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 This article presents the sliding control method combined with the self-

adjusting neural network to compensate for noise to improve the control 

system's quality for the two-wheel self-balancing robot. Firstly, the dynamic 

equations of the two-wheel self-balancing robot built by Euler–Lagrange is 

the basis for offering control laws with a neural network of noise 

compensation. After disturbance-compensating, the sliding mode controller is 

applied to control quickly the two-wheel self-balancing robot reached the 

desired position. The stability of the proposed system is proved based on the 

Lyapunov theory. Finally, the simulation results will confirm the effectiveness 

and correctness of the control method suggested by the authors. 
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1. INTRODUCTION 

There has been much research on the two-wheel self-balancing (TWSB) robot in recent years 

because its application is expanding and developing [1]. Control models and algorithms are also optimized 

and become an open source for researchers. Especially, manufacturer Segway has also designed and 

produced a variety of TWSB vehicles for commerce. 

There are many effective control methods available for the TWSB robot with nonlinear kinetics, 

such as the method using a proportional integral derivative (PID) controller [2], the optimal controller based 

on the linear–quadratic regulator (LQR) [3], [4], the robust-adaptive control [5], the backstepping control [6], 

[7], the sliding mode control [8], the fuzzy logic control structure [9] and the control system based on a 

neural network [10]. However, there is a lot of noise during outdoor operation that negatively affects the 

control system's quality. Therefore, to improve the control system's quality, the authors will propose a sliding 

control method combined with artificial neural networks (ANN) to eliminate the noise in this research. 

In research studies [11]-[13], the authors have suggested two control methods for TWSB robots, 

such as PID and LQR. The authors made simulations and compared these methods, then conclude that LQR 

gives better results than PID. However, these studies did not mention disturbance components due to friction 

or uncertain interference from the environment. The simulation results also show that the control system's 

overshoot is relatively high, and the control quality at the start period has not achieved the desired results. 

Meanwhile, the study [14] compared four control methods: the pole-control, the PID control, the 

backstepping control, and the sliding mode control. The simulation results show that the backstepping 
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method and the pole-control have better results. However, in controlling the angle of rotation, the extended 

noise still cannot be eliminated. With the proposal using fuzzy logic [15], [16], the authors used fuzzy laws to 

control the balance and position of the TWSB robot. The system has a fast response and limited interference. 

However, with variability and uncertainty disturbance, the ability to reject interference is still low. To 

overcome those disadvantage problems mentioned above, in this study, the authors will develop from 

experiences in building control systems and noise compensation in previous articles [17]-[19] for the 

construction of the controller of TWSB robot with a nonlinear dynamic structure and uncertainty disturbance. 

This study's main contributions include designing a sliding mode controller combined with adaptive neural 

networks with online self-aligning parameters to eliminate the noise and uncertain components in the TWSB 

robot with nonlinear kinetics and determination of the uncertainty parameters. The remaining content of this 

article includes as shown in: Section 2 presents the equations of control object for TWSB robot; in section 3, 

the authors build the neural network to compensate for the disturbance and prove the stability of the system; 

the results and discussion are presented in section 4, and the conclusions are presented in section 5. 

 

 

2. BUILDING THE EQUATIONS OF CONTROL OBJECT FOR TWSB ROBOT 

2.1.  The model of the TWSB robot 

The model of the TWSB robot is shown in Figure 1. The TWSB robot is a three-degrees-freedom 

robot with three joint variables: moving x, turning angle θ, and tilting variable 𝜑. 

 

The energy of the system: 𝐿 =  𝐾 –  𝑈 

 

where K is the total kinetic energy and U is the total potential energy. 
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Figure 1. The model of the TWSB robot 

 

 

2.2.  Lagrange equations 

The TWSB robot is an object with nonlinear kinetics. Therefore, we ignore external forces and the 

friction between the body and two-wheels to simplify the kinetic modeling process. These friction 

components and external forces will be added to the general equations and will be discussed in the next 

section. The total kinetic energy in the system is calculated as shown in: 

 

𝐾 = 𝐾1 + 𝐾2 + 𝐾3 + 𝐾4 (1) 

 

where K1 is the translational kinetic energy of the wheel: 

 

𝐾1 =
1

2
𝑚w(�̇�𝐿

2 + �̇�𝑅
2)  (2) 

 

K2 is the rotational kinetic energy of the wheel: 
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𝐾2 =
1

2
𝐽wy(�̇�𝐿

2 + �̇�𝑅
2) (3) 

 

K3 is the kinetic energy of the pedestal: 

 

𝐾3 =
1

2
𝑚2 (

�̇�𝐿+�̇�𝑅

2
)

2

+
1

2
𝐽𝑐�̇�

2 +
1

2
𝐽𝑣 (

�̇�𝐿−�̇�𝑅

𝑑
)

2

 (4)  

 

K4 is the kinetic energy of the pendulum: 

 

𝐾4 =
1

2
𝑚1 [(

�̇�𝐿+�̇�𝑅

2
)

2

+ 𝑙(�̇�𝐿 + �̇�𝑅)�̇�cos(𝜑)] +
1

2
𝑚1𝑙

2�̇�2 +
1

2
𝐽𝑝�̇�

2 (5) 

 

where:  

𝑥𝐿 , 𝑥𝑅  are displacement of left wheel, right wheel along x-axis, respectively. 

mw is the mass of the wheel. 

θ L , θ R are the rotation angle of the left wheel and the right wheel relative to the z-axis. 

Jwy is the inertia moment of the wheel along y-axis. 

m1, m2 are the mass of the pendulum, the mass of the pedestal, respectively. 

Jc is the inertia moment of the pedestal around y-axis. 

Jv is the inertia moment of the pedestal and the pendulum around the z-axis. 

Jp is the inertia moment of the pendulum around the y-axis. 

l is the distance from the base to the center of the pendulum. 

𝜑 is the tilt angle of the pendulum. 

Since the potential of the wheel and the pedestal are zero, the total potential of the system is as 

shown in: 

 

𝑈 = 𝑈4 = 𝑚𝑔𝑙cos(𝜑) (6) 

 

Where:  

 

𝑥𝐿 = 𝜃𝐿𝑟  �̇�𝐿 = �̇�𝐿𝑟  �̈�𝐿 = �̈�𝐿𝑟

𝑥𝑅 = 𝜃𝑅𝑟  �̇�𝑅 = �̇�𝑅𝑟  �̈�𝑅 = �̈�𝑅𝑟
 (7) 

 

Replacing (7) into (3) and replacing (2)–(6) into (1), we get the Lagrange equation of the system according to 

the total kinetic energy and the total potential energy as shown in: 

 

𝐿 = (𝑚w +
𝐽𝑤𝑦

𝑟2 )
�̇�𝐿

2+�̇�𝑅
2

2
+

𝑚1+𝑚2

2
(

�̇�𝐿+�̇�𝑅

2
)

2

+ 𝑚1𝑙 (
�̇�𝐿+�̇�𝑅

2
) �̇�𝑐os(𝜑)

+
1

2
(𝑚1𝑙

2 + 𝐽𝑝 + 𝐽𝑐)�̇�
2 +

1

2
𝐽𝑣 (

�̇�𝐿−�̇�𝑅

𝑑
)

2

− 𝑚2𝑔𝑙cos(𝜑)
  (8) 

 

2.3.  The forward kinematic of TWSB robot 

To calculate the forces in the system affected by the joint variables, we use the following general 

kinetic: 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
= 𝜏𝑖 (9) 

 

in which, 𝜏𝑖 is the forces effected by the joint variables. The variable qi is a component of the joint variable 

vector. Applying in (9) with the displacement (xL) of the left wheel along x-axis, we get: 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝐿
) −

𝜕𝐿

𝜕𝑥𝐿
= 𝜏𝐿 (10) 

 

With 𝜏𝐿 is the total moment of the system effected on the left wheel of the robot. Executing in (10) based on 

the (8), we obtain: 

 

(𝑚w +
𝐽𝑤𝑦

𝑟2 )�̈�𝐿 +
𝑚1+𝑚2

4
(�̈�𝐿 + �̈�𝑅) +

1

2
𝑚1𝑙(�̈�𝑐os𝜑 − �̇�2sin𝜑) +

1

𝑑2 𝐽𝑣(�̈�𝐿 − �̈�𝑅) = 𝜏𝐿  (11) 
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Applying in (9) with the displacement (xR) of the right wheel along x-axis, we get: 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑅
) −

𝜕𝐿

𝜕𝑥𝑅
= 𝜏𝑅 (12) 

 

with 𝜏𝑅 is the total moment of the system effected on the right wheel of the robot. Executing in (12) based on 

the (8), we obtain: 

 

(𝑚w +
𝐽𝑤𝑦

𝑟2 )�̈�𝑅 +
𝑚1+𝑚2

4
(�̈�𝐿 + �̈�𝑅) +

1

2
𝑚1𝑙(�̈�𝑐os𝜑 − �̇�2sin𝜑) −

1

𝑑2 𝐽𝑣(�̈�𝐿 − �̈�𝑅) = 𝜏𝑅  (13) 

 

Executing in (9) with the tilt angle variable (𝜑) of the pendulum, we obtain: 

 
𝑑

𝑑𝑡
(
𝜕𝐿

𝜕�̇�
) −

𝜕𝐿

𝜕𝜑
= 0 (14) 

 

Executing in (14) based on (8), we have: 

 

𝑚1𝑙(
�̈�𝐿+�̈�𝑅

2
)𝑐os𝜑+(𝑚1𝑙

2 + 𝐽𝑝 + 𝐽𝑐)�̈� − 𝑚2𝑔𝑙sin𝜑 = 0 (15) 

 

We have relationships between the variables as shown in: 

 

𝑥 =
𝑥𝐿 + 𝑥𝑅

2
  �̇� =

�̇�𝐿 + �̇�𝑅

2
  �̈� =

�̈�𝐿 + �̈�𝑅

2
 

𝜃 =
𝑥𝐿−𝑥𝑅

𝑑
  �̇� =

�̇�𝐿−�̇�𝑅

𝑑
  �̈� =

�̈�𝐿−�̈�𝑅

𝑑
 (16) 

 

Adding (11) and (13), then replacing variables as in (16), we get: 

 

(2𝑚𝑤 + 2
𝐽𝑤𝑦

𝑟2 +
𝑚1+𝑚2

2
) �̈� + 𝑚1𝑙(�̈�𝑐os𝜑 − �̇�2 𝑠𝑖𝑛 𝜑) = 𝜏𝑅 + 𝜏𝐿  (17) 

 

Taking (11) minus (13), then replacing variables as in (16), we get: 

 

𝑑(𝑚w +
𝐽𝑤𝑦

𝑟2 +
2

𝑑2 𝐽𝑣)�̈� = 𝜏𝐿 − 𝜏𝑅 (18) 

 

2.4.  The mathematical model of the control object 

The general kinetic equation system for robots has the following general form [20], [21]: 

 

𝐷(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝐹𝑟(�̇�) + 𝜏𝑑 = 𝜏 (19) 

 

where 𝐷(𝑞) ∈ 𝑅𝑛𝑥𝑛 is the asymmetric and positive definite matrix 𝐶(𝑞, �̇�) ∈ 𝑅𝑛 is the centrifugal and 

Coriolis forces.𝐹𝑟(�̇�) ∈ 𝑅𝑛is the friction.𝐺(𝑞) ∈ 𝑅𝑛is the gravity force. 𝜏𝑑 ∈ 𝑅𝑛is a general nonlinear 

disturbance.𝜏 ∈ 𝑅𝑛 represent the torque input controls vector. 𝑞, �̇�, �̈� ∈ 𝑅𝑛 denotes the angle, velocity, and 

acceleration vector of the link, respectively. Because the TWSB robot is a three-degrees of freedom robot 

with three variables such as the moving variable x, the turning angle variable θ, and tilt angle variable 𝜑, we 

have the vector variables of the joints: 

 

𝑞 = [𝑥 𝜃 𝜑]𝑇  �̇� = [�̇� �̇� �̇�]𝑇  �̈� = [�̈� �̈� �̈�]𝑇 

 

− Property 1. The inertia matrix D(q) is symmetric and uniformly positive definite, and satisfied 

 

∀𝑞 ∈ 𝑅𝑛 ,  𝑔𝑞𝑇𝑞 ≤ 𝑞𝑇𝐷𝑞 ≤ 𝑔𝑞𝑇𝑞 

 

where𝑔 and 𝑔 are known positive constants. 

− Property 2. The Coriolis and centrifugal matrix𝐶(𝑞, �̇�) can be appropriately defined in order for 

(�̇� − 2𝐶) is skew-symmetric. We get: 

 

𝑞𝑇(�̇� − 2𝐶)𝑞 = 0, ∀𝑞 ≠ 0. (20) 
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Rewriting (17), (18), and (15) according to (19) we get the following coefficient matrices: 

 

𝐷 =

[
 
 
 
 2𝑚w + 2

𝐽𝑤𝑦

𝑟2 +
𝑚1+𝑚2

2
0 𝑚1𝑙𝑐os𝜑

0 𝑑(𝑚w +
𝐽𝑤𝑦

𝑟2 +
2

𝑑2 𝐽𝑣) 0

𝑚1𝑙𝑐os𝜑 0 𝑚1𝑙
2 + 𝐽𝑝 + 𝐽𝑐]

 
 
 
 

 (21) 

 

𝐶 = [
0 0 −𝑚1𝑙�̇�sin𝜑
0 0 0
0 0 0

] (22) 

 

Demonstration of property 2: The derivative of matrix D: 

 

�̇� = [
0 0 −𝑚1𝑙�̇�sin𝜑
0 0 0

−𝑚1𝑙�̇�sin𝜑 0 0
] (23) 

 

Replacing (22) and (23) in (20), we get: 

 

𝑞𝑇(�̇� − 2𝐶)𝑞 = [𝑥 𝜃 𝜑] ([
0 0 −𝑚1𝑙�̇�sin𝜑
0 0 0

−𝑚1𝑙�̇�sin𝜑 0 0
] − 2 [

0 0 −𝑚1𝑙�̇�sin𝜑
0 0 0
0 0 0

]) (

𝑥
𝜃
𝜑
) 

= [𝑥 𝜃 𝜑] [
0 0 𝑚1𝑙�̇�sin𝜑
0 0 0

−𝑚1𝑙�̇�sin𝜑 0 0
] (

𝑥
𝜃
𝜑
) 

= [−𝜑𝑚1𝑙�̇�sin𝜑 0 𝑥𝑚1𝑙�̇�sin𝜑] (

𝑥
𝜃
𝜑
) = 0 (24) 

 

Thus, based on the results in (24) with the matrix parameters in (21) and (22), the TWSB robot 

kinetic equation has the property as (20). 

 

 

3. BUILDING THE NEURAL NETWORK TO COMPENSATE FOR DISTURBANCE 

Commonly, the sliding mode control method [22]-[24] includes defining the sliding surface as the 

system state functions and proving the trajectories of the closed-loop system reach this surface in a finite time 

based on stability theory. To solve the disadvantages of the common sliding mode control, we add a neural 

network. The neural network and sliding mode controller's learning algorithm is constructed relying on the 

Lyapunov theorem to ensure the system's stability. 

We ignore some external forces that affected the system to build the kinetic model [25] of the robot. 

After making the general equations, we will add these external forces. In (19), 𝐹𝑟(�̇�) is the composition of 

friction on the two wheels. It includes FL, FR -friction force impact on the left-wheel and right-wheel;𝜏𝑑-the 

external force impacts the two wheels. 𝜏𝑑 has fL , fR - the interaction force between the left and right wheel 

and pedestal; fdL , fdR -the external force impact on the left wheel and right wheel. Setting:  

 

𝐹(𝑞, �̇�, �̈�, 𝑡) = 𝐹𝑟(�̇�) + 𝜏𝑑  (25) 

 

In the nonlinear kinetic system, noise and friction are the leading causes of control quality loss. 

Therefore, to increase control quality, the authors will build a neural network for compensation for the 

disturbances and uncertainty parts in this study. 

In studies on robust adaptive control, NN in [17], [26], [27] are mostly used for the unknown 

nonlinearities as approximation models because of their inherent capabilities of approximation. A simple 

artificial neural network structure for approximating function may be rewritten as: 

 

𝐹(𝑞, �̇�, �̈�, 𝑡) = 𝐹(𝑠) = 𝑊𝜎 + 𝜀 (26) 

 

where ε denotes the approximation error and 𝜀̄ is the limit of ε, (|𝜀| ≤ 𝜀̄). σ denotes the Gaussian function. 

We define the weights 𝑤𝑗𝑖  to construct an approximated neural network, so the (9) could be rewritten as: 
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𝐹(𝑠) = ∑ 𝑤𝑗𝑖
𝑛

𝑗=1
𝜎𝑖 + 𝜀 𝑖 = 1,2, . . . , 𝑛 (27) 

 

The Gaussian function is as shown in: 

 

𝜎𝑖 = exp (−
𝑠𝑖−𝑐𝑖

𝜆𝑖
2 ) (28) 

 

where Si= [Si1,Si2,…,Sin]T denotes the input of radial basis function (RBF) network, ci=[c1,c2,…,cn]T is the 

centers of the basic function and 𝜆𝑖 is the widths of the basic function, freely chosen. We set a Lyapunov 

function V(t). Basing on the Lyapunov stability theory, if we make a control law so that the time derivative of 

V(t) is negative, then the agent's trajectory will converge to the sliding surface𝑠 = 0 in a finite time and keep 

them on the sliding surface. Setting the Lyapunov function as shown in: 

 

𝑉(𝑡) =
1

2
(𝑠𝑇𝐷𝑠 + ∑ 𝑤𝑗

𝑇𝑤𝑗

𝑛

𝑗=1
) (29) 

 

It is easy to see that this function is positive definite: 

 

𝑉(𝑡) > 0, ∀𝑠 ≠ 0  

 

Differentiating in (29) concerning time, we get: 

 

�̇�(𝑡) =
1

2
[�̇�𝑇𝐷s + 𝑠𝑇�̇�𝑠 + 𝑠𝑇𝐷�̇� + ∑ (�̇�𝑗

𝑇𝑤𝑗 + 𝑤𝑗
𝑇�̇�𝑗

𝑛

𝑗=1
)]

=
1

2
𝑠𝑇�̇�𝑠 + 𝑠𝑇𝐷�̇� + ∑ 𝑤𝑗

𝑇
𝑛

𝑗=1
�̇�𝑗

 (30) 

 

According to dynamic in (19), both 𝐶(𝑞, �̇�) and 𝐷(𝑞) satisfy Property 2: 

 

𝑠𝑇(�̇� − 2𝐶)𝑠 = 0, ∀𝑠 ∈ 𝑅𝑛

↔  𝑠𝑇�̇�𝑠 = 2𝑠𝑇𝐶𝑠
 (31) 

 

The matrix(�̇� − 2𝐶) is symmetric. This characteristic ensures the system unaffected by the force is 

defined by𝐶(𝑞, �̇�)�̇�. Therefore, from (30) and (31), we have: 

 

�̇�(𝑡) = 𝑠𝑇𝐶𝑠 + 𝑠𝑇𝐷�̇� + ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
�̇�𝑗 (32) 

 

Setting the sliding surface structured with PD and neural network (26) to cling to the reference 

trajectory of the Euler - Lagrange system (19) with the deviation of e equal to 0, we propose the following 

control law: 

 
𝜏 = 𝐷�̈�𝑑 + 𝐶�̇�𝑑 + 𝐺 − 𝐷𝛬�̇� − 𝐶𝛬𝑒

     − 𝐾𝑠 − 𝛾
𝑠

‖𝑆‖
+ (1 + 𝜂)𝑊𝜎  (33) 

 

The learning algorithm: 

 

�̇�𝑖 = −𝜂𝑠𝜎𝑖 (34) 

 

where K is a symmetric positive matrix and𝛾, 𝜂 > 0. 

The equation of sliding surface: 

 

s = ė + Λe (35) 

 

Theorem 1 considers the Euler–Lagrange system (19), sliding mode (35), approximating neural 

network defined in (27) with Gaussian function described in (28), the proposed state feedback control law 

(33), and learning algorithm (34). All the system signals are limited, and the tracking error congregates to 

sliding surfaces in a limited time. 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 3, September 2021:  592 - 601 

598 

Demonstration of theorem 1. Substituting the PD sliding surface described in the form (35) to the 

(32), we get: 

 

�̇�(𝑡) = 𝑠𝑇[𝐶(�̇� + 𝛬𝑒 + 𝐷(�̈� + 𝛬�̇�)] + ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
�̇�𝑗  

= 𝑠𝑇[𝐶(�̇� − �̇�𝑑 + 𝛬𝑒) + 𝐷(�̈� − �̈�d + 𝛬�̇�)] + ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
�̇�𝑗  

= 𝑠𝑇[𝐶(−�̇�𝑑 + 𝛬𝑒) + 𝐷(−�̈�d + 𝛬�̇�) + 𝐶�̇� + 𝐷�̈�] + ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
�̇�𝑗 (36) 

 

Basing on (19) and (25), we get: 

 

𝐷�̈� + 𝐶�̇� = 𝜏 − 𝐺 − 𝐹(𝑞, �̇�, �̈�, 𝑡) = 𝜏 − 𝐺 − 𝑊𝜎 − 𝜀  (37) 

 

Replacing (37) in (36), we get: 

 

�̇�(𝑡) = 𝑠𝑇[𝐶(−�̇�𝑑 + 𝛬𝑒) + 𝐷(−�̈�d + 𝛬�̇�) +

  + 𝜏 − 𝐺 − 𝑊𝜎 − 𝜀] + ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
�̇�𝑗

  (38) 

 

Replacing τ in (33) and (34) into (38), we get: 

 

�̇�(𝑡) = 𝑠𝑇[−𝐾𝑠 − 𝛾
𝑠

‖𝑠‖
+ 𝜂𝑊𝜎 − 𝜀] − 𝜂 ∑ 𝑤𝑗

𝑇𝑛
𝑗=1 𝑠𝜎𝑗  (39) 

 

We have𝑤𝑗
𝑇𝑠 = 𝑠𝑇𝑤𝑗 . Basing on (27) and (28), the last part in (39) can be rewritten to the 

following: 

 

𝜂 ∑ 𝑤𝑗
𝑇

𝑛

𝑗=1
𝑠𝜎𝑗 = 𝜂𝑠𝑇 ∑ 𝑤𝑗

𝑛

𝑗=1
𝜎𝑗 = 𝜂𝑠𝑇𝑊𝜎 (40) 

 

In (39) is rewritten as shown in: 

 

�̇�(𝑡) = 𝑠𝑇[−𝐾𝑠 − 𝛾
𝑠

‖𝑠‖
+ 𝜂𝑊𝜎 − 𝜀] − 𝜂𝑠𝑇𝑊𝜎

 = 𝑠𝑇[−𝐾𝑠 − 𝛾
𝑠

‖𝑠‖
− 𝜀]

 (41) 

 

From (41) we can see that �̇�(𝑡) < 0 for all𝑠 ≠ 0and �̇�(𝑡) = 0 if and only if𝑠 = 0. So, with the 

sliding surface (35), control law (33), learning algorithm (34), and neural network (26), the agent will be 

tracking the desired trajectory 𝑞𝑑with the error𝑒 → 0. 

 
 

4. RESULTS AND DISCUSSION 

Firstly, we run the neural network to identify the robot with the sample period time Tsp = 0.01. After 

training, we get the following results. The mse deviation between NN model output and object output is 2.5 

*10-12. The biggest deviation between NN model output and robot output is 6 * 10-5. The number of training 

is 1350. The neural network used for identification as (17), the Gaussian function is described in (28), where 

the Gaussian function parameters are as shown in: 
 

𝜆1 = 1.2; 𝜆2 = 1.2; 𝑐1 = 0.01; 𝑐2 = 0.01  
 

The initial conditions of the neural network are selected as shown in: 

 

𝑤0,0 = [
1 1
1 1

]  

 

Learning rate 𝜂 = 0.1and𝛾 = 2. The input/output responses of the reference model, the output 

responses of the object, and the responses of the controller reference model are shown in Figures 2 and  

Figure 3. The error between the NN model and the object is shown in Figure 4. 
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Figure 2. The signal of reference model input and 

output 

Output from Model

Error of Plant and Model

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

-2

-1

0

2

1

-4

-2

0

6

2

4

x 10 
-5

 
 

Figure 3. The NN model output, the error between 

NN output and object output 

 

 

The parameters of the model are chosen as shown in: 

 

mw = 0.3kg; m1 = 1kg; m2 = 2kg; l = 0.1m; d = 0.2m; g = 10 m*s-2; r = 0.035m 

 

Setting the sinusoidal random noise, the force acting on the two wheels are as shown in: 

 

fdL = - fdR = 2.85sin(((2t) + rank) N 

 

The torque response on the two wheels is shown in Figure 5. 
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Figure 4. The mse error between NN output and 

object output 
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Figure 5. The torque response on the two wheels 

 

 

 

The initial states of the autonomous robot system are selected as shown in: 

 

[𝑥;�̇�;𝜃;�̇�] = [0; 0.001;−0.0005; 0]  
 

The system responses are shown in Figures 6 and 7, respectively. Figure 6(a) shows the position response 

and Figure 6(b) shows speed response of the robot. Figure 7(a) shows the angle response and Figure 7(b) 

shows angle rate response of the robot. The results show that the system is well-stabilized, matched the 

proven theoretical with high efficiency. The parameters of position, speed, angle, and angular velocity 

quickly return to the equilibrium position after no more than 10 seconds. Therefore, we can confirm that the 

control method proposed by the authors has worked effectively. 
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Figure 6. The response of the robot, (a) the position and (b) the speed 
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Figure 7. The response of the robot, (a) the angle and (b) the angle rate 
 

 

5. CONCLUSION 

In this paper, based on the neural network structure combined with the sliding mode controller with 

PD-surface, the authors have designed a TWSB robot controller that can compensate for noise in an uncertain 

environment. The authors have taken advantage of two methods: the neural network has a high adaption and 

the sliding mode controller has a fast response. The neural network parameters are always defined and 

updated online to ensure stability in varying noise. Compared to previous approaches, this method's 

advantage is that the noise detection and filtering system can compensate for any disturbance and ensure the 

system's stability quickly. The results of this study will be the foundation for the authors' further studies in 

improving the quality of the consensus control system for many TWSB robots. 
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