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 Physical abuse has become a societal problem. Mostly children, women and 

old age people are vulnerable to it especially in cases of domestic violence or 

workplace aggression. Reporting it is in itself a challenge especially if there is 

a pre-existing relationship between the abuser and victim. In this paper we 

propose a deep learning technique for human action recognition and human 

pose identification to tackle physical abuse by detecting it in real time. 3D 

convolution neural network (CNN) architecture is built using 3D convolution 

feature extractors which extract both temporal and spatial data in the video. 

With multiple convolution layer and subsampling layer, the input video has 

been converted into feature vector. Human pose estimation is done using the 

detection of key points on the body. Using these points and tracking them 

from one frame to another gives spatial-temporal features to feed into neural 

network (NN). We present metrics to measure the accuracies of such systems 

where real time reporting and fault tolerance capabilities are of utmost 

importance. Weighted metrics shows accuracy of about 89.42% with precision 

of about 85.82% and thus shows the effectiveness of the system. 
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1. INTRODUCTION 

Physical abuse is any non-accidental act of causing trauma, injury, or other physical suffering or 

harming body parts. Generally, children are more likely victim to physical abuse caused by parents or 

siblings or caretakers. Similarly, even old people might be physically abused by younger people. Elder abuse-

neglect or mistreatment is often perpetrated by a caretaker, who might be a paid professional or a family 

member. And those holding higher positions or in power might also physically abuse people in lower cader. 

The main form of physical abuse is punching, kicking, slapping, beating, caused by fast hand and leg 

movement. We can leverage emerging technologies like computer vision and deep learning to tackle this 

problem, specifically detection of child abuse by analysing live video feed from places that are susceptible to 

physical child abuse such as day-care centres, and nanny cameras. Note that the aspect of real time 

recognition in this context is of utmost importance and we need to perform both detection, classification and 

response in real time to possibly alert and intervene when a situation of physical abuse presents itself. Human 

action recognition and human pose estimation are two of the techniques that are utilized in semantically 

identifying the actions happening in a video, usually by extracting spatial-temporal features from video 

frames. The major challenge lies in the fact that an act of physical abuse to a child can be as simple as 

slapping or kicking them once, meaning the target action might occur only once in a relatively longer video 

feed. So the system must be robust enough to accurately identify the action and not generate false positives. 

The goal in this work is to introduce a new way of calculating the accuracy for these spatio-temporal based 

https://creativecommons.org/licenses/by-sa/4.0/
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data with very few target labels and carry out a comparison study on two different approaches to carry out 

human action recognition when specifically dealing with physical abuse to another person and come up with 

a system to make this a viable method of dealing with physical abuse. 

 

 

2. RESEARCH METHOD 

Traditional solutions when it comes to tackling child abuse have generally been geared towards 

location-based tools which employ the use of mobile devices or tracking devices in order to keep a track of a 

child's location but require manual intervention from the victim's part to report the incident of child abuse. 

According to [1] presents a unified platform with an application available on both mobiles as well as 

desktops that connects directly to Zainab Alert Cell, an operating cell within ZARRA, a federal agency for 

reducing child kidnapping in Pakistan. This platform combined with GPS powered wristbands, hairbands or 

other accessories can allow parents to keep an eye on their children along with reporting functionality. The 

highlight of these proposed bands are fixed coordinates distance pre-set in the band to alert the parents if the 

child has gone beyond a certain distance and could possibly be in danger. However, the system is location 

based and requires human intervention to identify the cause of danger. 

Location-based solution using geofencing where a parent can define boundaries or 'fences' to 

monitor the location of children and send emergency messages to local child protection services that are 

capable of monitoring children activity was proposed in [2]. The solution relies on knowledge of the social 

environment to determine location of interests and possible harmful locations. Again, this solution relies on 

devices capable of operating accurately and reliably as a location reading device located with the child. In 

2018, Shruthi [3] also provides a solution that is dependent on wearable devices with location tracking 

combined with alert systems. This requires a possible victim sending a SOS request using their own mobile 

device. They also propose a higher functioning GPS using antennas located on clothes as logos so as to 

remain disguised from potential abusers. In 2016, Jatti et al. [4] propose a machine learning algorithm to 

evaluate signals and determine if an individual is relaxed or stressed. If the individual is determined as 

stressed, temporal based action recognition is proposed to alert nearby authorities. However, looking at the 

national statistics provided by Health and Human Services Department of the Children's Bureau of the US [5] on 

child abuse for the year 2018, it is observed that 92% of the children were victimized by a parent. Looking at the 

perpetrator-victim relationship numbers provided in [6], it was seen that 77.5% of the perpetrators in 2018 were a 

parent of the victim, 6.4% were a relative other than a parent and 4.2% had a multiple relationship (such as a 

nanny or caretaker) with the victim. This means 88.1% of the total reported cases were carried out by a 

person which the victim knew, meaning there is a much lower probability of the child being moved to a 

location further than their designated safe area. 

Hence in recent times, approaches based on deep learning have gained maximum popularity in the 

research on vision based human action recognition. Complex human to human interaction can be analysed. 

They have the ability to learn from simple to complex features. By having multiple layers of processing and 

high-level representation of the given input video can be built. Deep learning approach uses weight sharing, 

local perception, down-pooling, and a multi-convolution kernel to learn local information from part of an 

image. The result will be the output from final recognition layer. The final recognition layer will be 

determined by the result of multiple layers of convolution. And action recognition is [7] considered to be a 

combination of gestures, for instance, “running”, can be determined as a combination of arm and leg 

gestures. The various challenges and approaches involved in human action recognition are discussed in detail 

[8]. Spatiotemporal related specific features are considered in [9] for action. In 2010, Poppe [10] gives a 

detailed survey on various vision based action recognition systems discussing the challenges of classification 

algorithms and image representation. Human action analysis [11] techinques were reviewed and approaches 

on invariable view on pose detection and behaviour were discussed. In 2011, Weinland et al. [12] presented a 

survey on the approaches for action recognition, representation and segmentation in vision-based approaches. 

Some datasets on human action and activity recognition are reviewed in [13]. 

 

2.1.  Data set  

The most challenging part of this work is creating data for physical abuse. There are no publicly 

available datasets that come under the umbrella of physical abuse in a child-parent environment and although 

there are datasets like UCF101 and kinetics action recognition dataset which have examples for actions like 

boxing and punching, the inputs are of much lower resolution and does not match the description of having 

long instances of video feed with single action happening, which can make a system trained on data like this 

highly susceptible to false positives. Given all these factors into consideration, the testing data was generated, 

by recording video clips. 
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In order to create action data, video clips were recorded of varying lengths for the following targets: 

stand, kick and slap. 4 clips for each target were recorded, with 2 clips having one participant and 2 clips  

having 2 participants each. The actions for our training data were performed in different orientations in each 

clip to account for as much variance in the positioning of the people as would be present in a real-life video 

feed. Figure 1 shows different frames from recorded videos with different orientations and number of people. 

36 short clips were sampled from each video with each clip being 5 frames. 

 

 

 
 

Figure 1. Dataset with different orientations and number of persons 

 

 

This equates to 36 short clips from 12 examples each, resulting in 432 samples of 5 frames each and 

training data of shape 432x5x360x480x1 which matches the format  

 

𝑁𝑥𝐷𝑥𝐻𝑥𝑊𝑥𝐶  

 

where:  

N:  Number of Examples,  

D: Depth,  

H: Height,  

W: Width of frame and  

C: Number of channels 

This is a single view-based dataset. The datasets use a single camera for recording human actions 

from a certain fixed angle without camera being moved. This dataset has 12 recorded actions and each action 

was performed by either single or two individuals. 

 

2.2.  3D convolution neural network (CNN) 

In 3D CNN architecture, various features are extracted using multiple convolution operations. They 

are applied at the same location on the input. Then, convolution and subsampling will be performed for the 

channel from adjacent frames. Information from all channels will be combined to form final feature 

representation. 3D CNNs have seen an increased growth in the recent years due to their ability to extract 

features that are both high level and low-level representations from images. A typical convolution operation 

can be defined as a mathematical function using the given representation: 

 

𝑆(𝑖, 𝑗) = (𝐾 ∗ 𝐼)(𝑖, 𝑗) = ∑ ∑ 𝐼𝑛 (𝑖 − 𝑚, 𝑗 − 𝑛)𝑚 𝐾(𝑚, 𝑛)  

 

S  : feature map 

K : kernel of size m x n 

I : input image of size i x j 

 

Kernel K is spatially smaller than Input I and the resulting convolution operation produces a 

resulting feature map that is able to capture details about our image with learnable weights associated with K. 

The dimension of the feature space after applying the filter is governed by the formula 

 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 4, December 2021:  971 - 981 

974 

{
𝑁+2𝑃−𝐹

𝑆
} + 1 (1) 

 

N  = input image dimension 

P  = pooling size 

F  = filter size 

S  = stride 

While this operation allows us to map features in an image such as edges and lines on to the feature 

space and perform well on tasks like 2D image classification and object detection/localization, 2D CNNs 

perform poorly on data with underlying temporal features, such as video classification due to its inability to 

correlate temporal dependencies making them unsuitable for video action recognition which inherently relies 

on the system’s ability to capture temporal dependencies from one frame to another in a video clip by 

utilizing a 3-dimensional feature that extracts features along 3 dimensions of width height and time. Instead, 

we can utilize 3D convolutions that are better at capturing a temporal based feature. Figure 2 shows a 3D 

convolution operation using 3D filter. 

 

 

 
 

Figure 2. 3D convolution operation by using a 3D filter 

 

 

Note that the dimensions of the output feature map follow the same rule as (1) for calculating the output 

height, width and depth. The formula for a 3D convolution operation is as: 

 

𝑆(𝑖, 𝑗, 𝑘) = (𝐾 ∗ 𝐼)(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛, 𝑘 − 𝑝) 𝐾(𝑚, 𝑛, 𝑝)  

 

3D-CNN is composed of three 3-dimensional conv layers and 2 fully connected layers. The input 

shape to our first layer is 5x360x480x1. Each output is followed a ReLu non-linearity except the last output 

layer which has 3 output nodes followed by a SoftMax non-linearity to generate output probabilities for each 

of our three classes. The last Conv3D layer is also followed by a 3D MaxPooling layer to reduce the 

receptive field of our feature map. We have also utilized valid padding i.e p=1 throughout the network. The 

shape of our kernels used is [1x3x3]. Losses are then calculated using the log loss function. We trained our 

model for 1 epoch and use Adam optimizer to converge the network. While training, our dataset was split 

into training and validation using 410 examples for training and 22 examples for validation. After training, 

we were able to achieve a training accuracy of 93% and a validation accuracy of 99%. We will compare our 

test results for both the techniques in a later section. 

 

2.3.  Human action recognition (HAR) 

HAR works on classifying the activity being carried out by a human present inside a video. The 

challenge while tackling this problem lies in the aspect of carrying out a significant number of classifications 

each second in a video sequence and the spatial-temporal nature of the data itself i.e. sequence of video 

frames over a period of time. Vision-based HAR has applications in human- computer interaction, health 

care, video surveillance and many such areas. Typically, global representations have been utilized to 

represent a video or image and encode it as a feature. Then localization and region of interest is identified. 
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However, this two-step process is not sufficient for action recognition which is in real-time. Generally, it is 

difficult to train large 3D CNN on 3-dimensional data that is typically needed to create models capable of 

carrying out action recognition [14]. Approaches are used [15] of training large 3D convolutional networks in 

order to classify actions [16] in a video by treating stacked frames as the third dimensional input to the 3D 

CNN and extract temporal features from one frame to another and perform human action recognition [17]. 

A 2-way convolutional approach, utilizing both optical flow as well as features extracted from RGB 

input and combining them to generate a representation of motion in temporal space is presented in [18]. 

Features are extracted from images using a CNN [19] and then using these feature vector as input to an RNN 

[20] to classify long term dependencies in a video sequence and coined the architecture as LRCC or long-

term recurrent convolutional neural networks. According to [21] was developed at Facebook and currently 

holds SOTA results for many popular activity recognition datasets like THUMOS, UCF101, Kinetics and 

HMDB activity recognition datasets. However, a general problem with these approaches is the underlying 

datasets that are trained on. It doesn’t generally translate well into a human-child interaction environment and 

do not scale well to the input sizes when dealing with input feed from webcams. This makes it terribly slow 

when trying to carry out activity recognition in real time. However, this is where this work utilizes human 

pose estimation. This approach is similar to [22] where it utilizes human skeletons generated from human 

pose estimation and use the skeletons as input to the model. The approach discussed in [23] also offloads 

most of the heavy computing to the task of generating human pose and [24] uses a simple network 

architecture to make predictions using human pose features instead of using a big architecture for carrying 

out human action recognition on the original input itself. This approach makes it very promising for real time 

systems with very limited fault tolerance. Human pose using CNN is handled in [25] especially for occlusion 

using detection and regression. Multicontext attention mechanism is used in CNN [26] to gain the ability to 

focus on different granularity. Learning feature pyramids are designed in deep CNN models to handle scale 

changes [27].  

 

2.4.  Human pose estimation  

Human pose estimation is done with localization of the joints of a human in an image or a video and 

uses it to estimate the pose of the human. It consists of jointly detecting keypoints on the body, hand, face 

and foot. Typically, there are two approaches for carrying out human pose estimation - top- down and 

bottom-up approach. Top-Down approach involves localization of humans in the frame using a bounding box 

detector and then roughly guessing the pose of a single person in that box whereas the bottom-up approach 

starts by localizing the keypoints in the image and then grouping those keypoints into the instance of a 

person. Using the location of these joints and the subsequent movement of the joints from one frame to 

another allows to extract these joints as spatial-temporal features to feed into the neural network. 

OpenPose [22], is a library developed by CMU that identifies keypoints in human face, hands, legs 

and body. It does multi-person keypoint detection for multiple persons on a single image or a video. It was 

trained on the CMU Panoptic Studio dataset and is capable of carrying out both 2D and 3D real-time multi 

person keypoint detection and draws a skeleton overlapping the human in the image. This generated skeleton 

data is used by our motion-estimation algorithm to classify different actions being carried out in the video 

feed by a human. 

The skeleton generated has 18 joints that includes areas in the head, arms, neck and legs and is show 

in Figure 3. It uses Part Affinity Fields which are a set of 2D vector fields that encode the location and 

orientation of limbs over the image domain. It uses bottom up approach. These are able to encode 

unstructured pairwise relationships between body parts of a variable number of people present in the image. 

First a feed-forward neural network predicts a set of 2D confidence maps S of body part locations 

and set of 2D vector fields L of Part Affinity Fields that encode a degree of associativity between different 

body parts of the skeletons. 

 

𝑆 = (𝑆1 , 𝑆2 …  𝑆𝑗 )  
 

𝐿 = ( 𝐿1 , 𝐿2, . . . 𝐿𝑐 )  

 

S has j confidence maps with one confidence map per part while L has c vector fields with one vector field 

per limb. The Figure 4 shows the design of OpenPose's multistage architecture for generating heatmaps of the 

skeleton poses. 

The image is analysed by a CNN (first 10 layers of VGG- 19 as a base) generating feature maps F 

that acts as input to the first stage of the network architecture. Then in the first stage, one branch predicts a 

set of confidence maps S1 = p1(F) while the other branch predicts a set of Part Affinity Fields L1 = o1(F) 

where p1 and o1 refers to the CNN used for carrying out the inference at Stage 1. In the following stages, 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 4, December 2021:  971 - 981 

976 

predictions from both of these branches is used along with the orignal image feature by concatenating them 

and use them to produce much more refined predictions. 

 

𝑆𝑡 = 𝑃( 𝐹 , 𝑆𝑡 − 1 , 𝐿𝑡 − 1)  
 

𝐿𝑡 = 𝑂( 𝐹 , 𝑆𝑡 − 1 , 𝐿𝑡 −  1)  

 

where P and O are the CNNs used for carrying out inference in stage t. 

The motion estimation algorithm is used to extract features from the skeleton data that is then used 

by a Neural Network for classification. The skeleton data is taken from 5 frames of the video each time and 

then computes the following features: 

-Xs= Concatenating joints positions of 5 frames 

-H=Average height of skeleton of previous 5 frames 

-V_body =𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑛𝑒𝑐𝑘/𝐻 

-Normalized Joint Positions =𝑋𝑠 − 𝑚𝑒𝑎𝑛 (𝑋𝑠)/ 𝐻 

-Velocities of joints =𝑋[𝑡𝑘]  −  𝑋[𝑡𝑘 − 1] 
-Joint angles computed from joint positions. 

-Length of each limb computed from joint positions. 

After experimentation, features 3, 4 and 5 were used and concatenated to form a feature vector of 

dimension 314. PCA was applied to reduce the dimension of this vector to 50 dimensions. This vector is then 

used as input to a neural network consisting of 2 hidden layers, each with 100 nodes and the output layer 

consisting of 3 nodes to serve as our predictions. This network is the default network available in scikit learn 

library for neural networks. 

 

 

 
 

Figure 3. 36 values, each point being represented as (xi, yi), i= 0 to 17 

 

 

 
 

Figure 4. Multistage architecture of openpose [22] 
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3. RESULTS AND DISCUSSION 

There are 3 classes that a video clip can be classified into standing, kicking and slapping. Two 

categories are also defined that the actions can be split into: GOOD and BAD categories. The actions of 

kicking and slapping belonging to the category BAD and the action of standing belonging to the category 

GOOD. The main target for the system is to identify whenever a bad action occurs in a video and to also not 

incorrectly classify no action happening as a bad action. Based on this, the metrics are dined as in Table 1. 

Using these target metrics, a novel way of prioritizing the weight of the actual prediction are developed as 

explained in section 8. 

 

 

Table 1. Definition of accuracy metrics 
Metric Definition 

True Positive Bad Action - Present 

Prediction - Bad 

True Negative Bad Action - Absent 
Prediction - Good 

False Positive Bad Action - Absent 

Prediction - Bad 
False Negative Bad Action - Absent 

Prediction - Good 

 

 

3.1.  Test data 

For testing purposes, video clippings were recorded. Five video clips for each class, each clip being 

5 seconds long were generated. Each video clip in test dataset starts with the person in a standing position. If 

the video belongs to the BAD category, then the corresponding action is carried out once in the video clip. 

For the video belonging to the GOOD category, the subject(s) remains standing throughout the test clip. 

Results for the experiments have been detailed in the next two subsections. We again followed the idea of 

recording these test clips in diferent orientations of the person present in the video clip to account for 

variability in the positioning of the people in a real life video feed as shown in Figure 5. 

HARecognizer converts the 5 second video clip to a folder of images on which predictions are then 

made. It converts those images back into a playable video. Figure 6 shows some frames from the prediction 

video on the test dataset. The scores on the left indicate the confidence score for each class that the model has 

been trained upon. The Figure 6 showcases results (a) shows where the person was standing in a front facing 

orientation and (b) the model correctly identified the frames where kick action was being performed. 

The Figure 7 shows from a prediction video where the person has a slightly different orientation as 

compared to the first set. The model starts off by correctly identifying the person performing a standing 

action. After that the person starts to perform a punch action which is again correctly identified as punching 

action. However, observing the third set in the image, we see the model incorrectly identifies it as a kicking 

action momentarily. So, although the model identifies some sort of action occuring, it gives it a wrong label. 

In the next section we describe in depth on how to deal with these predictions and come up with new metrics 

to compare different methods for the same. 

 

 

 
 

Figure 5. Different captures from the test clips showing different orientations of the actions 
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Frame: 5 

 

P1: 
Stand: 1.00 

Punch: 0.00 

Kick: 0.00 

 

Frame: 59 

 

P1: 
Stand: 0.00 

Punch: 0.00 

Kick: 1.00 

 

 (a)  (b) 

 

Figure 6. Model predicting for; (a) standing position; (b) kick action 

 

 

 
 

Figure 7. Model predictions on a different instance in our test dataset 

 

 

3.2.  Accuracy metrics 

Human action recognition system converts the 5 second video clip to a folder of images on which 

predictions are being made. Since the sliding window size is 5 frames, no predictions are made for the first 4 

frames. For each video example the system will identify the dominant action performed in that video clip. 

Then the number of occurrences of each predicted action class results from each frame in the following 

format: 

 

{ ‘ ‘ ∶  𝑎 , ‘𝑠𝑡𝑎𝑛𝑑’ ∶  𝑏 , ‘𝑝𝑢𝑛𝑐ℎ’ ∶  𝑐 , ‘𝑘𝑖𝑐𝑘’ ∶  𝑑 }  

 

a = number of times prediction as None, b = number of times prediction as Stand,  

c = number of times prediction as Punch, d = number of times prediction as Kick 

If the target belongs to the stand category, the video is marked as True Negative if 𝑐 + 𝑑 = 0 and 

False Positive if c+d>0. 

If it is marked a true negative, the accuracy for target label stand is calculated using:  

 

𝑠𝑡𝑎𝑛𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ( 𝑏 / 𝑎 + 𝑏 +  𝑐 +  𝑑 ) ∗  100 %  

 

It is then multiplied with the True Negative to get a Weighted True Negative. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑇𝑁 = 𝑠𝑡𝑎𝑛𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  
 

If the target belongs to the other category (Label is punch or kick), then we mark the entire example 

as one count of true positive if c + d > 0 or a false negative if 𝑐 + 𝑑 = 0. However, this does not account for 

the actual prediction being made is correct or not depending on the target. In order to account for the actual 

prediction being made, we use the following formula for the accuracy of the particular example. 

 

𝑝𝑢𝑛𝑐ℎ|𝑘𝑖𝑐𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑐/𝑐 + 𝑑) ∗ 100%  
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If the video is marked as true positive, we use this accuracy and multiply it with true positive to get 

a weighted true positive. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑃 = 𝑝𝑢𝑛𝑐ℎ|𝑘𝑖𝑐𝑘 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∗  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  
 

We finally use these to define three new metrics for comparing the two different techniques on the 

test dataset. 

Weighted accuracy: 

[𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑃 + 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑁] ÷ [𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁]  
 

Weighted recall: 

 

(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑃) ÷ (𝑇𝑃 + 𝐹𝑁)  
 

Weighted precision: 

 

(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑇𝑃) ÷ (𝑇𝑃 + 𝐹𝑃)  

 

The recorded metrics mentioned above for this approach are listed in Table 2. Note that the results are 

rounded up to the nearest 2 decimal points. 

 

 

Table 2. Table depicting weighted metrics 
Metric\Technique HARecognizer 

Weighted Accuracy 89.42% 

Weighted Recall 85.82% 

Weighed Precision 85.82% 

 

 

4. CONCLUSION 

The results clearly indicate that a human pose estimation based approach gives good results when it 

comes to developing a system that is robust towards false positives and false negatives. It also shows that the 

model will perform ideally in real time environments especially when dealing with situations where the 

movement of humans can be erratic or unpredictable and in a environment where giving even false positives 

as predictions can be seen as a harmful result to the parties present inside the scene at the given moment. The 

weighted metrics that were used shows more reliable measure, accuracy of about 89.42% with precision of 

about 85.82% and shows the effectiveness of the system. 

Deployment and future work: Actual deployment is another important aspect to the proposed deep 

learning model. Since this is a compute heavy model, it is not easy to run it on low end devices such as a 

raspberry-pi where the model runs independently on each device. Instead a better approach would be to 

stream the live video feed to an offboard server or using a cloud based system, availing the service of a cloud 

provider service such as Google Cloud Platform or AWS. This would transfer all of the compute needs to a 

separate location and allow us to install cameras with streaming capabilities to a remote server. The choice of 

cloud service will be based upon whichever is most cost beneficial since the models would need to be 

deployed on GPU-based machines to provide a relatively good performance. For some of our future work, we 

hope to develop a faster pose estimation model by carrying out a more extensive feature engineering process 

and determining what combination of features can further aid us in increasing the speed and accuracy of the 

system. We hope to use this and evaluate performance gains with respect to loss of accuracy in detection 

since the main goal here is in deploying such a system on lower end devices like raspberry pi which typically 

do not have a lot of compute to offer, especially for complex computations present in our deep learning 

models. This can ensure the real-time aspect that we are looking to achieve for our system while taking into 

account acceptable amounts of accuracy losses. We hope to develop more comprehensive accuracy metrics 

that can further serve as a benchmark when comparing different systems for real time activity recognition. 
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