 
precision and recall are per-class measures. 

 

Overall Accuracy = 
� 𝑇𝑃𝑖

𝑖=𝑛

𝑖=1
 

� (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑖=𝑛

𝑖=1
 

 
where n is the number of classes. 
Precision and recall are related to each other. If the Recall for one class is lower, this will cause the precision 
for other classes also to be lower because the algorithms used always classify the objects into a class. In 
addition, the overall accuracy is related to precision in that it measures the average precision of all the 
learned classes [1]. 

An initial analysis was performed to determine how well each attack is detected by each of the 
implemented classifiers. Three DoS attacks; Teardrop, Pod, and Neptune were fully detected by the three 
classifiers. One attack, Smurf, was fully detected by rule based classifiers. As for the remaining attack, back, 
219 instance out of 220 were correctly classified by all the classifiers. For Normal traffic flows, 6549 out of 
6551 were correctly classified by both the J48 and the J48 Decision tree classifiers as shown in table 3 

The results for both Decision tree and rule based classifier models are shown in the tables 4-8. Table 
4 through 6 depicts the confusion matrix for each of the learned classifiers. In our case we have six classes 
representing Normal and five DoS attack types. Therefore the confusion matrix is a 6 x 6 matrix. The number 
of correctly classified instances is the some of diagonals in the matrix; all other instances are incorrectly 
classified. 
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Table 3. Correctly Classified Instances Per DoS type 
Name Total Instances Correctly Classified  Best 

Classifier J4.8 OneR D. Table 
Tear 98 98 98 98 All 

Smurf 6551 6548 6551 6551 Rule based 
Pod 26 26 26 26 All 
Back 220 219 219 219 All 

Neptune 6551 6551 6551 6551 All 
Normal 6551 6549 6534 6549 J4.8 & D.T 

 
 

Table 4. Confusion Matrix for J4.8 Classifier 
 Tear Smurf Pod Back Neptune Normal 

Tear 98 0 0 0 0 0 
Smurf 0 6548 0 0 0 3 

Pod 0 0 26 0 0 0 
Back 0 0 0 219 0 1 

Neptune 0 0 0 0 6551 0 
Normal 0 0 0 1 1 6549 

 
 

Table 5. Confusion Matrix for OneR Classifier 
 Tear Smurf Pod Back Neptune Normal 
Tear 98 0 0 0 0 0 
Smurf 0 6551 0 0 0 0 
Pod 0 0 26 0 0 0 
Back 0 0 0 219 0 1 
Neptune 0 0 0 0 6551 0 
Normal 0 1 1 5 10 6534 

 
 

Table 6. Confusion Matrix for Decision Table Classifier 
 Tear Smurf Pod Back Neptune Normal 
Tear 98 0 0 0 0 0 
Smurf 0 6551 0 0 0 0 
Pod 0 0 26 0 0 0 
Back 0 0 0 219 0 1 
Neptune 0 0 0 0 6551 0 
Normal 0 1 1 0 0 6549 

 
 

Table 7 shows the detailed accuracy per class among different classification methods. For every 
classifier we report the number of true positive (TP), the number of false positive (FP), Precision (P), and 
Recall (R) value for each DoS attack type and the Normal traffic instance. Table 8 shows the aggregate 
precision or the overall accuracy for each classifier. It is observed that both Decision tree represented by J48 
and rule based classifier represented by OneR and Decision table showed highly accurate results – greater 
than 99% accuracy – and reveal high level of performance. The total accuracy for Decision table 99.985% 
outperforms both the Decision tree classifier 99.97% and the other rule based classifier OneR 99.91%. 
However, the time taken to build the OneR classifier is significantly shorter (0.36 seconds) as compared to 
the J48 Decision tree (1.36 seconds) and the Decision table (4.81 seconds) an advantage that is highly 
important in some situations where retraining needs to be done relatively quickly. 
 
 

Table 7. Precision (P) and Recall (R) among different classification methods 
 

Class 
J4.8 OneR Decision table 

TP FP P R TP FP P R TP FP P R 
Tear drop 1 0 100 100 1 0 100 100 1 0 100 100 

Smurf 1 0 100 100 1 0 100 100 1 0 100 100 
Pod 1 0 100 100 1 0 96.3 100 1 0 96.3 100 
Back 99.5 0 99.5 99.5 99.5 0 97.8 99.5 99.5 0 100 99.5 

Neptune 1 0 100 100 1 0.1 99.8 100 1 0 100 100 
Normal 1 0 99.9 100 99.7 0 100 99.7 1 0 100 100 
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Table 8. Accuracy among different classification methods 
Classifier Correctly Incorrectly 

Complexity 
 # % # % 

J4.8 19991 99.97 6 3 Tree size = 16, Leaves = 9 
Time =1.39 s. 

OneR 19979 99.91 18 9 Feature set = 1, 9 rules 
Time =0.36 s. 

Decision Table 19994 99.985 3 1.5 Feature set = 3, 13 rules 
Time = 4.81 s. 

 
 
5. CONCLUSIONS 

Intrusion detection can be thought of as a classification problem: we wish to classify each audit 
record into one of a discrete set of possible categories, normal or a particular kind of intrusion. In our 
research, three classifiers; J48, OneR, and Decision table were developed to classify TCP/IP intrusion data to 
recognize whether a system is under denial of service attack. The classifiers are then evaluated and tested 
using 10-fold cross-validation and results are reported. It is observed that both Decision tree and rule based 
classifier deliver highly accurate results (> 99%) and exhibit high level of performance. The total accuracy 
for Decision table 99.985% outperforms both the Decision tree classifier 99.97% and the other rule based 
classifier OneR 99.91%. However, the time taken to build the OneR classifier is significantly shorter (0.36 
seconds) as compared to the J48 Decision tree (1.36 seconds) and the Decision table (4.81 seconds) an 
advantage that is highly important in situations retraining needs to be done relatively quickly. Possible future 
development to the present study, involves comparing other types of classifiers, covering more attack 
scenarios in the dataset and addressing the fundamental issue of the unbalanced nature between normal and 
intrusive training examples for discriminative intrusion detection approaches. 
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