Hybridisation of RF(Xgb) to improve the tree-based algorithms in learning style prediction

Haziqah Shamsudin, Maziani Sabudin, Umi Kalsom Yusof

Abstract


This paper presents hybridization of Random Forest (RF) and Extreme Gradient Boosting (Xgb), named RF(Xgb) to improve the tree-based algorithms in learning style prediction. Learning style of specific users in an online learning system is determined based on their interaction and behavior towards the system. The most common online learning theory used in determining the learning style is the Felder-Silverman’s Learning Style Model (FSLSM). Many researchers have proposed machine learning algorithms to establish learning style by using the log file attributes. This helps in determining the learning style automatically. However, current researches still perform poorly, where the range of accuracy is between 58%-89%. Hence, RF(Xgb) is proposed to help in improving the learning style prediction. This hybrid algorithm was further enhanced by optimizing its parameters. From the experiments, RF(Xgb) was proven to be more effective, with accuracy of 96% compared to J48 and LSID-ANN algorithm from previous literature.

Keywords


Hybrid; Hyperparameter optimization; Learning style; Online learning; Random Forest

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v8.i4.pp422-428
Total views : 205 times

Refbacks

  • There are currently no refbacks.


View IJAI Stats

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.