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 This paper investigates the capability of six existing classification algorithms 

(artificial neural network, naïve bayes, k-nearest neighbor, support vector 

machine, decision tree and random forest) in classifying and predicting 

diseases in soybean and mushroom datasets using datasets with numerical or 

categorical attributes. While many similar studies have been conducted on 

datasets of images to predict plant diseases, the main objective of this study 

is to suggest classification methods that can be used for disease classification 

and prediction in datasets that contain raw measurements instead of images. 

A fungus and a plant dataset, which had many differences, were chosen so 

that the findings in this paper could be applied to future research for disease 

prediction and classification in a variety of datasets which contain raw 

measurements. A key difference between the two datasets, other than one 

being a fungus and one being a plant, is that the mushroom dataset is 

balanced and only contained two classes while the soybean dataset is 

imbalanced and contained eighteen classes. All six algorithms performed 

well on the mushroom dataset, while the artificial neural network and k-

nearest neighbor algorithms performed best on the soybean dataset. The 

findings of this paper can be applied to future research on disease 

classification and prediction in a variety of dataset types such as fungi, 

plants, humans, and animals. 
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1. INTRODUCTION 

The main goal of this paper is to test the accuracy and compare the results of existing classification 

algorithms in predicting edibility in mushrooms and classifying diseases in soybean plants. While the 

mushroom and soybean datasets used in this paper have many differences, they are similar in that they are 

datasets of either numerical or categorical attributes, while many similar studies have been conducted on 

datasets of images instead of raw measurements [1-4]. The objective of the analysis conducted in this paper is 

to make suggestions to agricultural researchers, or disease researchers in general, on classification methods 

that perform well, in terms of disease prediction and classification accuracy, on datasets with raw 

measurements. While image datasets have been tested with the classification algorithms presented here, 

many researchers still prefer to take and record measurements by hand when studying plants or fungi. 

Soybeans and mushrooms are very important to humans; thus, it is important to have accurate methods to 

predict whether or not different variations are safe for human consumption and predict the presence of any 

diseases that can affect them. 

https://creativecommons.org/licenses/by-sa/4.0/
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There are both poisonous and edible mushrooms. According to The Audubon Society Field Guide of 

North American Mushrooms, there is no single characteristic to distinguish between edible mushrooms and 

poisonous mushrooms [5-6]. One must be certain a mushroom is one of the edible varieties, otherwise, the 

mushroom should be considered poisonous. Since various types of mushrooms are consumed by humans, it is 

important to establish some guidelines to determine if a mushroom is edible or not. In this paper we will 

attempt to train existing classification algorithms that can be used to classify mushrooms, given a dataset of 

raw measurements, as either edible or poisonous. 

Soybeans are processed for their oil and meal [7]. Soybean oil is used in many foods that humans 

consume daily such as margarine, baked breads, canned tuna, and fried food. Soybean meal is used in food 

for many farm animals such as poultry, pork, and cattle. Soybeans are an important crop because the oil is 

directly put into food that humans consume, and the meal is fed to the animals that are widely consumed by 

humans. There are various diseases that affect soybean crops, in this paper we will attempt to train existing 

classification algorithms that can be used to classify soybeans plants as having a particular disease, based on 

a dataset of raw measurements pertaining to the soybean plants. 

Discovering applications and techniques for predicting disease presence and classifying diseases is 

very important when it comes to agriculture. Diseases in crops can have a serious impact on the crop yield 

[8]. Because diseases will more than likely damage a large number of crops in a growing cycle, farmers can 

benefit from classification of crop diseases and risk factors that may lead to these diseases. A forecasting 

system has been developed to predict disease outbreak in strawberry plants in Florida, where 15% of US 

berries are produced and all berries grown in the winter [9]. The forecasting system, called the Strawberry 

Advisory System (SAS), helps farmers by predicting the disease incidence recommending fungicide 

applications [9]. This system has reduced production costs by eliminating unnecessary fungicide applications, 

while not risking the crop yield. As Richard Strange noted, almost 10% of global food production is lost due 

to plant disease [10]. These losses can be minimized if accurate methods are developed for predicting and 

classifying disease. 

The remainder of this paper is structured as: section 2 discusses the literature review works.  

Section 3 presents our research method. Section 4 discusses the results of our paper. Section 5 provides 

conclusion and recommendations for further studies. 

 

 

2. LITERATURE REVIEW 

To date, most studies of this type have used images of plants or fungi as the datasets which 

classification algorithms are tested on. Previous studies have found that decision trees are widely used 

because of their ease of interpretation, support vector machines (SVM) and artificial neural networks (ANN) 

are typically the most accurate, and k-nearest neighbor (KNN) and naïve bayes are not the best classification 

algorithms for agriculture but they are easy to train and thus have been used in many plant and fungi disease 

classification studies [11]. 

The six classification methods chosen for comparison in this study were based on the literature 

reviewed prior to beginning the experiment. In November 2018, a study was published in which 3 

classification algorithms were tested to compare their accuracy in predicting diseases in plants, based on a 

dataset of plant leaf images. This study found that the decision tree algorithm performed better than ANN and 

naïve bayes [1]. Another study, published in March 2018, compared the classification accuracy of predicting 

loss caused by grass grub insect using the following techniques: decision tree, random forest, neural 

networks, gaussian naïve bayes, SVMs, and KNN [12]. The dataset used in [12] was comparable to the data 

used in this study because it was a dataset of real recorded values, instead of images. However, the main 

difference between our proposed study and [12] is that our study is focused on predicting the presence of 

disease and classifying the types of diseases; while the main goal of [12] is to predict the loss of crops due to 

disease.The March 2018 study found that neural networks, random forest, and gaussian naive bayes were the 

most accurate in predicting diseases in crops. Finally, a study published in February 2019 compared the 

accuracy of SVM and ANN classification algorithms in predicting diseases in plants using a dataset of 

images, this study found that ANN was the most accurate algorithm [2]. 

In this study, we will compare the accuracy of six different classification algorithms in predicting 

diseases in soybean plants and edibility in mushrooms: artificial neural network (ANN), naïve bayes, k-

nearest neighbor (KNN), support vector machine (SVM), decision tree, and random forest. The results of this 

study will be compared to those mentioned in the literature review of similar studies that have been done. 
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3. RESEARCH METHOD 

The purpose of this study is to assess the capability of six existing classification algorithms 

(artificial neural network, naïve bayes, k-nearest neighbor, support vector machine, decision tree and random 

forest) in classifying and predicting diseases in soybean and mushroom datasets. In this section, we will 

discuss our methodology starting with data preparation, then introducing the classification methods, and 

finally evaluation metrics. In the next section, we will discuss the experiments results. 

 

3.1.  Data preparation 

The mushroom dataset, obtained from UCI machine learning repository, contains 8,124 hypothetical 

samples of 23 species of gilled mushrooms in the Agaricus and Lepiota families with 22 categorical attributes 

[6, 13]. The species are classified as edible or poisonous. Any mushroom that cannot be categorized as edible 

is considered poisonous, regardless of whether it is poisonous. For the purpose of our comparison in this 

study between the mushroom and soybean datasets, the poisonous classification will be treated as the disease 

being present and the edible classification will be treated as the disease not being present. The attributes of 

the mushroom dataset are: cap-shape, cap-surface, cap-color, bruises, odor, gill-attachment, gill-spacing, gill-

size, gill-color, stalk-shape, stalk-root, stalk-surface-above-ring, stalk-surface-below-ring, stalk-color-above-

ring, stalk-color-below-ring, veil-type, veil-color, ring-number, ring-type, spore-print-color, population, and 

habitat. 

The soybean dataset, also obtained from UCI machine learning repository, contains 307 

observations from soybean plants infected with 19 different diseases and 35 categorical attributes [14] and 

[13]. The diseases present in the soybean dataset are diaporthe-stem-canker, charcoal-rot, rhizoctonia-root-

rot, phytophthora-rot, brown-stem-rot, powdery-mildew, downy-mildew, brown-spot, bacterial-blight, 

bacterial-pustule, purple-seed-stain, anthracnose, phyllosticta-leaf-spot, alternarialeaf-spot, frog-eye-leaf-

spot, diaporthe-pod-&-stem-blight, cyst-nematode, 2-4-d-injury, and herbicide-injury. The 35 categorical 

attributes present in the soybean dataset are date, plant-stand, precip, temp, hail, crop-hist, area-damaged, 

severity, seed-tmt, germination, plant-growth, leaves, leafspots-halo, leafspots-marg, leafspot-size, leaf-

shread, leaf-malf, leaf-mild, stem, lodging, stem-cankers, canker-lesion, fruiting-bodies, external decay, 

mycelium, int-discolor, sclerotia, fruit-pods, fruit spots, seed, mold-growth, seed-discolor, seed-size, 

shriveling, and roots. 

The attribute values in the mushroom dataset were coded numerically. An R program was written to 

replace these numeric values with their true values. The description of this dataset from the UCI Machine 

Learning Repository discussed the one attribute (stalk_root) where values were missing. This was verified 

using Microsoft Excel because of the simplicity of the dataset. A decision was made to run each of the 

classification algorithms on two versions of the mushroom dataset; one version with all attributes included 

and another version with the stalk_root attribute removed. The purpose of creating these two versions was to 

investigate whether or not the attribute with missing values would skew the results of the classification 

algorithms. 

The attribute values in the soybean dataset were coded numerically as well, an R program was 

written to replace these numeric values with their true values. The soybean dataset was then examined for 

missing values, also using an R program. There were nine attributes (hail, severity, seed_tmt, leaf_mild, 

lodging, shriveling, fruiting_bodies, fruit_spots, seed_discolor) where 10% or more of the values were 

missing. A decision was made to run each of the six classification algorithms on two versions of the soybean 

dataset, one version with all attributes included and another version with these nine attributes removed. The 

purpose of creating these two versions was the same as the justification for the same method in the 

mushroom dataset, to investigate whether or not these attributes with missing values would skew the results 

of the classification algorithms. Upon further investigation of the soybean dataset, it was discovered that 

there existed only one data point for the 2-4-d-injury class and that most of the attribute values were missing 

for this one data point. This data point was removed from both versions of the soybean datasets in order to 

avoid skewing the results of the classification algorithms. 

 

3.2.  Classification methods 

Six different classification techniques were tested in this study to build classification models for 

predicting diseases in soybeans and edible or poisonous features of mushrooms. The classification algorithms 

were all trained using 10-fold cross validation and were executed using functions in Weka [15]. With 10-fold 

cross validation, the rows within the datasets are randomly reorganized and split into 10 folds of equal size 

[16]. With each iteration of the classification model training process, one fold is used as the test dataset and 

the remaining 9 folds are used as the training datasets. This process repeats 10 times until each fold has been 

used as the test dataset. The resulting classification model is an average of the 10 iterations of the training 

process. The following 6 classification methods were used in this study: 
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3.2.1. Artificial neural network 

Artificial neural networks (ANN) are built to resemble the way a human brain thinks. ANNs contain 

multiple weighted connections between inputs and outputs, these weights are adjusted when building the 

model on the training data in order to correctly predict class labels based on the input data object [17]. In this 

study, ANNs were built using the multilayer perceptron algorithm in Weka. The multilayer perceptron 

algorithm builds an ANN through a process called backpropagation. In this process, weights are assigned to 

each data object in the input layer of the ANN. These weights are then re-assigned as necessary in one, or 

multiple, hidden layers of the ANN in order to minimize the mean squared error between the class label 

predicted by the ANN and the true class label of the given data object. The process is called backpropagation 

because these adjustments to the weights are done in the backwards direction starting at the output layer, 

which contains the class labels, and going back through all of the hidden layers to the first hidden layer [18]. 

The multilayer perceptron algorithm was executed using a learning rate of 0.3, a momentum of 0.2, and 

training time of 500. 

 

3.2.2. Naïve bayes 

Naïve bayes is a probabilistic classification method that uses bayes theorem. The naïve bayes 

classifier takes a set of features from a dataset and determines the probability of each feature occurring in 

each class within the data [19]. For each row of data, the values of the attributes are used to calculate the 

posterior probability for each class within the dataset, the row of data is then assigned to the class with the 

highest posterior probability. This method is referred to as naïve because it assumes that all features of the 

dataset are independent of one another, which is an assumption that is likely untrue and thus naïve. Despite 

this assumption not being true in all cases, naïve bayes has been shown to be a successful classifier in large 

datasets. The naïve bayes algorithm was executed using the naivebayes classifier in Weka. The naïve bayes 

classifier in Weka uses estimator classes. A batch size of 100 was used without kernel estimation or 

supervised discretization. 

 

3.2.3. k-nearest neighbor 

The k-nearest neighbor (KNN) algorithm assigns class labels to rows within a dataset based on the 

class labels of training data that are similar [17]. The KNN algorithm works by searching the training data for 

k training tuples that are closest to the test data tuple and assigns the test tuple a class label based on the class 

labels of those closest training tuples. The closeness of a training tuple to a test tuple is determined using a 

distance function, such as Euclidean distance. KNN was implemented in Weka for this experiment using the 

instance based learner (IBK) algorithm. The IBK algorithm was executed using the Euclidean distance 

function, a batch size of 100, and k=1. 

 

3.2.4. Support vector machine 

Support vector machine (SVM) is a supervised machine learning algorithm used in classification 

and regression. SVMs were first presented by Vladimir Vapnik and his coworkers, Bernhard Boser and 

Isabelle Guyun, at the computational learning theory (COLT-92) conference [20]. In this algorithm, training 

data is transformed to a higher dimension. A line or hyperplane separates the classes of data from each other. 

The line or hyperplane are found using support vectors. Support vectors are the points closest to the 

hyperplane. SVMs are highly accurate, which makes up for the slow speed associated with them. In this 

study, SVMs were built using the sequential minimal optimization (SMO) algorithm in Weka. The SMO 

algorithm uses the complexity parameter, also known as the C parameter, to control the flexibility of the 

process in drawing the line between classes [21]; the C parameter used was 1.0. The PolyKernel default was 

used, which separates the classes by a curved line [21]. 

 

3.2.5. Decision tree 

A decision tree is a structure that contains internal nodes that denote attributes, branches that denote 

the outcome of a test on an observation and leaf nodes that denote the class label [17]. The top node of this 

tree-like structure is the root node. In order to determine the class of an observation, the decision tree is 

followed, starting at the root, moving down to the leaf nodes. The decision tree algorithm was implemented 

in Weka for this study using the J48 decision tree algorithm. The J48 algorithm was executed using a batch 

size of 100, the minimal of objects of 2, without using unpruned trees, a confidence interval of 0.25, subtree 

raising and without binary splits [22].  

 

3.2.6. Random forest 

A random forest is a collection of decision trees. Each decision tree within the random forest 

generates a class prediction; the class with the largest number becomes the prediction of the random forest 
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[23]. In order for this algorithm to be efficient, the individual models must not be correlated or should have a 

low correlation. There are two methods used to ensure that the individual decision tree models are not too 

closely correlated with each other. One method is bagging. Each individual tree selects a random sample 

from the dataset with replacement [23]. The second method is random linear combinations of the attributes. 

This method uses new attributes that are a linear combination of the existing attributes [17]. This also helps 

to reduce correlation between classifiers. The random forest algorithm in Weka was used in this study. The 

random forest algorighm uses the numFeatures value of 0, which selects the number of attributes considered 

at each split point. The algorithm was executed with a bag size percent of 100%, which creates a new random 

sample the same size as the training sample. The NumIterations value was 100, which sets the number of 

bags or iterations to 100.  

 

3.3.  Performance evaluations 

The following seven measures were used to evaluate the performance of the six classification 

algorithms on the soybean and mushroom datasets, these measures were selected based on their use in a 

similar study which used classification functions in Weka for plant disease detection on a dataset of plant 

images [4]. 

Accuracy: A percentage calculated by dividing the number of correctly classified data points by the 

total number of data points and multiplying by 100. 

Mean absolute error: The mean absolute error (MAE) is calculated by taking the sum of the absolute 

errors divided by the number of non-missing data points. 

True positive rate: The TP rate is calculated by dividing the number of true positive classifications 

by the sum of the number of true positive classifications and the number of false negative classifications. 

(TP/(TP+FN)). 

False positive rate: The FP rate is calculated by dividing the number of false positive classifications 

by the sum of the number of false positive classifications and the number of true negative observations. 

(FP/(FP+TN)). 

Precision: Precision is calculated by dividing the number of true positive classifications by the sum 

of the number of true positive classifications and the number of false positive classifications. (TP/(TP+FP)). 

Recall: Recall is calculated by dividing the number of true positive classifications by the sum of the 

number of true positive classifications and the number of false negative classifications. (TP/(TP+FN)). 

F - Measure: The F-Measure is calculated by multiplying the precision and recall, dividing this 

value by the sum of the precision and recall, and finally multiplying this number by two. 

(2*((precision*recall)/(precision+recall))). 

 

 

4. RESULTS AND DISCUSSION 

The algorithms were tested on both variations of the mushroom dataset, one with the attribute with 

missing values removed and one with all attributes included. The measures previously described were 

reported for each classification algorithm. The results for both variations of the mushroom dataset were 

similar, so the reported results are from the version of the dataset with all attributes included. All of the six 

algorithms tested performed extremely well on the mushroom dataset with almost all accuracy values at 

100%. The naïve bayes algorithm performed the worst on this dataset with an accuracy of 95.83%, which is 

still a good accuracy level. Table 1 shows for results for the mushroom dataset. 

 

 

Table 1. Results for mushroom dataset 
Parameter Classification Method 

ANN Naïve Bayes KNN SVM Decision Tree Random Forest 

Accuarcy 100.00% 95.83% 100.00% 100.00% 100.00% 100.00% 

MAE 0.00 0.04 0.00 0.00 0.00 0.00 

TP-Rate 1.00 0.96 1.00 1.00 1.00 1.00 
FP-Rate 0.00 0.04 0.00 0.00 0.00 0.00 

Precision 1.00 0.96 1.00 1.00 1.00 1.00 

Recall 1.00 0.96 1.00 1.00 1.00 1.00 

F-Measure 1.00 0.96 1.00 1.00 1.00 1.00 

 

 

The algorithms were tested on two variations of the soybean dataset, one with any attributes that 

contained 10% or more missing values removed and one with all attributes included. The results for both 

variations of the soybean dataset were similar, so the reported results are from the version of the dataset with 

all attributes included. All of the six algorithms, except for decision tree, performed well on the soybean 
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dataset with accuracy values falling in the range of 89.22-91.83%. The decision tree algorithm had a reported 

accuracy of 82.68% for the soybean dataset, so this was the worst-performing algorithm in classifying 

diseases in the soybean dataset. Table 2 shows for results for the soybean dataset. 

 

 

Table 2. Results for soybean dataset 
Parameter Classification Method 

ANN Naïve Bayes KNN SVM Decision Tree Random Forest 

Accuarcy 91.18% 90.20% 91.83% 89.22% 82.68% 89.54% 

MAE 0.01 0.01 0.01 0.1 0.02 0.04 

TP-Rate 0.91 0.9 0.92 0.89 0.83 0.9 

FP-Rate 0.91 0.01 0.01 0.01 0.02 0.01 
Precision 0.91 0.92 0.92 0.89 0.82 0.9 

Recall 0.91 0.9 0.92 0.89 0.83 0.9 

F-Measure 0.91 0.9 0.92 0.89 0.83 0.89 

 

 

In comparing the results for both datasets, ANN and KNN performed best on the soybean dataset, 

while all methods other than naïve bayes performed at 100% accuracy on the mushroom dataset. It is to be 

expected that most of the classification methods would perform best on the mushroom dataset because there 

are only two classes present in this dataset, while the soybean dataset that was tested has 18 classes. As 

mentioned in theliterature review section, naïve bayes and KNN are not typically used in agricultural studies. 

This is an interesting point to consider because naïve bayes was the only algorithm that did not produce 

100% accuracy in the mushroom dataset, but also interesting to note because KNN was one of the best 

performing algorithms in the soybean dataset [11]. Although the performance of KNN on the soybean dataset 

seem to conflict with the previous literature, the results show that ANN was one of the top performing 

algorithms in the soybean dataset compared to the other algorithms, and this confirms what was found in the 

February 2019 study mentioned in the literature review section [2]. 

Further comparison of the results for both datasets revealed another major difference between the 

two datasets. The mushroom dataset is balanced, with the observations being equally distributed among the 

two classes, poisonous and edible. The balanced distribution of the mushroom dataset is shown in Figure 1. 

The soybean dataset, however, is imbalanced among the disease classes. As shown in Figure 2, there are 4 

classes that contain a much higher percentage of the observations compared to the other classes. The disease 

classes with this high percentage of observations, in Figure 2 (D1 through D4), are phytophthora-rot, brown-

spot, alternarialeaf-spot, and frog-eye-leaf-spot. Because the soybean dataset is imbalanced, measures other 

than accuracy needed to be considered to determine if the imbalance of the dataset was skewing the results 

for each classification algorithm. In the case of imbalanced datasets with a large number of values, the 

precision and recall values can be evaluated to determine the performance of the classification algorithm 

[24]. As shown in the results for the classification algorithms tested on the soybean dataset in Table 2, all of 

the precision and recall values are close to 1. Referring back to the parameter evaluations section of this 

paper, this indicates that the number of true positive classifications are much larger than the number of false 

negative and false positive classifications. If the classification algorithms were being skewed by the 

imbalance in the dataset, our precision and recall values would be much lower. Thus, although this is a major 

difference between our datasets, the imbalance feature of the soybean dataset did not have an adverse effect 

on the results of each classification algorithm. In future studies of this kind, datasets that are imbalanced may 

need additional data preparation techniques as to not skew the results of the classification algorithms. Two 

potential techniques for handling imbalanced datasets are oversampling and undersampling [25]. In 

oversampling, synthetic data is generated so that additional observations are present in the minority class and 

the distribution of the data is more equal among the classes. In undersampling, observations are removed 

from the majority classes to make the distribution of data more equal among the classes. 
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Figure 1. Mushroom dataset class distribution 

 

 

 
 

Figure 2. Soybean dataset class distribution 

 

 

5. CONCLUSION 

In this paper, we tested ANN, naïve bayes, KNN, SVM, decision tree, and random forest classifiers 

to predict disease presence in a mushroom dataset and classify disease in a soybean dataset. In the mushroom 

dataset, we found that all classifiers, except for naïve bayes, performed at 100% accuracy. This is a likely 

result given a dataset with only two classes. In the soybean dataset, we have shown that ANN and KNN are 

the best classifiers in terms of accuracy, but that ANN is likely the better choice since KNN classification is 

not typically used for plant datasets. We also showed that the imbalance of the soybean dataset did not affect 

the results of the classification methods, likely because a large amount of data is present. In the mushroom 

dataset, we used classification to determine if a disease was present or not (edible or poisonous) and in the 

soybean dataset, we used classification to determine which disease was present. The purpose of these 

experiments was to come up with classification methods that can be used on datasets for plants or fungi that 

contain real measurements instead of images. The findings in this paper can be repeated on similar fungi or 

plant datasets but may also be extended to training classification algorithms for predicting disease presence 

or disease classification in human or animal datasets with raw measurements. 
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