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 Quay cranes scheduling at container terminals is a fertile area of study that is 

attracting researchers as well as practitioners in different parts of the world, 

especially in OR and artificial intelligence (AI). This process efficiency may 

affect the accomplishment and the competitive merits. As such, four local 

search algorithms (LSs) are utilized in the current work. These are hill 

climbing (HC), simulated annealing (SA), tabu search (TS), and iterated local 

search (ILS). The results obtained demonstrated that none of these LSs 

succeeded to achieve good results on all instances. This is because different 

QCSP instances have different characteristics with NP-hardness nature. 

Therefore, it is difficult to define which LS can yield the best outcomes for all 

instances. Consequently, appropriate LS selection should be governed by the 

type of problem and search status. The current work proposes to achieve this, 

the self-adaptation heuristic (self-H). The self-H is composed of two separate 

stages: The upper (LS-controller) and the lower (QCSP-solver). The LS-

controller embeds an adaptive selection mechanism to adaptively select which 

LS is to be adopted by the QCSP-solver to solve the given problem. The 

results revealed that the self-H outperformed others as it attained better results 

over most instances and competitive results. 
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1. INTRODUCTION 

Container terminals are regarded as one of the most significant modern sea freights means of 

transportation, as they represent the essential connection between local markets and global customers and 

contrariwise [1]. Thus, their effectiveness is essential to the achievement of the supply chain. In accordance 

with the speedy yearly growth of transported container volume, no wonder that container terminal now 

represents one of the predicaments in the international chain of supply [2], and container terminal efficiency 

a significant issue for liner transportation corporations as they work on reducing their cost [3]. The primary 

objective of container terminals is to attain fast movement of containers at the minimum cost possible [4]. 

Therefore, the time the vessel requires to load or unload is generally the terminal's uppermost precedence; the 

mooring time of a vessel is its turn time [5]. 

Quay crane scheduling problem (QCSP) is among the most significant operations related to seaport 

terminals. Its aim is to identify the order of tasks to be made by each quay crane (QC) [1]. Improving the 

efficiency of this operation will improve the vessel turn time [6]. Concerning QCSP, there is a common 

https://creativecommons.org/licenses/by-sa/4.0/
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belief that the allocations of cranes to vessels are already accomplished. All QCs are made to move on a 

railway line that runs in a parallel direction with the vessel where each QC cannot cross over to other QCs. 

The vessel is divided in a longitudinal way to produce several bays where the containers are stored. 

Containers that are stored in these bays usually are aligned together with their features and criteria, such as 

weight, size, and origin and destination ports [1], [5]. Based on Meisel and Bierwirth, QCSP is classified into 

three basic problems that are most prevalent in the research community [7]: 

 QCSP with container groups 

 QCSP with complete bays 

 QCSP with bay areas 

The problem addressed in the present work is a QCSP with container groups that involve the most 

significant complexity among the other two classes [5], [7]. Each task, in such problems, is situated at the 

vessel bay location. Some pairs of tasks situated in the same bay have precedence relations that should be 

considered in processing these pairs. Thus, these tasks cannot be processed concurrently [1], [8]. In order to 

eliminate issues of congestion at the yard blocks, simultaneous processing of certain tasks may be disallowed 

[7], [8]. Each QC is associated with its initial bay position and ready time. During operations, each QC 

should not be crossed by other QCs. Moreover, two QCs must not work simultaneously at the same bay 

place, and a safe distance, usually in units of specified bays, must be preserved [1], [7]. 

 

 

2. RELATED WORK 

The early works of Daganzo [9] initiated the study of QCSP. The work involved an investigation of 

problems with multiple vessels at a berth with cranes that are allowed to move freely. Exact approaches were 

suggested for handling small issues. A branch-and-bound algorithm proposal was made by [10] to solve 

actual size issues. Nevertheless, these studies never made necessary considerations for the interference of the 

quay cranes [1]. Another formulation was made by Kim and Park [11], which is based on a mixed-integer 

programming model. The proposal made by that study is a Branch and Bound algorithm that seeks to reduce 

the search space with a lower object connected to define a function value that will lead to an optimal 

schedule. The high computation time required in Branch and Bound with large instances results in certain 

limitations when applied in real situations; Thus, the researchers modified a greedy randomized adaptive 

search procedure (GRASP) that allows for the attainment of good quality schedules within considerably 

shorter computational times. Moccia et al. [12] conducted an extended analysis of Kim and Park's [11] model 

and discovered certain situations whereby there is a possibility of interference between the quay cranes. This 

work provided a revised mathematical formulation to provide solutions for the weakness demonstrated. At 

the same time, numerous families with solid inequalities were applied to a branch and cutalgorithmm to 

provide solutions for large instances. Obtained results showed the positive performance of the suggested 

branch and cutalgorithmm in comparison with the branch and boundalgorithmm developed by Kim and Park 

[9]. Kasm and Diabat [13] developed a mixed-integer program and a two-stage exact solution methodology 

to solve the QCSP. Sun et al. [14] address the QCSP with vessel stability constraints, an exact algorithm 

based on logic-based benders decomposition. 

Sammarra et al. [15] suggested that QCSP has a routing problem and, therefore, unable to fix the 

tasks performed by each quay crane. It also suffers a scheduling problem to determine when to start a task 

and when to finish. And then, a tabu search has been developed for solving the routing issue. The 

neighbourhood structure utilized a highly potential promising movement to minimize the volume of 

makespan obtainable within the present schedule. Moreover, a descriptive graph was used to evaluate the 

schedule obtained during the search process. The tabu search's performance can be compared with the branch 

and cut that is proposed by [12], [15]. Bierwirth and Meisel [8] disclosed that the mathematical model 

proposed by [11] is not correct because it cannot be used to find out schedules of interference among quay 

cranes at all times. This paper developed a revised formulation of the QCSP by creating a suitable time 

distance between the two tasks in the design. It offered heuristics known as unidirectional scheduling (UDS) 

that is used on tree search. The UDS achieved the best-known schedules necessary for benchmarking suites 

utilized in previous studies within limited computation time. Chung and Choy [16] suggested a Genetic 

Algorithm for the QCSP. Starting from an initial randomly generated population sample, varied mutation and 

crossover operators were utilized to obtain high-quality schedules. Legato et al. [17] offered a new approach 

for QCSP, which adopted numerous practical issues in the form of quay cranes ready times and due date, and 

individual cranes processing time. Developments were made in this paper based on the UDS extension that 

was suggested by [10], which is known as the LTM method. Meisel and Bierwirth [7] offered a platform with 

the intention of comparing models of optimization and approaches for QCSP by generating a benchmark 

suite. The suggested generation scheme adopted the comparability principle, reproductively and 

unbiasedness, with a group of parameters that feature services of container vessels. Izquierdo et al. [18] 
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conducted a study of the suitability of estimation of distribution algorithms (EDA) in the course of solving 

QCSP. Based on the EDA, there are several methods for solving QCSP. A hybrid estimation of data 

algorithm was proposed by [4], and it adopted a local search for solving the QCSP. Such a scheme was based 

on a priori view of the problem to attain high-quality schedules. Nguyen et al. [1] creates a new form of 

priority-based schedule construction for generating quay crane schedules. Such a procedure also brought 

about the development of two hybrid evolutionary computation approaches that adopted genetic 

programming and genetic algorithm formulated for QCSPs with container groups that allow for easy location 

of near-optimal schedules with reasonable time for computations. Yue et al. [19] proposed the two-phase 

scheduling optimization model to optimize the joint scheduling problem between dual-trolley quay crane and 

AGV. 

According to the survey conducted by [20]-[22], most of the previous studies conducted to solve 

QCSP utilized evolutionary or genetic algorithms because these algorithms are simply designed and easily 

applied. Yet, these algorithms were reported to obtain solutions with limited quality. Currently, 

understanding QCSP has become much better, hence simplicity of the design and easy application are no 

longer basic considerations in selecting the QCSP solver. Under the established understanding, this work 

proposes a self-adaptation heuristic, which has been proven to have high efficacy when it comes to solving 

different combinational optimization problems to produce more efficient results [23], [24]. The basic thing 

this work aims to achieve is to design a self-adaptation heuristic (self-H) that adopts the best fitting local 

search algorithm that can be implemented in the course of search as a remedy to the QCSP problems. 

 

 

3. PROBLEM DESCRIPTION 

QCSP with container group can be described as [7]: A set of tasks },...,2,1{ n  has been 

assigned to the QCSP together with a set of uniform QCs },...,2,1{ qQ  . Each of the tasks i  is used 

to represent the loading or unloading activities of a given container group which a QC must undertake 

without any pre-emption. The tasks have distinct processing times pi, and they are situated at bay positions li 

inside a vessel of b bays. For the tasks within the same bay, the stacking-dependent accessibility can call for 

the incorporation of relations between precedence. In the case of a QCSP with container groups, is used to 

represent precedence-constrained task pairs set, while is used to represent the set of pair tasks that are 

permitted for simultaneous processing, for instance, to evade bottleneck at yard blocks used for holding 

containers for these pair tasks. 

Each QC Qk   has a ready time rk and an initial bay location
kl0 . Between two neighbouring bays, 

all QCs can move in the same travel time t. It is presupposed that two QCs cannot operate simultaneously at 

the same bay. Moreover, they cannot cross each other and should maintain a safety margin s, estimated in 

units of bays as shown in Figure 1. The issue is to define the feasible time to complete the task on the cranes 

in terms of the constraints defined. The main goal is to reduce the vessel handling time, which refers to the 

completion time for the most recently completed task. This problem is referred to as the NP-hard, see [6]. For 

more details on QCSP, consider [9], [10]. 

 

 

 
 

Figure 1. The QCSP illustration 
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4. THE PROPOSED METHOD 

Due to the importance of the QCSP, on the one hand, and the inability of current approaches to 

operate well all over its instances, on the other hand, the need to advance a new algorithm that has the 

necessary ability to operate well on all available instances is still pressing matter. The meta-heuristic 

approaches were effectively utilized to address various optimization problems. Of them are university 

timetabling [25], multi-objective optimization [26], healthcare [27], data mining [28], multi-robot searching 

system [29], structural design [30] and others [31]-[34]. Recently, self-adaptation heuristics comprise a group 

of approaches that are motivated by the aim of automating the design of heuristic methods in order to solve 

difficult computational search problems and across different problem instances [23], [24], [35]. Accordingly, 

in this paper, a self-adaptation heuristic (self-H) is proposed. The self-H consists of two separate levels: a 

higher and a lower level. The Multi-armed bandit selection mechanism (MAB) [36]-[37] selects the most 

appropriate LS to be executed at the current decision point whose basis is the search status. The lower level is 

the number of LSs that are managed by the MAB to solves the given problem instance as shown in Figure 2. 

The self-H is executed for a certain number of iterations (MaxItr), aiming to improve the quality of the QCSP 

solution iteratively. The self-H will hopefully work effectively during the search. This is due to the ability of 

the suggested self-H to apply different LSs for a different problem in an online manner). 

 

 

 
 

Figure 2. The self-H framework 

 

 

4.1.  The higher level of self-H 
The high-level heuristic for the self-H is the adaptive selection mechanism (MAB) which attempts 

to adaptively select different LSs for different problem instances depend on the status of the search. The 

adaptive selection mechanism has two components which are the local search impact evaluation and the local 

search selection mechanism [37]. 

 

4.1.1. Local search algorithm impact evaluation component 

In this work, each LS is connected with empirical quality estimation (
'

,ilsq
) that indicates the 

average reward gained by an LS from the first iteration up to the current iteration i of the search process. The 

empirical quality estimation is computed using (1) [37], and it is updated throughout the search process. 
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where ilsn , refers to the number of time the lsLS  is used, 
'

,ilsq
 is the total reward of the lsLS before the ith 

iteration, and lsr
refers to the recent reward of the lsLS if it is used in the present iteration (which is calculated 

by using (2). 
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𝑟𝑙𝑠 =
(𝑓(𝑆) − 𝑓(𝑆′))

|𝑓(𝑆)|
 (2) 

 

4.1.2. The local search selection mechanism 

MAB takes the empirical quality estimation (
'

,ilsq
) of each LS and intentionally chooses the one that 

returns the maximum value by using (3) [37]: 

 

𝑆𝑒𝑙𝑒𝑐𝑡 𝑎𝑟𝑔 𝑚𝑎𝑥𝑙𝑠=1..𝐿 (𝑞𝑙𝑠
′ + 𝐶 × √

2 × 𝑙𝑜𝑔(∑ 𝑛𝑙
𝐿
𝑙=1 )

𝑛𝑙𝑠

) (3) 

 

L refers to the number of LSs, and C refers to the scaling factor that attains exploration-exploitation 

balance during the search process. In this equation, the right-hand term enhances the exploration ability by 

giving chances to LSs that recorded low improvements history. The left-hand term of this equation enhances 

the exploitation ability by favouring the LS, which has the best empirical quality. The C factor is very 

important as it balances between the search exploration and exploitation abilities. Thus, the MAB takes into 

consideration the improvements achieved by each LS during the search and how many times it is applied. 

The MAB algorithm process is illustrated in algorithm 1 [37]. 

 

Algorithm 1 Multi-Armed Bandit Mechanism 
Start 

While Not Terminated do 

if there is a single-based meta-heuristics not utilized yet, then 

𝑙𝑠 ←  randomly choice the LS that has not been utilized 
else 

𝑙𝑠  ← 𝑎𝑟𝑔 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑙𝑠=1..𝐿 (𝑞𝑙𝑠
′ + 𝑐 × √

2×𝑙𝑜𝑔(∑𝐿
𝑗=1 𝑛𝑗)

𝑛𝑙𝑠
)  

end if 

apply LSls and calculate its improvement strength  

𝑟𝑙𝑠 ←   CreditAssignment.GetReward(ls)  
𝑛𝑙𝑠 = 𝑛𝑙𝑠 + 1 

𝑞𝑙𝑠
′ ←   (

(𝑛𝑙𝑠 − 1) × 𝑞𝑙𝑠
′ + 𝑟𝑙𝑠

𝑛𝑙𝑠

) 

end while 

End 

 

4.2.  The lower level of self-H 
In this work, the lower level of self-H is a set of local search algorithms that contains four well-

known local search algorithms used to solve the QCSP. The major difference among the utilized local search 

algorithms is how they escape local optima. These algorithms are Hill climbing algorithm (HC), simulated 

annealing (SA), tabu search (TS) and iterated local search (ILS) [38]-[41]. In this study, an initial solution is 

generated based on the priority-based schedule construction algorithm [1]. The criterion for the termination 

of local search algorithms is adopted in accordance with the number of non-improved iterations. 

In order to generate neighbouring solutions, two neighbourhood structures have been adopted. To 

provide the self-H with more opportunities to explore the search space, the neighbour solution is generated 

through the Move neighbourhood structure. In this operator, the last task within a particular crane route is 

deleted from the current route and then reinserted in the first position of the next route. In case the last route 

is selected, the first task will be moved to the last position of the previous route. In terms of ILS, perturbation 

operator is utilized to make a great change in the current solution [40]. Instead of one task, this operator 

moves the last segment (a group of subsequent tasks) from a route that is selected randomly to the subsequent 

one. In case the last route is selected, the first segment will be moved to the previous route. 

 

 

5. EXPERIMENTAL DESIGN 
In this study, Meisel and Bierwirth benchmark [7] is employed to assess the performance of the 

proposed method. This section examines the aspects of this benchmark and self-H parameter settings. 

 

5.1.  QCSP benchmark 
The adopted Meisel and Bierwirth benchmark contains 400 instances [7] which are generated using 

QCSPgen generation procedure-which is available at http://prodlog.wiwi.uni-halle.de/qcspgen. The 

generation process is controlled by the following eight parameters [7]: 

http://prodlog.wiwi.uni-halle.de/qcspgen
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a. s = Number of container groups. 

b. b = Number of bays. 

c. c = Bay's capacity, referring to maximum number of containers per bay. 

d. f = Handling rate, referring to the percentage of container groups as handled in a service in contrast with 

the capacity of the vessel. 

e. loc = Location, in charge of the container groups' distribution over the vessel. One of three supported 

values are assigned to loc: 

 uni: the unified distribution of container groups over the vessel's bays. 

 cl1: practically, the common distribution containers are sometimes stored in the immediate vicinity over 

a vessel. In order to achieve that, a Gaussian distribution is adopted. 

 cl2: in this case, the container groups are clustered in two areas of the vessel. Two different Gaussian 

distributions are adopted for this purpose. 

f. d = Precedence density, in charge of generating the relations of precedence among the groups of 

containers. 

g. g = Density of non-simultaneous, in charge of generating the non-simultaneous relations among the 

groups of containers. 

h. seed= Random seed, in charge of initiating a pseudorandom number generator which leads to start at 

an arbitrary point in a random sequence. 

These instances are distributed into seven sets according to various crane scheduling issues, such as: 

number of tasks, number of bays, bays' capacity, handling rate, container groups' distribution, precedence and 

non-simultaneity relations among container groups and number of cranes. These sets are known as A, B, C, 

D, E, F and G. The sets A, B, and C refer to small, medium and large vessels with two, four and six cranes, 

respectively. The rest sets D, E, F and G refer to medium vessels with various container groups' distribution, 

precedence's density, number of cranes and safety requirements. The features of these sets are illustrated in 

Table 1. 

 

 

Table 1. The features of QCSP sets A-G 
Set Vessel size b n q f c d loc Vessel size 
A Small 10 10-40 2 0.5 200 1.0 uni Small 
B Medium 15 45-70 4 0.5 400 1.0 uni Medium 
C Large 20 75-100 6 0.5 600 1.0 uni Large 
D Medium 15 50 4 0.2,0.8 400 1.0 cl1, cl2, uni Medium 
E Medium 15 50 4 0.5 400 0.8-1 uni Medium 
F Medium 15 50 2-6 0.5 400 1.0 uni Medium 
G Medium 15 50 4 0.5 400 1.0 uni Medium 

 

 

5.2.  Experimental setup 
The proposed algorithms (HC, SA, TS, ILS and self-H) are all programmed in Java and executed by 

using PC with windows7, Intel processor Quad CPU 2.33 GHz, RAM 2.00 GB. In this section, preliminary 

test or as suggested by previous works, are appropriately used to determine the appropriate values for all 

proposed algorithm parameters. During the preliminary test, the adopted heuristics are executed 10 runs on 

seven instances-which are selected based on seven groups founded in the benchmark. The parameter settings 

used in this work are summarized in Table 2. 
 

 

Table 2. The parameter settings of the self-H 
Parameter Algorithm Value 

MaxItr Self-H 100 
NonItr HC 200 

T_max SA 50 

T_min SA 0.05 

𝛽 SA 0.99 

NonItr TS 200 
N_neighbors TS 10 

TLS TS 12 

NonItr ILS 200 
C MAB 0.01 
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6. EXPERIMENTAL RESULTS AND COMPARISONS 

To assess the performance of the suggested self-H for tackling QCSP, two experimental tests are 

carried out in this work. The first one compared the results of the self-H with that of four well-known LSs; 

HC, SA, TS and ILS in section 6.1. Fourteen instances are selected in this experimental (two instances from 

each group): 

 A1: Set A, n=10   A2: Set A, n=10  

 B1: Set B, n=45   B2: Set B, n=50 

 C1: Set C, n=75   C2: Set C, n=80 

 D1: Set D, f=0.2, Loc=cl1  D2: Set D, f=0.2, Loc=cl2 

 E1: Set E, d=0.8   E2: Set E, d=0.85 

 F1: Set F, q=2    F2: Set F, q=3 

 G1: Set G, s=0   G2: Set G, s=1 

In the second experimental test, a comparison was carried between the results of self-H and those 

obtained in former studies, shown in section 6.2. 

 

6.1.  Comparisons of the self-H with the LSs 
This study investigated self-H performance in comparison with that of four well-known LSs; HC, 

SA, TS and ILS. The obtained results are tabulated in Tables 3 and 4; these results involved Best and Avr. 

The high-quality solutions are marked in bold. In terms of the best values, the self-H obtained better results 

than the others. The results tabulated in Table 3 show that the self-H got the best results on thirteen instances 

out of fourteen, while HC, SA, TS and ILS got the best results on 3, 5, 8 and 9 instances, respectively. Based 

on the Avr values, Table 4 shows that the self-H outperformed the others as it obtained the best Avr results 

on eleven instances out of fourteen, while HC and ILS gained the best Avr results on one and two instances. 

 

 

Table 3. The best results of self-H compared to HC, SA, TS and ILS 
Instances HC SA TS ILS self-H 

A1 599 599 599 599 599 

A2 561 561 517 561 517 

B1 798 863 776 798 768 
B2 959 871 786 818 818 

C1 1507 1443 1320 1295 1295 

C2 1381 1183 1319 1273 1183 
D1 373 388 373 373 373 

D2 336 339 329 336 329 

E1 959 840 840 818 818 
E2 959 951 887 818 818 

F1 1515 1515 1515 1515 1515 

F2 1240 1029 1036 1029 1029 
G1 960 820 820 820 820 

G2 959 840 818 818 818 

 

 

Table 4. The average results of self-H compared to HC, SA, TS and ILS 
Instances HC SA TS ILS self-H 

A1 599 599.00 606.20 599 599 

A2 561 561.00 533.03 561 527.45 

B1 981.55 932.10 920.13 942.48 854.06 
B2 1099.16 1005.48 984.60 903.06 915.55 

C1 1991.35 1720.55 1489.93 1488.87 1324.58 

C2 2030.26 1617.71 1554.17 1457.32 1370.65 
D1 505.06 453.29 424.60 419.87 388.77 

D2 363.39 412.94 368.97 375.58 367.35 

E1 1099.16 992.16 1009.20 941.84 842.71 
E2 1099.16 975.58 960.43 929.94 928.97 

F1 1515 1515.00 1515.00 1515.00 1515.00 

F2 1333.42 1326.84 1268.33 1226.55 1233.87 
G1 1114.00 996.16 962.70 926.94 846.87 

G2 1099.16 998.19 971.13 921.29 919.77 

 

 

For the purpose of assessing the statistical significance of the gained results, a statistical test is 

conducted as: At the beginning, the Shapiro-Wilk normality test with 0.05 critical level is carried to verify 

whether the distribution of obtained results is normal or not normal. The test revealed that the obtained 

results significantly deviate from a normal distribution (the p-value is less than 0.05). Consequently, two 
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types of non-parametric tests have been utilized; these are the Friedman and Wilcoxon tests. Table 5 provides 

the ranking of the HC, SA, TS, ILS and self-H in lieu of the Friedman test (where the lower the value, the 

higher the rank). The self-H ranked first as it had the lowest value. Whilst, ILS, TS, SA and HC ranked 

2nd,3rd, 4th and 5th, respectively. It can be noticed that the p-value of the Friedman and Iman-Davenport 

statistical tests demonstrated the existence of a significant difference between the obtained results (p-value  

< 0.05, i.e. p-value=0.00). Consequently, a post-hoc statistical test with critical level 0.05 is employed to 

obtain the regulated p-values for each comparison between the control algorithm (self-H) and the others; HC, 

SA, TS and ILS. Table 6 shows the adjusted p-values of Holm and Hochberg statistical tests. Table 5 makes 

it clear that the self-H is far better statistically than HC, SA and TS (adjusted p-value < 0.05), yet it is not 

statistically significant compared to ILS. 

 

 

Table 5. The ranking of HC, SA, TS, ILS and self-H 
Algorithm Ranking Index 
self-H 1.4643 (1) 
ILS 2.3929 (2) 
TS 3.0714 (3) 
SA 3.75 (4) 
HC 4.3214 (5) 
Friedman test(p-value)  0.000011 
Iman-Davenport(p-value)  0.000000169853 

 

 

Table 6. The adjusted p-value obtained through the application of the post hoc test 
self-H vs unadjusted P PHolm PHochberg 

HC 0.000002 0.000007 0.000007 
SA 0.000131 0.000393 0.000393 
TS 0.007161 0.014322 0.014322 

 

 

Table 7 illustrates the results obtained by the standard self-H for all the instances in the adopted 

benchmark (sets A to G). In this table, each cell comprises two values, upper and lower. The upper value 

refers to the average vessel handling times, whereas the lower value refers to the average running time as 

measured in seconds. The results obtained in this work demonstrate that the suggested self-H is an efficient 

solution technique for the QCSP. This may result from the ability of the self-H to select different LSs for a 

different problem in an online manner). By utilizing different LSs during the search, the self-H can deal with 

various problem instances and cope with any changes that may occur during optimizing a solution. Based on 

these results, the hypothesis raised above is accepted and proved to be true. 

 

 

Table 7. the average vessel handling times for instances in sets A-G 
Instance set        

A n= 10 n= 15 n= 20 n= 25 n= 30 n= 35 n= 40 

536.8 
< 1 

549.5 
< 1 

516.7 
< 1 

525.2 
< 1 

511.7 
< 1 

521.9  
< 1 

513.9 
< 1 

B n= 45 n= 50 n= 55 n= 60 n= 65 n= 70  

787 
11.41 

797.5 
4.29 

815.4 
5.32 

819.1 
5.80 

783.6 
3.72 

798.9 
8.93 

 

C n= 75 n= 80 n= 85 n= 90 n= 95 n= 100  

1208.1 
5.53 

1153.6 
3.00 

1141.6 
4.58 

1152.6 
10.17 

1188.7 
3.41 

1134.1 
4.06 

 

D f= 0.2 

loc= cl1 

f= 0.2 

loc= cl2 

f= 0.2 

loc= uni 

f= 0.8 

loc= cl1 

f= 0.8 

loc= cl2 

f= 0.8 

loc= uni 

 

339.8 

2.49 

322.6 

< 1 

329.3 

7.22 

1239.9 

< 1 

1264.2 

1.23 

1258.1 

1.56 

 

E d= 0.80 d= 0.85 d= 0.90 d= 0.95 d= 1.00   
816.8 

2.29 

806.7 

2.06 

815 

3.90 

800.6 

0.93 

821.2 

0.25 

  

F q= 2 q= 3 q= 4 q= 5 q= 6   

1524.1 

< 1 

1037.5 

< 1 

812 

1.13 

676 

< 1 

574.8 

< 1 

  

G s= 0 s= 1 s= 2 s= 3 s= 4   
816.7 

< 1 

806.7 

< 1 

988.1 

< 1 

1152.6 

< 1 

1325.4 

< 1 
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6.2.  Comparison of self-H with the state of the art methods 
In this experiment, self-H results are compared with the best-known existing results in the available 

works of literature (CPLEX and UDS), which are collected from [1]. There are numerous studies that have 

been proposed in the literature for QCSP. Three of these recent studies achieved the best-known results, so 

they were selected for comparison with the proposed method. These studies are: 

 GA: a genetic algorithm proposed by [5] 

 HGA and HGP: two hybrid evolutionary computation methods proposed by [1] 

Table 8 reports the GAP the best results obtained by self-H and the other compared algorithms. The 

aforementioned tabulated results reveal that self-H attained competitive results as compared to others. This 

comparison demonstrates that the self-H excelled USD, HGA and HGP on D, F and G datasets. Even though 

self-H did not match the best-known existing results for all datasets, the obtained results for these datasets 

remain very competitive. 

 

 

Table 8. The GAP the best results obtained by self-H and the other compared algorithms 

 CPLEX UDS GA HGA HGP 
A 3.35 3.20 2.88 3.20 3.21 
B 6.20 3.91 - 3.55 3.66 
C 15.96 5.95 - 5.65 5.76 
D - -1.45 - -1.61 -1.56 
E - 5.50 - - 5.33 
F - -2.90 5.25 -2.99 -2.95 
G - -1.56 - -1.62 -1.62 
"−" indicates that the compared method did not report the best result 
Instance set 

 

 

7. CONCLUSION 

The researchers in this study proposed a Self adaptation heuristic (self-H) to solve QCSP. The self-

H involves two separate levels, the upper level (LS-controller) and the lower level (QCSP-solver). This 

enables the self-H to deal with different problems and the changes that may happen throughout the course of 

optimizing a solution. The LS-controller is based on an adaptive selection mechanism that adaptively selects 

which LS will be adopted by the QCSP-solver to solve the given problem. The QCSP-solver embeds a group 

of adopted local search algorithms. The effectiveness of the self-H was verified by using the standard QCSP 

benchmark, suggested by Meisel and Bierwirth (2011). The experimental results showed that the f-H is an 

efficient solution method for the QCSP as it is able to inherit the most important features of the QCSP-solver 

to select the most suitable local search algorithm to be applied through the search process. In future work, the 

proposed algorithm (self-H) can be applied to solve more practical problems such as university timetabling 

and multi-objective optimization of machine learning model. This application will identify the generality 

characteristic of the proposed algorithm. 
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