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 In this paper, we use under-age constraints and apply it to the Traveling 

Salesman Problem (TSP). Values and results concerning the averages and 

best fits of both, the Simple Standard Genetic Algorithm (SGA), and an 

improved approach of Genetic Algorithms named Human Community Based 

Genetic Algorithm (HCBGA) are being compared. Results from the TSP test 

on Human Community Based Genetic Algorithm (HCBGA) are presented. 

Best fit solutions towards slowing the convergence of solutions in different 

populations of different generations show better results in the Human 

Community Based Genetic Algorithm (HCBGA) than the Simple Standard 

Genetic Algorithm (SGA). 
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1. INTRODUCTION 

Genetic algorithms are used to solve search and optimization problems [1]. In the early 1960s, 

1970s and 1980’s John Holland and his students developed these kinds of algorithms [2], [5], [6], [8], [9]. 

These search techniques solve hard complex problems in various disciplines, and they rely mainly on the 

biological process of evolution [3], [5], [8]. As a matter of fact, Genetic Algorithms (GAs) are routines which 

could manage self-adoption, same as neural networks. They mimic nature in a way that the survival of the 

fittest is to provide new generations, of approximate solutions [5], [8]. Additionally, genetic algorithms 

(GAs) work with various elements “individuals” each element is referred to a chromosome or genotype. A 

fitness score is assigned to each individual representing a possible solution, to a given problem [1]-[3], [8], 

[9]. In solving academic problems Genetic Algorithms (GAs) were first used. These problems are such as the 

traveling salesman problem and the 8 Queens problem [3], [5], [6], [9]. Years later, Genetic Algorithms 

(GAs) increased their applications to optimize many types of complex problems such as the complex 

scheduling problems, spatial layout, and many other problems that are hard to efficiently solve [7]. 

 

 

2. THE TRAVELING SALESMAN PROBLEM (TSP) 

One of the most important combinatorial problems is the traveling salesman problem (TSP). This 

problem is simple to define [24, [25]-[27]. It is stated as an NP-hard optimization problem. In this problem n 

cities must be visited by a salesman, starting from one of them passing through each city only once, and 

returning to the first city. The cost is given for the journey. Finally, the minimum cost is required to solve this 

problem [23], [28]-[30]. The Traveling Salesman Problem (TSP) is determined as follows: Given N cities, 
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known as nodes, a distance matrix where, D= [dij], consists of the distance between city i and city j [24], 

[28], [29], [30]. 

In an attempt to finding near optimal solutions for NP-hard problems; the Traveling Salesman 

Problem (TSP) is considered a standard benchmark problem for combinatorial methods [29]. It provides a 

standard optimization test bed, to find near optimum solutions to NP-hard problems [1], [31], [36], [38]. 

The traveling salesman problem (TSP) is called Symmetric TSP (Standard), if the cost between any 

two cities are equal in both directions, this means, the distance from city i to city j is the same as the distance 

from city j to city i. Otherwise, the Traveling Salesman Problem (TSP) is to be known as an Asymmetric 

TSP, which means that the distance between city i to city j, differs than the distance from city j to city i [24], 

[27], [31]. 

To solve the traveling salesman problem (TSP) there are two alternative approaches. First, is to find 

its solution and try proving its optimality, which takes a long period of time. |Second, to find an approximate 

solution in a short period of time [27]. 

Applying the Traveling Salesman Problem using methods from many specific areas mostly based on 

search heuristic methods such as local search [34], [36], simulated annealing [32], [37], tabu search [33], 

[37], neural networks [32], [35],and genetic algorithms [34], [38]. Actually, there are wide applications of the 

TSP, such as, traffic route, computer cabling, robot control and many others [25], [27]. 

 

 

3. MATERIALS AND METHODS 

In the selection part in the Simple Standard Genetic Algorithm (SGA) there are no constraints. 

The Simple Standard Genetic Algorithm (SGA) works randomly [11]. Due to this randomness, many 

researches are working to tackle this problem by designing structured population and putting some 

constraints to control the individual’s interaction [11]. In the last few years many types and models of GAs 

appeared such as the Cellular GA [11], Island GA [12], Patchwork GA [13], [14], Terrain-Based GA [15], 

and religion-Based GA [16]. 

 

3.1.  Cellular GAs (CGA) 

A diffusion model of a two-dimensional grid in which each individual interacts with another by its 

direct neighbour [17], [11]. The Genetic Algorithm is designed as a probabilistic cellular automation in this 

type of GAs. These individuals will be distributed on a graph which is connected together, having a 

neighborhood of some genetic operator to work with. This type of GAs is designed as a probabilistic cellular. 

A self-organizing schedule is added to reproduce an operator [18]. The individual which can interact with its 

immediate neighbors can only be held in the cell. 

 

3.2.  Terrain-based GA (TBGA) 

In a comparison between the Terrain-based GA (TBGA) and the Cellular GA (CGA), the first shows 

a more self-tuning model in which many combination parameter values will be located in different physical 

locations and better performance with less parameter tuning than the second [15]. At every generation each 

individual should be processed, and the mating will be selected from the best of four strings, located above, 

below, left, right. 

 

3.3.  Patchwork Model 

Krink [13] introduced this model which consists of several ideas merged together from cellular 

evolutionary algorithms, island models, and traditional evolutionary algorithms. Here the grid is a two 

dimensional grid of fields, each field can have a fixed number of individuals. The patchwork model is 

considered a self-organized, spatial population structure [19]. In a GA population, in order to allow self-

adaptation, patchwork model is used as a base. It contains a grid world and some interesting agents. In 

modelling biological systems the patchwork model is considered as a general approach. 

 

3.4.  Island Models 

Island models are considered a family of more advanced models of evolutionary algorithms (EAs) 

[20]. These models where developed in order to solve more complex problems which are increasing rapidly. 

Here the individuals are divided into sections. We call each section a subpopulation which is referred to as an 

island. These island models are able to solve problems in a better performance than standard models [18]. 

There is a specific relation between islands through some exchange of some individuals between islands. 

This process is called migration; this is what island models are famous of, and without these migrations, each 

island is considered as a set of separate run. Therefore migration is very important [20], [22]. 
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3.5.  Religion-Based EA Model (RBEA) 

This model has a religious concept introduced by Rene Thomsen et al. The Religion-Based EA 

Model (RBEA) attracts new believers to a religion which puts more control than other models such as 

cellular EA and the patchwork models [16]. 

 

3.6.  Human Community Based Genetic Algorithm (HCBGA) 

The process of mating in a human community is normally conducted through marriage. Marriages in 

most communities allow an eligible male and female to form a family. As such, HCBGA has marriage as the 

new enhancement besides gender segregation and balanced population from the previous enhancements. 

Social constraints applied to this new approach were affective. Figure 1 shows the model of the human 

community based Genetic Algorithm (HCBGA) [6]. 

 

 

 
 

Figure 1. The Total Average of 10 runs each 

between SGA & improved HCBGA with Seven 

 
 

Figure 2. The Total Average of Best fits of 10 runs 

each between SGA & Improved HCBGA with 

seven cities 

 

 

3.7.  Chromosome Representation in the Improved HCBGA 

According to the Human Community Based Genetic Algorithm (HCBGA) [6], which is based on 

nature and social selection, authors improve the HCBGA. This is done by using the under-age as constraints 

on proposing marriages between males and females as in the real human community life. As such, an 

attribute is given to each individual in the population specifying its sex whether male or female. In addition, 

being in the same society- as the population is divided into subgroups or islands- is a dependable constraint 

for recombination. The problem of age is considered also by adding an attribute for the age. The age attribute 

takes three values: youth, parent, and grandparent. In addition, a new restriction of age is added, as such any 

individual less than 15 is not eligible to be selected. This chromosome representation (the presence of father 

and mother pointers) will keep all family relations which divides the subgroups into a Directed Acyclic 

Graph (DAG). All the standard operations in the GA will be changed in order to add restrictions on each 

operation including: Social constraints such as the Male/Female 'operator' and under-age restrictions will be 

added in the selection part which will restrict choosing two different couples. In addition the Birth operator 

which is generating a new population, and the Death operator which will discard the worse individuals. 

 

3.8.  The (HCBGA) Method 

Initially, the first individual is selected randomly from the population according to its grownup age- 

this will be the first parent. In addition to the first parent’s type (whether a male or a female), the normal age 

of marriage should be satisfied, accordingly, the second parent will be chosen such that it is the opposite type 

of the first parent in addition to its restricted grownup age. This process is repeated for a number of 

individuals creating the initial population. Next comes the stages of selection and crossover, bringing up two 

new children or offspring’s. Repeating this for a number of couples a second population will be generated. 

Again, the previous process is repeated until the maximum number of generations is reached. (The next main 

important thing is that the two individuals must not share the same parents). 

 

 

4. RESULTS AND DISCUSSION 

In this research we have used the Traveling salesman Problem (TSP) to test the improved Human 

Community Based Genetic Algorithm (HCBGA) of [6]. We also used it as a test on the Simple Standard 

Genetic Algorithm (SGA) in order to compare between both algorithms. 
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A population size of 350 with seven cities and a randomly selected one-point crossover are used in a 

process that is both standard and simple [39]. A random integer (crossover point) and a crossover rate of 5% 

are chosen according to the maximum length of the chromosome in the model. This is the place in the 

chromosome at which, with probability, the crossover will occur. If the crossover does occur, then the bits up 

to the random integer of the two chromosomes are swapped. The mutation of a solution is a random change 

to a gene value [39], [40]. After several experiments of different mutation rates, the most suitable mutation 

rate is 0.04. The selection method used is the roulette wheel. The number of generations is 100. The 

implementation part was programmed in C# (C Sharp) Language Version (5.0) on a Pentium 4, HP-Compaq 

laptop. 

By applying the Traveling Salesman Problem (TSP) on both the Simple Standard Genetic Algorithm 

(SGA) and on the improved Human Community Based Genetic Algorithm (HCBGA) [6] we can compare the 

performance of both algorithms. The following comparisons below will show that the constraints put on the 

improved new Human Community Based Genetic Algorithm (HCBGA) gave better performance to SBGA 

than the Simple Standard Genetic Algorithm (SGA) which depends mainly on its randomness in finding the 

best fit solution. It is shown that in the improved Human Community Based Genetic Algorithm (HCBGA) 

the average converge toward the optimal solution better than the Simple Standard Genetic Algorithm (SGA), 

and the best fit values in the improved Human Community Based Genetic Algorithm (HCBGA) also show 

better findings of best fit values in a comparison to the basic Simple Standard Genetic. 

In the following Figures we can see the comparative results of applying the Traveling Salesman 

Problem (TSP) on both the Simple Standard Genetic Algorithm (SGA) and the improved Human Community 

Based Genetic Algorithm (HCBGA). Figures 1 and 2 show that the average of the improved Human 

Community Based Genetic Algorithm (HCBGA) has a better performance than the Standard Genetic 

Algorithm (SGA) towards the minimum. In addition, they show a better finding of best fit solutions for the 

improved Human Community Based Genetic Algorithm (HCBGA) than the Standard Genetic 

Algorithm (SGA). 

 

 

5. CONCLUSION 

The Traveling Salesman Problem is used as a test function to compare results of both the Simple 

Standard Genetic Algorithm (SGA) and an improved approach for structured population of GA called the 

Human Community Based Genetic Algorithm (HCBGA) [6]. The evaluation concluded based on the analysis 

results that the improved Human Community Based Genetic Algorithm (HCBGA) is better in terms of best 

finding as shown in our given results than the Simple Standard Genetic Algorithm (SGA). The Average of 

the improved Human Community Based Genetic Algorithm (HCBGA) is trying to converge towards the 

minimum despite its restricted constraints to the best values. In addition, the findings of the best solutions of 

best fit values are in a better condition in the improved Human Community Based Genetic Algorithm 

(HCBGA) than in the Simple Standard Genetic Algorithm (SGA). 

 

 

ACKNOWLEDGEMENTS 

The authors would like to thank AL-Zaytoonah Private University for its support of this study. 

 

 

REFERENCES 
[1] Beasley, D., Bull, D. R., Martin, R. R., 1993, An Overview of Genetic Algorithms: Part1, Research Topics. 

University Computing 15 (2): 58-69. 

[2] Holland, H. J., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to 

Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA, USA. 

[3] Zheng, Y., Kiyooka, S., 1999, Genetic Algorithm Applications. 

www.me.uvic.ca/~zdong/courses/mech620/GA_App.PDF 

[4] www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html 

[5] Liao, Y., Sun, C.T., 2001, An Educational Genetic Algorithms Learning Tool © IEEE. 

[6] AL-Madi, A. N., 2014, De Jong’s Sphere Model Test for a Human Community Based Genetic Algorithm Model 

(HCBGA). (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 5, No. 1. 

[7] Dalton, J., 2007, Genetic Algorithms. Newcastle Engineering DesignCentre, http://www.edc.ncl.ac.uk. 

[8] Bagheri, E., Deldari, H., 2006, Dejong Function Optimization by means of a Parallel Approach to Fuzzified 

Genetic Algorithm. Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06) 

0-7695-2588-1/06 $20.00 © IEEE 

[9] Back, T., [Online, accessed 2008], Evolutionary Algorithms in theory and practice Evolution Strategies, 

Evolutionary Programming, Genetic Algorithms. 

http://www.edc.ncl.ac.uk/people/profile.php?name=dalton


                ISSN: 2252-8938 

IJ-AI  Vol. 7, No. 2,  June 2018 :  78 – 82 

82 

[10] Lamom, A., Thepchatri, T., Rivepiboon, W., 2008, Heuristic Algorithm in Optimal Discrete Structural Designs. 

American Journal of Applied Sciences 5 (8): 943-951. 

[11] Gorges-Schleuter, M., 1989, ASPARAGOS an asynchronous parallel genetic optimization strategy. In J. D. 

Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, pp. 422–427. 

[12] Back, T., Fogel, D. B., Michalewicz, Z., 1997, Et Al., Eds. Handbook on Evolutionary Computation. IOP 

Publishing Ltd and Oxford University Press. 

[13] Krink, T., Mayoh, B. H., Michalewicz, Z. 1999, A Patchwork model for evolutionary algorithms with structured 

and variable size populations. In Proceedings of the Genetic and Evolutionary Computation Conference, 2: 1321-

1328. 

[14] Krink, T., Ursem, R. K., 2000, Parameter control using the agent based patchwork model. In Proceedings of the 

Second Congress on Evolutionary Computation (CEC-2000), 77-83. 

[15] Gorden, V. S., Pirie, R., Wachter, A., Sharp, S., 1999, Terrain-based genetic algorithm (TBGA): Modeling 

parameter space as terrain. In Proceedings of the Genetic and Evolutionary Computation Conference, 1: 299- 235. 

[16] Thomsen, R., Rickers, P., Krink, T., 2000, A Religion-Based Spatial Model for Evolutionary Algorithms. Parallel 

Problem Solving from Nature - PPSN VI. Springer-Verlag. 817-826. 

[17] Whitley, D., 1993, Cellular genetic algorithms. In Proceeding of the Fifth International Conference on Genetic 

Algorithms, Forrest S. (ed.). Morgan Kaufmann 658. 

[18] Alba, E., Giacobini, M., Tomassini, M., 2002, Comparing Synchronous and Asynchronous Cellular Genetic 

Algorithms. In J. J. Merelo et al., editor, Parallel Problem Solving from Nature – PPSN V11, Springer-Verlag, 

Heidelberg. 2439: 601-610. 

[19] Ursem, R. K., 1999, Multinational evolutionary algorithms. In Proceedings of the Congress of Evolutionary 

Computation, 3: 1633-1640. 

[20] Zbigniew S., De Jong, K., 2005, The influence of migration sizes and intervals on island models. In Proceedings of 

Genetic and Evolutionary Computation Conference – GECCO-. ACM Press. 1295-1302. 

[21] Belal, M. A., Khalifa, I. H., 2002, A Comparative Study between Swarm Intelligence and Genetic Algorithms. 

Egyptian Computer Science Journal, 24 (1). 

[22] Babbar M., Minsker, B., Goldberg, D. E., 2002, A Multiscale Island Injection Genetic Algorithm for Optimal 

Groundwater Remediation Design. In: 2002 Water Resources Planning & Management Conference, Roanoke, VA. 

American Society of Civil Engineers (ASCE) Environmental & Water Resources Institute (EWRI). 

[23] Wei, J., D. T. Lee, 2004, A New Approach to the Travelling Salesman Problem Using Genetic Algorithms with 

Priority Encoding. IEEE. 

[24] Nguyen, H. D. I. Yoshihara, K. Yamamori, M. Yasunaga, 2007, Implementation of an Effective Hybrid GA for 

Large-Scale Traveling Salesman Problems. IEEE Transactions on systems, MAN, and Cybernetics-Part B: 

CYBERNETICS, 37 (1). 

[25] Xuan, W. Y. Li, 2005, Solving Traveling Salesman Problem by Using A Local Evolutionary Algorithm. IEEE. 

[26] Lee, Z. J. 2004, A Hybrid Algorithm Applied to Traveling Salesman Problem. Proceedings of the 2004 IEEE 

International Conference on Networking, Sensing & Control. 

[27] Yang, R., 1997, Solving Large Traveling Salesman Problems with small Populations. Genetic Algorithms in 

Engineering Systems: Innovations and Applications, Conference Publication No. 446, IEE. 

[28] Smith, K. 1996, An Argument for Abandoning the Traveling Salesman Problem as a Neural- Network Benchmark. 

IEEE Transactions on Neural Networks, 7 (6). 

[29] Pullan, W. 2003, Adapting the Genetic Algorithm to the Traveling Salesman Problem. IEEE. 

[30] Jung, S., Moon, B. R., 2002, Toward Minimal Restriction of Genetic Encoding and Crossovers for the Two-

Dimensional Euclidean TSP. IEEE Transactions on Evolutionary Computation, 6 (6). 

[31] White, C. M., Yen, G., 2004, A Hybrid Evolutionary Algorithm for Traveling Salesman Problem, IEEE. 

[32] Budinich, M., 1996, A Self-Organizing Neural Network for the Traveling Salesman Problem That Is Competitive 

with Simulated Annealing. Neural Computing 8, 416-424. 

[33] Liu, G. Y. He, Y. Fang, Y. Oiu, 2003, A Novel Adaptive Search Strategy of Intensification and Diversification in 

Tabu Search. In: Proceedings of the IEEE International Conference on Neural Networks and Signal Processing- 

ICNNSP’03, IEEE 1. 428-431. 

[34] Bianchi, L., Knowles, J., Bowler, J., 2005, Local Search for the Probabilistic Traveling Salesman Problem: 

Correction to the 2-P-Opt and 1-shift Algorithms. European Journal of Operational Research 162(1) 206-219. 

[35] Leung, S. K., Jin, D. H., Xu, B. Z., 2004, An Expanding Self-Organizing Neural Network for the Traveling 

Salesman Problem. Neurocomputing 62. 267-292. 

[36] Reinelt, G., 1994, The Travelling Salesman: Computational Solutions for TSP Applications. Lecture Notes in 

Computer Science, 840, Springer-Verlag. 

[37] Laarhoven, P. V., Aarts, L. E. H., 1987, Simulated Annealing: Theory and Applications. Kluwer academic 

Publishers. 

[38] Fiechter, L. 1994, A Parallel Tabu Search Algorithm for Large Travelling Salesman Problems. Discrete Applied 

Mathematics and Combinatorial Operations Research and Computer Science, 51. 

[39] Prebys, E. K., 2007, The Genetic Algorithm in Computer Science. MIT Undergraduate Journal of Mathematics, 

ee.sharif.ir/~poshtkoohi, [Online, accessed 2007]. 

[40] www.geocities.com, [Online, accessed 2007], A Genetic Knapsack Problem Solve. 

[41] Godefroid, P., Khurshid, S., 2002, Exploring Very Large State Spaces Using Genetic Algorithms. J.-P. Katoen and 

P. Stevens (Eds.): TACAS, LNCS 2280, pp. 266-280. 

http://www.geocities.com/

