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 This paper proposes an efficient model for recognizing and classifying a 
vehicle type. The model localizes each object in the image then identifies the 

vehicle type. The features of an image are extracted using the histogram 
oriented gradients (HOG) and ant colony optimization (ACO). A vehicle type 
is determined using different classifiers namely: the k-nearest neighbor 
(KNN), support vector machine (SVM), random forest (RF), and Softmax 
classifiers. The model is implemented and operated on two datasets of 
vehicles' images as test-beds. From the comparative study, the SVM 
outperforms the other adopted classifiers and is also better using HOG than 
that using ACO. A modification is done on HOG by adding the Laplacian 
filter to select the most significant image features. The accuracy of the SVM 

classifier using modified HOG outperforms that one using the traditional 
HOG. The proposed model is analyzed and discussed regardless the local 
geometric and photometric transformations like illumination variations. 
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1. INTRODUCTION 

Recognition of a vehicle type is an important task for vision-based sensors. A type of vehicle based 

access control for outdoor sites, buildings and even housing estates have become an important theme. The 

various traffic monitoring and control systems that depend on the identification type of vehicles become vital 
in our life. Recognition of Bus, Microbus, Minivan, Sedan, SUV, and Trucks enables determination of 

optimal assignment of green time for the particular crossroad approach. 

Several research efforts were presented for recognizing and classifying the types of vehicles. 

Examples of such efforts include; but not limited to; the following:- 

Apostolos Psyllos, et. al., [1] used scale invariant feature transform (SIFT) to recognize 

manufacturer logo images and model of a vehicle. Then, neural network (NN) approaches were assessed as 

classifiers and they achieved an average recognition rate about 85%. 

Zhen Dong and Yunde Jia, [2] combined distributions of structural and appearance-based features to 

classify vehicle type recognition model. The authors mentioned that two types of features are computed to 

obtain compact and discriminative representation of vehicles. 

Jiquan Ngiam, et. al., [3] introduced the sparse filtering algorithm based on only one 
hyperparameter, the number of features as a proposed algorithm for vehicle recognition model. The authors 

in their research work used a simple cost function for optimization objectives. 

https://creativecommons.org/licenses/by-sa/4.0/
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Yu Peng, et. al., [4] presented a method for classifying a vehicle type based on adaptive multi-class 

principal components analysis (PCA). The authors extracted vehicle front width and the location of license 

plate. Then, authors generated eigenvectors to represent extracted vehicle fronts, then they applied PCA 

method with self-clustering to classify a vehicle type. The authors built a database including 4924 images of 

vehicle front view.  

 Jesse Jin, et. al., [5] presented a model based on SVM for classifying a vehicle's type. The features 

of an image were extracted from the license plate and width of vehicle front after subtracting the background. 

The eignvector of each vehicle-front-image was calculated. The features of an image were entered to the 

SVM classifier. The authors's model adopted five types of vehicles namely: truck, minivan, bus, passenger 

car, and sedan (SUV). 
Zhen Dong, et. al., [6] presented a method for vehicle type classification. The authors' method used 

a semisupervised conventional neural network from vehicle frontal view images. The authors presented 

sparse Laplacian filter learning to obtain the filters of the network with large amounts of unlabeled data. The 

softmax classifier was trained by multitask learning with small amounts of labeled data. The authors' method 

was able to learn good features for classification. The learned features were discriminative enough to work 

well in complex scenes. The authors built BIT-vehicle dataset including more than nine-thousands of vehicle 

images. The authors' method was effective from the experimental results on both the authors' dataset and the 

public dataset. 

Heikki Huttunen, et. al., [7] presented and discussed the car type recognition using deep neural 

methods. The adopted car types were: bus truck, van, and small cars. The authors considered deep neural 

networks and the SVM with SIFT features. The authors' work was operated on a database with more than 
6500 images. The achieved prediction accuracy was more than 97%. The authors' approach outperforms 

some of the early studies in this direction. 

Jie Fang, et. al., [8] presented a fine-grained model for vehicle recognition. The model is based on a 

coarse-to-fine conventional neural network (CNN) architecture. The authors mentioned that the fine grained 

vehicle recognition model can be defined by locating discriminative parts. The authors proposed a 

corresponding course to fine method where the discriminative regions are automatically detected based on 

feature maps extracted by the CNN. A mapping from feature maps to the input image was established to 

locate the regions and those regions were repeatedly refined until there are no more qualified ones. The SVM 

classifier was applied and the authors' work outperforms most of the other adopted approaches.  

Wei. Sun, et. al., [9] extracted the local feature from four partitioned key patches by improving 

Canny edge detection algorithm. A set of Gabor wavelet kernels with five scales and eight orientations were 

used. The authors introduced two-stage classification that used K-NN as the first stage to recognize a large 
vehicle or a small vehicle depending on global features and sparse representation as the second stage which 

was based on local features. 

 Yassin Kortli, et. al., [10] mentioned that facial recognition is important for several applications. 

Various facial recognition methods were presented and discussed to reduce the amount of calculation and 

improve the recognition rate. Such methods can be grouped into three categories namely: local feature 

approaches, subspace learning approaches, and correlation filtering approaches. The authors in their research 

work presented a comparative study among some facial recognition algorithms. The adopted algorithms were 

HOG, SIFT, speedup robust features (SURF), and binary robust independent elementary features (BRIEF). 

The performance of the adopted algorithms was evaluated in terms of true positive rate, false positive rate, 

and recognition time. The recognition time of SURF was the smallest one while the recognition accuracy of 

HOG was the best. 
The remaining part of this paper will be as follows: Section 2 presents the architecture of the main 

building blocks of the proposed model. Section 3 presents the preprocessing operations done on any input 

image. Section 4 presents two methods of feature extraction while sections 5 analyzes the adopted classifiers. 

Section 6 presents the implementation work which involves some modifications on the feature extraction 

process by applying the Laplacian filter. A comparative study and discussion of results are presented in 

section 7. Finally, Section 8 concludes the whole work. 

 

 

2. ARCHITECTURE OF THE PROPOSED MODEL 

A robust system and/or model for vehicle type recognition is proposed and presented. After making 

some sort of preprocessing operations, the object detection starts. In other words, the robustness of local 

geometric and photometric transformations like illumination variations are achieved. An object can be 
detected from an input image as shown in section 3. The feature extraction process and/or method can be 

developed using two new concepts: the HOG and the ACO. Features of the input image can be extracted 

using HOG descriptors which are based on laplacian filter for extracting the edge gradients and orientations. 
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The concept of ACO is used as an optimization approach for the feature selection process. After that the 

SVM classifier is applied to predict and identify the vehicle type. The adopted vehicle types in this work are: 

Bus, Microbus, Minivan, Sedan, SUV, and Trucks. The main building blocks are briefly shown in Figure 1. 

 
 

 

Figure 1. Architecture of the proposed vehicle type recognition system 

 

 

3. PREPROCESSING OPERATIONS 

Several pre-processing operations have been performed on the input image. Step 1, read the input 

image as a colored image i.e. in RGB. Step 2, convert the RGB values to grayscale values by forming a 

weighted sum of the R, G, and B components using (1) [11]: 

 

Gg (x,y)= 0.299 IR(x,y) + 0.587 IG(x,y) +0.114 IB(x,y) (1) 

 

Where I is the image and x and y are representing the pixel coordinates. Step 3, test the image; if the image 

contains two objects then we crop region of each object. Step 4, resize the cropped image to an optimal size 

(128x128) because it can be of several sizes. Processing of a big sized image makes the operation slow. It 
also requires unnecessary power and computation time. Step 5, rebuild a database containing images with the 

same size and each image contains only one object. Figure 2 briefly presents the preprocessing operations 

done on some input images taken from the adapted dataset. 

 

 

 
Input image 

 
Grey image 

  
Detect & Resize image 128x128 

 

Figure 2. An example of vehicle detection approach with every step’s output 

 

 

4. FEATURE EXTRACTION 

In this section, we mainly describe two well-known feature extraction approaches that can be used 

for vehicle type recognition system. 

 

4.1.  Histogram of oriented gradients (HOG) 

The image is divided into small connected regions called cells of size N×N pixels. HOG [12] is able 
to provide the edge direction and shape of the object. HOG specifies the magnitude mx,y and orientation 

ϴx,y parameters of the feature regions (NxN) in an image as shown respectively in (2-3) [10]. 

 

mx,y = √(L(x +  1, y)–  L(x –  1, y))2 + (L(x, y +  1) –  L(x, y –  1))2
 (2) 
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ϴx, y = tan−1 L(x,y + 1) – L(x,y – 1)

L(x + 1,y) – L(x – 1,y)
 (3) 

 

Where L be the intensity (grayscale) and x, y are the gradients of each cell in both the horizontal and vertical 

directions respectively. The amplitude of the gradient and the orientation of each pixel in the cell are voted in 

9 bins. To improve the accuracy, the local histograms can be contrast-normalized by calculating a measure of 

the intensity across a larger region of the image, called a block, and then using this value to normalize all 
cells within the block. This normalization results in better invariance to the changes in illumination and 

shadowing. The number of cells in a block is specified as a 2-element vector. A large block size value 

reduces the ability to suppress local illumination changes. Because of the number of pixels in a large block, 

these changes may get lost with averaging. Reducing the block size helps to capture the significance of local 

pixels. Smaller block size can help suppressing the illumination changes of HOG features. Figure 3 presents 

the HOG descriptor that was applied on a single image of size 128x128. The image was divided into cells of 

size 8x8 for each and block of size 2x2 for each (i.e no. of cells in block 2x2) and finally, the HOG would 

generate a histogram for each cell. The histograms are created using the magnitude and orientations of pixel 

values in cell 8x8. The histogram is a vector of 9 bins corresponding to angles 0, 20, 40, 60 … 160. Figure 4 

illustrates the contribution of one pixel value in the cell. It has a direction 114 and a magnitude 89. So, it adds 

26.7 to 6th bin and 62.3 to 7th bin. Then, contributions of all the pixels in the 8×8 cells are added up to create 

the 9-bin histogram. As the block has four cells; each cell is represented by a matrix 9x1 so, the block is 
considered a single matrix 4x9x1 i.e 36x1. Hence, the total number of features for an image would be 15 

x15x 36x1= 8100 features. 

 

 

 
 

Figure 3. HOG features extraction process: image is divided into cells of size 8x8 pixels. The orientation of 

all pixels is computed and accumulated in a 9-bins histogram of orientations. All cell histograms are 

concatenated in order to construct the final features vector. 

 

 

 
 

Figure 4. Contributions of one pixel value in the 8×8 cell 

 

 

4.2.  Ant colony optimization (ACO) 

ACO was introduced by Marco Dorigo and Thomas Stützle [13] as a nature-inspired metaheuristic 

approach for the solution of hard combinatorial optimization (CO) problems. The ACO [14-15] can be used 
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to extract the features of an image. This can be done by a well form of representation of the image. The 

problem of image recognition can be represented by a graph with a set of nodes connected with edges. The 

nodes and edges represent respectively the features and weights. To find the optimal feature subset, it is 

important to consider an ant traversal within the graph with a minimum number of nodes which are visited 

and then satisfy a stopping criterion using K-NN function. Figure 5 represents the construction of subset by 

one ant in ACO for feature selection. The ant on feature f6 and constructs one subset features {f6, f1, f2, f3} 

from all features f1,f2,…,f6 according to stopping criteria. 

 
 

 
 

Figure 5. An example, one ant placed in feature f6 and constructed one subset {f6,f1,f2,f3} 

 

 

The conventional probabilistic transitions of an ant k at feature i choosing to travel to feature j at time t can 
be defined as in (4-5). 

 

𝑃𝑖𝑗
𝑘(𝑡) = {

[𝜏𝑖𝑗(𝑡)]
𝛼

.[ηij]
𝛽

∑ [𝜏𝑖𝑢(𝑡)]𝛼 .[ηiu]𝛽
𝑢𝜖𝑈

           (𝑖𝑓 𝑗 𝜖 𝑈 )

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

𝜏𝑖𝑗(𝑡) = 𝜌 𝜏𝑖𝑗(𝑡 − 1) + ∆𝜏𝑖𝑗(𝑡) (5) 

 

Where, u is a feasible feature, U is feasible neighborhood of ant k, τij is the pheromone value associated with 

edge (i,j), ηij is the heuristic desirability of choosing feature j when at feature i, ρ is the evaporation 

coefficient, ∆τij (t) is the sum of the contributions of all ants that used moving (ij) to construct their solution 
by (6) and α, β parameters determine respectively the relative pheromone value and heuristic information. 

 

∆𝜏𝑖𝑗(𝑡) = ∑ ∆𝜏𝑖𝑗(𝑡)𝑘𝑛
𝑘=1  (6) 

 

Where n is the number of ants and ∆τij(t)k is the amount of pheromone value laid on edge (ij) by ant k. 

 

 

5. ANALYSIS OF SOME ALGORITHMS FOR CLASSIFYING VEHICLES’ TYPES  

As mentioned in literature, there are several types of classification algorithms and/or methods. Such 

classifiers can be used to assign and predict a predefined class label to an input instance. The instance here 

represents the features of input vehicle image and the class label is the type of vehicle. The classifiers are 

based respectively on statistical approach, structural approach, semantic approach … etc. 
In this research work four different classification methods are adopted, analyzed, operated and 

tested. The classifiers are: K-NN, SVM, RF and Softmax classifiers. The adopted classifiers are briefly 

mentioned in the following subsections. 

 

5.1.  K-nearest neighbors (K-NN) classifier 

The K-NN supervised machine learning algorithm can be used for both classification and regression 

predictive problems. In K-NN classification [16], the output is a class membership. An object is classified 

based on voting of its neighbors, with the object being assigned to the class most common among its K-NN. 

The K-NN algorithm is briefly described as shown below. For more the reader can refer to [16-17]. 

 

K-NN Algorithm 

1. Load data as a matrix where each row represents an image. 
2. Select K to be the specified number of neighbors. 
3. Calculate the Euclidean distance between test data x* and each row of the training data [x1,x2,...,xn]. The Euclidean 

distance is calculated as in (7). 
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D(x,x*) = √∑ (𝑥𝑛 − 𝑥∗)𝑛
1

2
 (7) 

 
4. Select the K rows which have the shortest distance. 
5. Select the most frequent class of these rows 

 

 

5.2.  Support vector machine (SVM) classifier 

SVM is a discriminative supervised learning classifier defined by a separating hyperplane. SVM 

was introduced by Cortes and Vapnik [18] for two class classification problems. Authors in [19-20] 

introduced the modified SVM classifier to handle the multi-classes problem. They constructed the SVM 

classifier for each pairwise (one vs. one) of classes and a voting system aided to elect the predicted class 

when an unseen item is tested. If N be the number of classes, constructs N(N-1)/2 decision functions for all 

the combinations of class pairs. The training data for corresponding two classes were used to implement  

a decision function for a class pair. For more details about the SVM classifier, the reader can refer  

to [12, 21-22]. 

 

5.3.  Random forest (RF) classifier  
The RF classifier is an ensemble learning approach proposed by [23-24]. RF operates by 

constructing a multitude of decision tree at training time and outputting the class. Each individual tree in the 

random forest can be used as class prediction and class classification with the most votes which become our 

model’s prediction [25-26]. 

 

5.4.  Softmax classifier  

Softmax is often used in neural networks and convolution neural network [8, 27] to map the non-

normalized output of a network to a probability distribution over predicted output classes. i.e We have one 

input X and a corresponding value Y which can be predicted after passing it to the network/layers. A softmax 

function outputs a vector that represents the probability distributions of a list of potential outcomes as 

follows: 

 

P(Y = k|X = xi) =
esi

∑ esii
 (8) 

 

Where si is an intermediate variable for the distribution, x ϵRkx1represents the input feature and k is the 
number of vehicle types that used in our standard scoring function. The scoring function is, 

 

si = f(xi , W) = WTxi  (9) 
 

Where W are the parameters or weights, i = 1,2,…,k ϵRk. 
 

 

6. IMPLEMENTATION AND PRACTICAL WORK  

6.1.  Datasets description 

All the experimental sessions have been carried out on two datasets as test-beds. The first dataset is 

called BIT-Vehicle dataset [6] and it includes 9850 vehicle images. Two cameras have been used in different 

time and places to construct images in the dataset. The image taken by the cameras may be of size 
1600x1200 or 1920x1080. The proportion of nightlight images in the whole dataset is about 10%. In 

addition, the images contain variation in the illumination condition, the scale, the color of vehicles, and the 

viewpoint. The top or bottom parts of some vehicles are not included in the images and there may be one or 

two vehicles in one image. All of these challenges can be overcome. All vehicles in the dataset are divided 

into six categories: Bus, Microbus, Minivan, Sedan, SUV, and Truck with the corresponding number of 

vehicles for each type 558, 883, 476, 5922, 1392, and 822, respectively. Figure 6 illustrates some examples 

of the BIT-Vehicle dataset. 
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SUV 

 
BUS 

 
Truck 

 
Minivan 

 
Microbus 

 
Sedan 

 

Figure 6. Examples of vehicle images 

 

 

The proposed model was also tested on the second dataset which is called vehicles-nepal- 

dataset [28]. It includes 4,800 vehicles' images cropped from videos taken from the streets of Kathmandu. 

The images of vehicles are divided into five categories namely: Bus, Microbus, Minivan, Sedan, and Truck. 
Figure 7 briefly illustrates some images of the vehicles-nepal-dataset. 

 

 

 
BUS 

 
Microbus 

 
Minivan 

 
Truck 

 
Sedan 

 

Figure 7. Examples of vehicle images 

 

 

We have used an Intel Core TM i7 processor (1.80 GHz) with 12 GB of RAM to perform and 

execute all our experiments. The vehicle type recognition system is implemented using MATLAB R2018a on 

a 64-bit Microsoft Windows 10 operating system. 

For each test on the BIT-Vehicle dataset, we randomly selected 3522 images containing 6-classes 

where 2400 samples were dedicated for training (400 for each class) and 1122 samples were used for testing. 
For the vehicles-nepal-dataset, we randomly selected 2850 images containing 5-classes. The number of 

images or instances were 1850 (370 images for each class) and 1000 for training and testing respectively. In 

order to give a better estimation of the generalization performance, the reported results of the datasets are the 

averages of 10 independent experiments because cross-validation in such experiments was adopted. 

 

6.2.  Experimental results of classifying vehicles’ types 

In this section, we evaluate the adopted four classification algorithms and demonstrate the 

effectiveness and feasibility of the best classifier for vehicle type recognition. First, the K-NN classifier is 

applied using (7) of the Euclidean distance where the number of neighbors K=5. Secondly, we apply the 
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random forest classifier (RF) based on creating random subsets of training data using the bag ensemble 

method with randomly subsampling of training features to build the decision trees [26, 29]. The CART model 

is then trained on each sample. Thirdly, the Softmax classifier is trained by multitask learning with small 

amounts of labeled data. For a given vehicle image, the network can provide the probability of each type to 

which the vehicle belongs using W in (9) with parameters λ, η = 0.1, μ = 0.4, and the threshold is 10−4. 

Fourthly, the SVM has been applied using one-vs.-one multiclass methods [12, 30] based on the cubic kernel 

function. The average classification accuracy for a vehicle's type for the four classifiers are summarized as 

shown in Table 1.  

 

 
Table 1.Classification accuracies for the different classifiers on BIT-vehicle dataset 

Classifier Average accuracy 

K-NN  75.5% 

RF 76.9% 

Softmax 71.1% 

SVM 82.3% 

 

 

Table 1 shows that the SVM is the best classifier for vehicle recognition system. Table 2 shows the 

confusion matrix for the 6-classes vehicle types when operating the SVM classifier on the input images of the 

dataset. 

 

 

Table 2. Confusion matrix of the 6-classes of vehicle types using the SVM classifier 
Vehicle type Bus Microbus Minivan Sedan SUV Truck 

Bus 90.37% 1.60% 2.67% 0.00% 0.00% 5.34% 

Microbus 1.06% 83.42% 3.74% 2.67% 8.02% 1.06% 

Minivan 1.60% 9.62% 62.03% 0.53% 0% 11.22% 

Sedan 0.00% 6.42% 1.06% 87.70% 4.81% 0.00% 

SUV 0.00% 8.02% 1.06% 13.90% 77.00% 0.00% 

Truck 2.67% 4.27% 12.83% 0.00% 0.00% 80.21% 

 

 

6.3.  Improving the classification performance  

The next step aims at improving the classification performance. Extraction of features that represent 

an image is more suitable for pattern recognition applications. These features are used to represent an object 

in the image. The HOG descriptor and ACO have been used to extract a feature vector for each image after 

the preprocessing operations. Firstly, the HOG operator is adopted for extracting the features using the 

setting shown in Table 3. The values of classification accuracy and recognition time for the four adopted 
classifiers using the HOG descriptor for extracting features are shown in Table 4. Table 5; on other hand; 

shows the confusion matrix for the best classification accuracy of the SVM classifier for the 6-classes vehicle 

types. 

 

 

Table 3. The parameters' setting for HOG 
Parameter Value 

Image size 128x128 

cell size 8×8 

block size 2×2 

Number of orientation histogram bins 9 
 

Table 4.Classification accuracies for the different classifiers on 

BIT-vehicle dataset using HOG feature extraction 
Feature Extraction Classifier Average accuracy Recognition time (s) 

HOG 

K-NN 85.7% 14.152 sec 

RF 80.7% 22.115 sec 

Softmax 78.4% 5.0243 sec 

SVM 89.3% 74.021 sec 
 

 

 

Table 5. Confusion matrix of 6-classes of vehicle types with SVM classifier based on HOG 
Vehicle type Bus Microbus Minivan Sedan SUV Truck 

Bus 94.55% 0.00% 4.85% 0.00% 0.00% 0.61% 

Microbus 0.00% 81.82% 4.24% 5.45% 8.48% 0.00% 

Minivan 0.00% 1.82% 76.36% 0.61% 0.00% 6.06% 

Sedan 0.00% 2.42% 0.61% 90.91% 6.06% 0.00% 

SUV 0.00% 6.67% 1.82% 5.45% 86.06% 0.00% 

Truck 0.61% 0.00% 6.67% 0.00% 0.00% 92.73% 
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Secondly, the ACO extracted the optimal features subset from an object in the image using the 

parameters' setting shown in Table 6. To determine the best number of features in an image different number 

of features were selected and tested. This was done by using and running the ACO in several experiments. 

Figure 7 shows the obtained number of features in the run experiments. By changing the threshold value the 

number of features is also changing. The SVM classifier was run for the different number of features in each 

experiment. Figure 8 shows the percentage of accuracy values for each experiment. It is shown that the 

percentage of accuracy values increasing by increasing the number of features. This is clear until a certain 

number of features; after that the accuracy values decrease by increasing the number of features. This mean 
increasing the number of features than that number is no longer effective. This is shown in Figure 8. 

 

 

Table 6. The parameters' setting for ACO 
Parameter Value 

Number of ants n 10 

Maximum number of iterations 100 

Control coefficients α 1 

Control coefficients β 1 

Pheromone τ 0.2 

evaporation coefficient ρ 0.5 

fitness function K-NN with (K=5) 

 

 

 
 

Figure 7. No. of experiments with different No. of 

features 

 
 

Figure 8. Classification accuracy with different No. 

of features using ACO 

 

 

Table 7 shows the classification accuracies and recognition time for the four classifiers after extracting 

features using the ACO. The confusion matrix for the best classification accuracy of the SVM for the  

6-classes of vehicle types is shown in Table 8. 

 
 

Table 7. Classification accuracies for the different classifiers on BIT-vehicle dataset using  

ACO feature extraction 
Feature Extraction  Classifier Average accuracy Recognition time (s) 

ACO 

K-NN  77.4% 2.0601 sec 

RF 78.4% 5.3811 sec 

Softmax 72.6% 0.3051 sec 

SVM 84.8% 8.0857 sec 

 

 

Table 8. Confusion matrix of 6-classes of vehicle types with SVM classifier based on ACO 
Vehicle type Bus Microbus Minivan Sedan SUV Truck 

Bus 90.58% 0.00% 4.35% 0.00% 0.00% 5.07% 

Microbus 0.73% 82.48% 4.38% 3.65% 5.11% 3.65% 

Minivan 3.42% 7.69% 75.21% 0.00% 0.85% 12.82% 

Sedan 0.00% 4.38% 0.73% 89.05% 5.84% 0.00% 

SUV 0.00% 6.52% 1.45% 10.14% 81.88% 0.00% 

Truck 0.74% 0.00% 7.35% 0.74% 2.21% 88.97% 
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Tables 4, 7 show that the HOG is the better approach for extracting the vehicle features. The SVM classifier 

using HOG achieves better accuracy values than the corresponding values using the ACO. On the other hand, 

the time consumed in recognition using HOG is greater than the corresponding values using ACO. From the 

experiments, there are some sort of trade-offs between achieving better accuracy and better recognition. In 

this case we are adopting such approach (i.e HOG) which achieves better accuracy.So, a filter is applied to 

improve the performance of HOG descriptor and classification accuracy. 

 

6.4.  Improving the feature extraction based on HOG descriptor  

Local sparse Laplacian filtering is a computationally intensive algorithm. The Laplacian filtering is 
often applied to an image to calculate the gradient image that extracts the edge gradients and orientations. 

The feature extraction based on HOG descriptor has been improved after enhancing the edge detection using 

this appreciated filter. Then, based on their gradients and orientations, a grid of histograms is created for 

HOG descriptor. Sigma 0.4 and alpha 0.5 parameters of the laplacian filter are involved to process the details 

and increase the contrast respectively. Figure 9 shows the percentage values of classification accuracy for ten 

experiments for the adopted classifiers. This was done using the HOG based on the Laplacian filter. The 

performance of the SVM is better than the other adopted classifiers. Moreover, the average percentage 

accuracy for the SVM (supported with HOG descriptor using Laplacian filter) outperforms the other ones as 

shown in Table 9. Table 10, shows the confusion matrix of 6-classes vehicle types when using the SVM 

classifier after improving the HOG descriptor with the laplacian filter. 

 
 

 
 

Figure 9. Classification accuracies for the different classifiers of independent experiments after using HOG 

feature extraction based on laplacian filter 

 

 

Table 9. Classification accuracies for the different classifiers on BIT-vehicle dataset after using HOG feature 

extraction based on laplacian filter 
Feature Extraction Classifier Average accuracy 

Lap + HOG 

K-NN 84.7% 

RF 79.9% 

SVM 90.3% 

 

 

Table 10. Confusion matrix of 6-classes of vehicle types with SVM classifier based on HOG after applying 

the Laplacian filter 
Vehicle type Bus Microbus Minivan Sedan SUV Truck 

Bus 96.97% 0.00% 1.82% 0.00% 0.00% 1.21% 

Microbus 0.00% 91.52% 5.45% 0.61% 2.42% 0.00% 

Minivan 0.00% 4.29% 86.43% 0.71% 0.00% 8.57% 

Sedan 0.00% 4.85% 0.61% 87.88% 6.67% 0.00% 

SUV 0.00% 12.73% 1.21% 6.67% 79.39% 0.00% 

Truck 0.00% 0.00% 1.21% 0.00% 0.00% 98.79% 

 

 

7. COMPARATIVE STUDY AND DISCUSSION OF RESULTS  

The proposed architectural model for vehicles’ recognition and classification was implemented, 

tested and evaluated. The model was run on two chosen databases: the BIT-vehicle dataset and the vehicles-

nepal-dataset respectively. Four types of classifiers were adopted. From the results in Tables 1, 4 and 7 it is 
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shown that the performance of the SVM classifier outperforms the other three ones. This is clear from the 

average accuracy. From Tables 4, 5, 7 and 8 it is important to mention that the average accuracy for the 

proposed model using SVM classifier is better for the HOG than that of the ACO. The average accuracy 

values for the SVM using the feature extraction HOG-based and ACO-based were respectively 89.3% and 

84.8%. The proposed approach based on amalgamating and/or combining the HOG and the Laplacian filter 

gave better results compared with that HOG approach without using filtering. The filtering effect was 

important as it enhanced the edge detection of a vehicle. Table 11, on the other hand; illustrates a 

comparative study between the proposed models with other six architecture approaches. The proposed model 
achieved average accuracy about 90.3% for vehicle type classification for the first dataset. 

Authors in [1] used the SIFT to extract features and the NN was used as classifier for recognition. 

The reported result was (69.32%) when using this architecture for vehicle type recognition. In [2] the authors 

combined the distributions of the structural features and appearance-based features together and reported 

accuracy about (82.16%). The authors in [4] used the multi-class PCA as a classifier after extracting the 

location of the license plate. The reported accuracy was about (83.89%) when using this architecture. The 

authors in [5] used the SVM classifier after extracting the location of license plate from vehicle front which 

reported accuracy about (86.23%) for the same architecture. In [3] the authors applied sparse filtering 

algorithm based on L2 – normalized features which reported accuracy (86.82%). The research in [6] used 

semisupervised convolutional neural network classifier based on sparse laplacian filter and the reported 

accuracy was about (87.23%). Therefore, our proposed model is effective in classifying the vehicle types. 

 
 

Table 11. Comprative Results of different architectures on the BIT-vehicle dataset (6- classes) 
Method  Average accuracy 

Apostolos Psyllos, et. al. [1] 69.32% 

Zhen Dong and Yunde Jia [2] 82.16% 

Yu Peng, et. al. [4] 83.89 

Jesse Jin, et. al. [5] 86.23 

Jiquan Ngiam, et. al. [3] 86.82% 

Zhen Dong, et. al. [6] 87.23% 

Our proposed model 90.3% 

 

 

The proposed model was also tested using the vehicles-nepal-dataset. The vehicles' images; in this 

dataset; are categorized into five classes: Bus, Microbus, Minivan, Truck and Sedan. The features were 

directly extracted as each image contains only one vehicle. Table 12 illustrates a comparative study between 

the proposed model and the other adopted ones using this dataset. The proposed model achieved an average 

accuracy about 98.84% for classifying a vehicle' type. i.e. the proposed model is significant and effective 

when applied on two different datasets as test-beds. Moreover, the proposed model is expected also to be 
effective and reliable for classifying the other datasets.  

 

 

Table 12. Comprative Results of different architectures on the vehicles-nepal-dataset (5- classes) 
Method  Average accuracy 

Yu Peng, et. al. [4] 85.86% 

Jesse Jin, et. al. [5] 87.98% 

Jiquan Ngiam, et. al. [3] 88.09% 

Zhen Dong, et. al. [6] 92.67% 

Our proposed model 98.84% 

 

 

8. CONCLUSION  

This research work presented a proposed model for vehicle recognition and classification. The 

model was developed, operated and tested using four different classifiers. The model was tested using two 

chosen image datasets as test-beds. The performance of the proposed model with the SVM classifier was the 

best. Also, the feature extraction approach HOG-based was better than that based on ACO. The performance 

of the proposed model HOG-based combined with the laplacian filter was better than that without filtering. 

This was clear from the accuracy values. The datasets were used under some varying conditions such as 

different viewpoints, vehicle covered parts, illumination conditions and similar appearances between two 
classes: “SUV” and “Sedan”. The Laplacian filter with the HOG descriptor improved the edge detection. The 

values of classification accuracy were promising and efficient for the proposed model with the feature 

extraction HOG-based with filtering. The recognition time of vehicles' images for the model using HOG and 
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ACO was different. The recognition time also was different for the adopted classifiers. The recognition time 

using HOG approach was greater than its corresponding time using the ACO approach. This is due to the 

number of selected features by the ACO which was less than that corresponding number selected by the 

HOG approach. 
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