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1. INTRODUCTION

Deoxyribonucleic acid (DNA) is a nucleic acid which consists of genetic instructions used in the
development and functioning of all living organisms and viruses. Tandem repeats in DNA consist of two or
more contiguous copies of a pattern of nucleotides. Repeating patterns are also known as motifs.
The motif can occur in different lengths and repetitions can be exact or approximate copies. Repeats of the
motif are classified into short tandem repeats or microsatellites (length 10 or shorter) and minisatellites
(repeats of 10-60 nucleotides) [1],[2]. Lalioti et al. [3] and Wren et al. [4] observed that the repeats in DNA
sequence associated with the neurological disorder. Huang et al. [5], Richard et al. [6] and Mcmurray [7]
investigated the repeat of tandem repeats play a significant role in the formation of hairpin structures.
Motivated by the applications of tandem repeats in DNA sequence in the area of molecular biology,
orensic medicines, DNA fingerprinting and molecular markers for cancer [8]-[11], in this paper we have
designed deep pushdown automata for k-copy language.

— Iy *
Related work: The K-copy language can be described by |‘-copy_{x |X€{O’1}}.
Various researchers carried out work to represent tandem repeats using formal grammar, but the major
limitation of their work is that using their formal grammar, we can able to recognize only

L ={ww|we{a, b} } and their grammar cannot generate the languages for WWW = WWWW and so on.

L ={www|we{a, b} }cannot be generated by tree adjoining grammar [12]. Kalra and Kumar [13], [14]
introduced the concept of fuzzy deep pushdown automata and deterministic deep pushdown automata.
Kalra and Kumar [15] designed the state grammar and deep pushdown automata for Tandem repeats,
inverted repeats and interleaved repeats. This proposed approach work for a subset of tandem repeat motif.
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Inspired by various applications of k-copy language, a generalized deep pushdown automaton has been
designed for tandem repeat motif.

The paper is organized as follows: In Section 2, some preliminaries concept of DNA, tandem
repeats and deep pushdown automata are given. Section 3 consists of deep pushdown automata for k-copy
languages and tandem repeats followed by conclusions in section 4.

2. PRELIMINARIES

Let z={ag.ct} denotes the DNA alphabet. Purines are classified into guanine ( 9 ) and adenine @
, Whereas pyrimidines are classified into uracil (Y), thymine (t) and cytosine (©). Pairing occurs between
pyrimidines and purines. The complement of a symbol 2 is represented by a . In DNA, ¢=9.9g =ca-=t

and t =2 Deep pushdown automaton is a formal model to represent cross-dependencies in natural and
formal languages. It is a counterpart of state grammar.

Q=T8S RF) where Q is a finite set

Def. 1: A deep pushdown automaton [16] is a septuple
of states, 2 is an alphabet, I'is a set of stack symbol such that zc 1", Sis a start state, Sisa starting
pushdown symbol, Ris a transition relation defined by << (NxQx(T'=EU{#})x Qx(T—{#h)" U
(N Qx{#hx Qxx (I - {#}) {#}) and F is a set of final states such that FeQ Here #e(-3) is a special
symbol. The configuration of the deep pushdown automaton is represented by Qx> (I —{#}) {#} .

In this paper, we have made following changes to the original definition of the deep pushdown
automata:

Transition relation R is defined by R (NxQxZx(I'-@EU{N)x Q= (T—{#})" x{0.1)
U {NIxQxZx{#x Q x (T ~{#}) {#3x{0.B3) U{0Ix Qx Ex x Qx{A}={0,1})
The sub-relation (TOXQ*ZxEXQx{AI{0.T oy hjicitly represents pop of terminal symbol from

the top of the stack. Here 0.1} represent whether the R/W head remains stationary or point to the symbol on
the input tape. Terminal symbol presented on top of the stack are considered as of depth O,
whereas Non-terminals presented on the stack are considered as of depth 1, 2, 3 and so on.

We have explicitly represented the symbol reading from R/W head.

Example 1. Deep pushdown automata for the language L={ab"c'd" |n,m=0}

.M =({0. &, .9.9,.9,}.{a, b, ¢,d}. {A S, a, b, ¢,d,#}, q,, S, {q, }. R)
defined by

(€ 9., S) > (a,, AA 0)

€ o, a A)—>(q, Ac, 1)

(2,9,b, A)—>(q,, Ad, 1)

(2,0, b, A) > (0, Ad, 1)

€ 9,.¢ A) > (g, 4, 0)

(0, 0;.¢,¢) > (a;, 4,1

(L g;, d, A)—>(a,, 4, 0)

©.q,.d,d)—>(q, 4.1)

0.0,, A #) > (a;, #1)

For input string w = aabbbccddd
(q,, aabbbccddd, S #) [1(q,, aabbbccddd, AA#) [I(q,, abbbceddd, AcA#) [I(q,, bbbceddd, AccA#)
[1(q,, bbceddd, AccAd #) [)(q,, beeddd, AccAdd #) [1(q,, ccddd, AccAddd #) [1(q,, ccddd, ccAddd #)
1(q,, cddd, cAddd #) [ (q,, ddd, Addd #) (1(q,, ddd, ddd #) [1(q,, dd, dd #) [1(q,, d, d#) [I(q,, A, #)

(@A #)

and the transition relation Ris
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Def. 2: A state grammar is a quintuple V. Q.%,S,P) where V' is a total alphabet, Q is a finite set
of states, Z is an alphabet, also known terminal symbol such that= Vs SeV -T jsstart symbol and P isa
finite relation such that © S (@X(V ~Z)x(QxV7).

3. DEEP PUSHDOWN AUTOMATA FOR TANDEM REPEATS
In this section, we will design deep pushdown automata for k-copy language and tandem
repeats in DNA.

3.1. Deep Pushdown Automata for K-Copy Language

Figure 1 represents the deep pushdown automata for k-copy language. In deep pushdown automata,
the element can be pushed on to a deeper part of the stack also. Deep pushdown automata represented in
Figure 1 is of depth 2, which means that at a particular point of time, two topmost non-terminals can be
expanded. Deep Pushdown automaton for k-copy language is defined by

M =({po1 Py P2y Pgs Pys pf}v{aa b}, {S,A B,ab#}, Pos S’{qf}: R)
defined by:
(@ py.a, S) = (p,, AB, 0)
( py.b, S) > (py. AB, 0)
(2, py,a, B) > (p, @B, 1)
(2, p,,b,B) = (py, bB, 1)
@ Py @, A) > (P, 4, 0)
@ Pp.0,A) > (p,4,0)
(0. p.,a a) > (p,, 4, 1)
(0, p,b, b) = (p,, 4.1)
@ p,b,B)—(p,,BC,0)
@ p,a,B)—(p:,BC,0)
(0. p;,a,B) > (p,,4,0)
(0, p,b, B) > (p, 4, 0)
(0, p;; &, @) > (p;, 4, 0)
(0, ps,b,b) —>(p,, 4,0)
(2, p,,a,C)—(p;,aC, 1)

where the transition relation R is

1,a,S|AB,0
1b,S|AB,0
2,a,B|aB,1
2,b,B|bB,1

1,b,B|BC,0
1,a,B|BC,0

0,a,B]4,0

0,b,B[4,0
0,a,al4,0

0,b,b[2,0

0,aal4,1
0,b,b| 2,1 2,a,ClaC,1

2,b,C|bC,1

0,b,b| 2,1
0,a,al|4,1

Figure 1. Deep pushdown automata for k-copy language

M-ITRS: Mathematical Model for Identification of Tandem Repeats in DNA sequence (Ajay Kumar)
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(2, py,b, C) > (py,bC,1)

(0, p,b, b) > (p,, 4.1)

(0. p,.a,8) > (p,,4,1)

(0, p,.$,B) > (p;,4,0)

(0, p,.$,C) > (p;,4,0)

Derivation of the string, w = ababab.

(p,, ababab, S) [1(p,, ababab, AB) [(p,, babab, AaB) [1(p,, abab, AabB) [1(p,, abab, abB)
1 (p,, abab, abBC) L(p,, abab, bBC) LI(p,, bab, bBaC) LI(p,, bab, BaC) Li(p,, ab, BabC)
C(p,, @b, abC) I(p,, b,bC) 1(p,, A, C) (py, A, C)

3.2. Deep Pushdown Automata for Tandem Repeats in DNA
The transition diagram of deep pushdown automata for tandem repeats is shown in Figure 2. It is

defined by 2M ={Po Pi P2 Ps PP {2, b} {S, A B2 b.#} by, S.{a,}.R)

relation R is defined by:

where the transition

Transition from Po to Po
@ Py, 9,S) — (p,, AB, 0)
@ py.c, S)—>(py, AB, 0)
@ Py, 2, S) = (o, AB, 0)
@ Py t, S) > (o, AB, 0)
(2,p.9,B) > (py, 9B, 1)
(2, po.C, B) > (p,,cB 1)
(2, py,2, B) > (p,,aB, 1)
(2,p,t,B) = (p,,tB, 1)

Transition from Poto P
& P, 9,A) = (P, 4, 0)
@ po. ¢, A) = (P, 4, 0)

(& po,a A) = (p;, 4, 0)
@ pot, A= (P, 4,0)

Transition from Pito Ps
(L p,.t, B) > (ps, BC, 0)
(L p,.a, B) - (p;, BC, 0)
(L p,.C, B) > (s, BC, 0)
(L p.9. B) > (p;,BC, 0)

Transition from Psto P
0.p;,9,.8) > (p, 4, 0)
(0, ps,c, B) > (py, 4, 0)
(0, p;,a, B) > (p,, 4, 0)
(0, ps,t, B) > (p, 4,0)

Transition from Pato P
0, P5.9,9) = (P, 4,0)
(0. p5.C. €) = (P, 4, 0)
(0, ps,a, @) > (p,, 2,0)
(0. ps.t, 1) > (p,, 4,0)

Transition from Pato Ps

1J-Al Vol. 7, No. 4, December 2018 : 179 — 184



13-Al ISSN: 2252-8938

183

(2,p,,t,C) = (ps, 1C, )
(2,p,,8,C) = (ps, aC, 1)
(2,ps,¢,C) = (ps, cC, 1)
(2,9,,9,C) > (ps, 9C, 1)
Transition from Pito P2
©, Pt 1) > (p,, 4,1)

© p.,a,8) = (p,, 4,
© p,c,c) = (P, 4,
©.p,9,9) = (p,, 4,1

Transition from Pzto P2
0.p,,9,9) >(p,, 4,1)
0, p,.c,¢) > (p,, 4,1)
0,p,,a,8) > (p,, 4,1)
O, p,,t, 1) >(p,, 4,1

Transition from Pzto Ps
0, p;,A, C) = (ps, 4,0)

(0,p,A, B) > (p;, 4,0)

19,S|AB,0
1,¢c,S|AB,0
1,a,S|AB,0
1,t,S|AB,0
2,9,B|gB,1
2,¢,B|cB,1

2,a,B|aB,1

2,t,B|tB,1

1,9,A[4,0
1,¢c,A[4,0

0t,t]4,1

0,9,B/4,0
0,c,B| 2,0

1t,B|BC,0
1,a,B|BC,0

1.¢,B|BC,0
19,B|BC,0

2,t,C|tC,1 09,9140
0,a,al4,1
0cc||}1 0.2,BI2,0 53 clac,1 0,c,c[4,0
e elA 0tBILO0  5¢clec,1 0,aal0
0,9,9]14,1 0,t,t] 4,0
0,A,C|4,0 °
0,A,B[4,0 v
0,9.9/4.1
0,c,c|2,1
0,a,a|4,1
0t,t]4,1

Figure 2. Deep pushdown automata for tandem repeats of DNA

Derivation of the input string W= gatgatgat

(p,. gatgatgatA, S#) [1(p,, gatgatgatA, AB#) [1(p,, atgatgatA, AgB#) [1(p,, tgatgatA, AgaB#)
(p,, gatgatA, AgatB#) [1(p,, gatgatA, gatB#) [1(p,, gatgatA, gatBC#) [I(p,, gatgatA, atBC #)
(p,, atgatA, atBgC #) Li(p,, atgatA, tBgC#) LI(p,, tgatA, tBgaC#) LI(p,, tygatA, BgaC#)

(p;, gatA, BgatC #) [1(p,, gatA, gatC#) [1(p,, atA, atC#) [1(p,, tA, tC#) [1(p,, A, C#) [1(p;, A, #)
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4. CONCLUSION
In this paper, we will design the deep pushdown automata for tandem repeats. The designed deep
pushdown automata will work for k-copy language. The major advantage of the proposed approach over the

existing approach is that it will work for the languages WW, WWW, WWWW, ..
direction in which work can be carried out in the near future:

1.  Parsing of k-copy language and tandem repeats.

2. Design of a tool for identifying tandem repeat pattern in DNA sequence.
3. This model can be extended to k-approximate tandem repeats and multiple length tandem repeats.

*. Following are the research
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