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 In this paper, we propose a robust highly selective nonlinear channel 
estimator for Multiple -Input Multiple-Output (MIMO) Orthogonal 
Frequency Division Multiplexing (OFDM) system using complex Support 
Vector Machines Regression (SVR) and applied to Long Term Evolution 
(LTE) downlink under high mobility conditions .The new method uses the 
information provided by the pilot signals to estimate the total frequency 
response of the channel in two phases: learning phase and estimation phase. 
The estimation algorithm makes use of the reference signals to estimate the 
total frequency response of the highly selective multipath channel in the 
presence of non-Gaussian impulse noise interfering with pilot signals. Thus, 
the algorithm maps trained data into a high dimensional feature space and 
uses the Structural Risk Minimization (SRM) principle to carry out the 
regression estimation for the frequency response function of the highly 
selective channel. The simulations show the effectiveness of the proposed 
method which has good performance and high precision to track the 
variations of the fading channels compared to the conventional LS method 
and it is robust under high mobility conditions.  
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1. INTRODUCTION  

The multiple input multiple output (MIMO) method represents an efficient technique to increase 
data transmission rate without increasing bandwidth since different data streams are transmitted from each 
transmit antenna. 
In addition, Orthogonal Frequency Division Multiplexing (OFDM) has been effectively used for transmitting 
high speed data in frequency selective time varying multipath fading channel environments. 
The combination of OFDM and MIMO techniques in the same system increases spectral efficiency and 
improves link reliability without additional transmit power or bandwidth. By implementing the OFDMA 
access technique in LTE Downlink system, new approaches for time and frequency synchronization, 
equalisation and channel estimation are needed.  

Indeed, the estimated channel frequency response is used to separate the mixed signals received from 
multiple antennas. An essential aspect is the fact that the performance of the MIMO-OFDM receivers is 
highly depending on the accuracy of the channel estimator. Thus, as solution to this problem, we are 
proposing a novel channel tracking technique that relies on a data-aided channel predictor using the the 
Support Vector Machines Regressor (SVR). 
 
Thus, a proposed SVM robust version for nonlinear channel estimation in MIMO systems with the presence 
of non-Gaussian impulse noise that is specifically adapted to pilot-aided OFDM structure is presented. In 
fact, impulses of short duration are unpredictable and contain spectral components on all subchannels which 
impact the decision of the transmitted symbols on all subcarriers. 

The channel estimation algorithm is based on the nonlinear complex support vector machines regression 
method in order to improve communication efficiency and quality of OFDM systems. The principle of the 
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proposed nonlinear SVR algorithm is to exploit the information provided by the reference signal to estimate 
the channel frequency response. In highly selective multipath fading channel, where complicated 
nonlinearities can be present, the estimation precision can be lowed by using linear methods. So, we adapt the 
nonlinear SVR algorithm which transforms the nonlinear estimation in low dimensional space into the linear 
estimation in high dimensional space, so it improves the estimation precision.  

In this paper, the proposed nonlinear complex SVR technique is applied to LTE downlink highly selective 
channel using pilot symbols. For the purpose of comparison with conventional LS algorithm, we develop the 
nonlinear SVR algorithm in terms of the RBF kernel. Simulation section illustrates the advantage of this 
algorithm over LS algorithm in high mobility environment. The nonlinear complex SVR method shows good 
results under high mobility conditions due to its improved generalization ability. 

The remainder of this paper is organized as follows. Section 2 briefly introduces the OFDM system model. 
Then, multipath channel model is presented in section 3. Section 4 describes the MIMO-OFDM system. We 
develop the formulation of the proposed nonlinear complex SVR channel estimation method in section 5. 
Section 6 presents the simulation results in SISO-OFDM and MIMO-OFDM cases respectively. Finally, in 
section 7, concludes the paper. 

 
2.  OFDM SYSTEM MODEL 

The OFDM system model consists firstly of mapping binary data streams into complex symbols by 
means of QAM modulation. Then data are transmitted in frames by means of serial-to-parallel conversion. 
Some pilot symbols are inserted into each data frame which is modulated to subcarriers through IDFT. These 
pilot symbols are inserted for channel estimation purposes. The IDFT is used to transform the data sequence 
𝑋(𝑘) into time domain signal as follow:   

                                   𝑥(𝑛) = 𝐼𝐷𝐹𝑇𝑁{𝑋(𝑘)} = �𝑋(𝑘)
𝑁−1

𝑘=0

𝑒𝑗
2𝜋
𝑁 𝑘𝑛,                𝑛 = 0,⋯ ,𝑁 − 1                                  (1) 

One guard interval is inserted between every two OFDM symbols in order to eliminate inter-symbol 
interference (ISI). This guard time includes the cyclically extended part of the OFDM symbol in order to 
preserve orthogonality and eliminate inter-carrier interference (ICI). It is well known that if the channel 
impulse response has a maximum of 𝐿 resolvable paths, then the GI must be at least equal to 𝐿 [1].  

Thus, for the OFDM system comprising 𝑁 subcarriers which occupy a bandwidth 𝐵, each OFDM symbol is 
transmitted in time 𝑇 and includes a cyclic prefix of duration 𝑇𝑐𝑝. Therefore, the duration of each OFDM 
symbol is 𝑇𝑢 = 𝑇 − 𝑇𝑐𝑝. Every two adjacent subcarriers are spaced by 𝛿𝑓 = 1/𝑇𝑢. The output signal of the 
OFDM system is converted into serial signal by parallel to serial converter. A complex white Gaussian noise 
process 𝑁 (0,𝜎𝑤2) with power spectral density 𝑁0/2  is added through a frequency selective time varying 
multipath fading channel. 

In a practical environment, impulse noise can be present, and then the channel becomes nonlinear with non 
Gaussian impulse noise. The impulse noise can significantly influence the performance of the OFDM 
communication system for many reasons. First, the  time  of  the  arrival  of  an  impulse  is unpredictable  
and  shapes  of  the  impulses  are  not  known  and  they vary considerably. Moreover, impulses  usually  
have  very  high  amplitude,  and thus high  energy, which  can be much  greater  than the energy of the 
useful  signal [2]. 

The impulse noise is modeled as a Bernoulli-Gaussian process and it was generated with the Bernoulli-
Gaussian process function 𝑖(𝑛) = 𝑣(𝑛)𝜆(𝑛) where 𝑣(𝑛) is a random process with Gaussian distribution and 
power 𝜎𝐵𝐺2 , and where 𝜆(𝑛) is a random process with probability [3] 

                                                              𝑃𝑟( 𝜆 (𝑛) ) = �𝑝               𝜆 = 1
1 − 𝑝,      𝜆 = 0.                                                                          (2)                                              

At the receiver, and after removing guard time, the discrete-time baseband OFDM signal for the system 
including impulse noise is 

                                    𝑦(𝑛) =  �𝑋(𝑘)𝐻(𝑘)𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑘=0

+ 𝑤(𝑛) + 𝑖(𝑛),            𝑛 = 0,⋯ ,𝑁 − 1                             (3) 
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where 𝑦(𝑛) are time domain samples and 𝐻(𝑘) = 𝐷𝐹𝑇𝑁{ℎ(𝑛)}   is the channel's frequency response at 
the 𝑘𝑡ℎ frequency. The sum of both terms of the AWGN noise and impulse noise constitute the total noise 
given by 𝑧(𝑛) = 𝑤(𝑛) + 𝑖(𝑛). 

Let Ω𝑃  the subset of 𝑁𝑃 pilot subcarriers and Δ𝑃 the pilot interval in frequency domain. Over this subset, 
channel's frequency response can be estimated, and then interpolated over other subcarriers (𝑁 − 𝑁𝑃). These 
remaining subchannels are interpolated by the nonlinear complex SVR algorithm. The OFDM system can be 
expressed as 

                                    𝑦(𝑛) = 𝑦𝑃(𝑛) + 𝑦𝐷(𝑛) + 𝑧(𝑛)                                 

                                              = � 𝑋𝑃(𝑘)𝐻(𝑘)𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑘∈{Ω𝑃}

+ � 𝑋𝐷(𝑘)𝐻(𝑘)𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑘∉{Ω𝑃}

   + 𝑧(𝑛)                            (4) 

where 𝑋𝑃(𝑘) and 𝑋𝐷(𝑘) are complex pilot and data symbol respectively, transmitted at the 𝑘𝑡ℎ subcarrier.  
Note that, pilot insertion in the subcarriers of every OFDM symbol must satisfy the demand of the sampling 
theory and uniform distribution [4].  

After DFT transformation,  𝑦(𝑛) becomes 

                              𝑌(𝑘) = 𝐷𝐹𝑇𝑁{𝑦(𝑛)}  =
1
𝑁
� 𝑦(𝑛)
𝑁−1

𝑛=0

𝑒−𝑗
2𝜋
𝑁 𝑘𝑛,                  𝑘 = 0,⋯ ,𝑁 − 1                                (5) 

Assuming that ISI are eliminated, therefor 

      𝑌(𝑘) = 𝑋(𝑘)𝐻(𝑘) + 𝑊(𝑘) + 𝐼(𝑘) = 𝑋(𝑘)𝐻(𝑘) + 𝑒(𝑘),                    𝑘 = 0,⋯ ,𝑁 − 1                                (6) 

where  𝑒(𝑘) represents the sum of the AWGN noise  𝑊(𝑘) and impulse noise  𝐼(𝑘) in the frequency domain, 
respectively. 

Equation (6) may be presented in matrix notation 

                                                     𝑌 = 𝑿𝑭ℎ + 𝑊 + 𝐼 = 𝑿𝐻 + 𝑒                                                                                     (7) 

where   

𝑿 =  𝑑𝑖𝑎𝑔�𝑋(0),𝑋(1),⋯ ,𝑋(𝑁 − 1)� 

𝑌 =  [𝑌(0),⋯ ,𝑌(𝑁 − 1)]𝑇                    

 𝑊 =  [𝑊(0),⋯ ,𝑊(𝑁 − 1)]𝑇                   

  𝐼 =  [𝐼(0),⋯ , 𝐼(𝑁 − 1)]𝑇                       

 𝐻 =  [𝐻(0),⋯ ,𝐻(𝑁 − 1)]𝑇                    

       𝑒 =  [𝑒(0),⋯ , 𝑒(𝑁 − 1)]𝑇                           

                                                                  𝑭 = �
𝑊𝑁

00 ⋯ 𝑊𝑁
0(𝑁−1)

⋮ ⋱ ⋮
𝑊𝑁

(𝑁−1)0 ⋯ 𝑊𝑁
(𝑁−1)(𝑁−1)

�                                                      

and                     𝑊𝑁
𝑖,𝑘 = � 1

√𝑁
� 𝑒𝑥𝑝−𝑗2𝜋�

𝑖𝑘
𝑁�.                                                                                                                       (8)  

 

3. MULTIPATH CHANNEL MODEL 
We consider the channel impulse response of the frequency-selective fading channel model which 

can be written a 

                                                           ℎ(𝜏, 𝑡) = �ℎ𝑙(𝑡) 𝛿(𝑡 − 𝜏𝑙)
𝐿−1

𝑙=0

                                                                                (9) 

where ℎ𝑙(𝑡) is the impulse response representing the complex attenuation of the 𝑙𝑡ℎ path,  𝜏𝑙  is the random 
delay of the 𝑙𝑡ℎ path and  𝐿 is the number of  multipath replicas. The specification parameters of an extended 
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vehicular A model (EVA) for downlink LTE system with the excess tap delay and the relative power for each 
path of the channel are shown in table 1. These parameters are defined by 3GPP standard [5]. 

Table 1. Extended Vehicular A model (EVA) [5]. 
 

Excess tap 
delay [ns] 

Relative 
power [dB] 

0 0.0 

30 -1.5 

150 

310 

370 

710 

1090 

1730 

2510 

-1.4 

-3.6 

-0.6 

-9.1 

-7.0 

-12.0 

-16.9 

         

4. MIMO-OFDM SYSTEM  
Figure 1 shows a MIMO-OFDM system model corresponding to Alamouti STBC scheme with two 

transmit and two receive antennas. The modulation block is used to modulate the original binary symbol 
using the complex constellation. MIMO encoders are needed to increase the spatial diversity since multiple 
antennas are used at the transmitter and receiver. MIMO systems can be implemented in different ways to 
obtain either a capacity gain or a diversity gain to combat signal fading. 
The OFDM modulation method consists of transmitting a block of data symbols in parallel on channel 
subcarriers. An OFDM modulator can be easily and powerfully implemented using the Inverse Discrete 
Fourier Transform (IDFT) on a block of data symbols. Each block of IDFT coefficients is preceded by a 
cyclic prefix (CP) with length equal at least to the channel delay spread to prevent inter-symbol interference 
(ISI). Usually, a pilot sequence insertion is used in the channel estimator to predict a channel frequency 
response at the receiver side to equalize for the channel impairments and thus to estimate the transmitted 
signal. 
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Figure 1. MIMO-OFDM System model 
5. SUPPORT VECTOR MACHINES REGRESSION ESTIMATOR 

Let the OFDM frame contains 𝑁𝑠 OFDM symbols which every symbol includes 𝑁  subcarriers. The 
transmitting pilot symbols are  𝑿𝑃 = 𝑑𝑖𝑎𝑔(𝑋  (𝑠,𝑚 ∆𝑃)),𝑚 = 0,1,⋯ ,𝑁𝑃 − 1, where  𝑠 and  𝑚  are labels in 
time domain and frequency domain respectively, and ∆𝑃 is the pilot interval in frequency domain. Pilot 
insertion in the subcarriers of every OFDM symbol must satisfy the demand of sampling theory and uniform 
distribution [5].  

The proposed channel estimation technique is based on nonlinear complex SVR algorithm which 
has two separate phases: learning phase and estimation phase. In learning phase, we estimate first the 
subchannels pilot symbols according to LS criterion to strike  𝑚𝑖𝑛  [(𝑌𝑃 − 𝑿𝑃𝑭ℎ) (𝑌𝑃 − 𝑿𝑃𝑭ℎ)𝐻] [9], as 

 
                                                                                     𝐻�𝑃 = 𝑿𝑃  

−1 𝑌𝑃                                                                              (15) 
 

where 𝑌𝑃 = 𝑌  (𝑠,𝑚 ∆𝑃) and 𝐻�𝑃 = 𝐻� (𝑠,𝑚 ∆𝑃) are the received pilot symbols and the estimated frequency 
responses for the 𝑠𝑡ℎ OFDM symbol at pilot positions 𝑚 ∆𝑃 , respectively. 

Then, in the estimation phase and by the interpolation mechanism, frequency responses of data 
subchannels can be determined. Therefore, frequency responses of all the OFDM subcarriers are 

 
                                                                              𝐻� (𝑠, 𝑞 ) = 𝑓 �𝐻�𝑃(𝑠,𝑚 ∆𝑃)�                                                            (16) 

 
where 𝑞 = 0,⋯ ,𝑁 − 1, and 𝑓(∙) is the interpolating function, which is determined by the nonlinear complex 
SVR approach. 

 
Linear approaches cannot achieve high estimation precision in high mobility environments where 

the fading channels present very complicated nonlinearities. Therefore, we adapt here a nonlinear complex 
SVR method since SVM is superior in solving nonlinear, small samples and high dimensional pattern 
recognition [5]. Thus, we map the input vectors to a higher dimensional feature space ℋ (possibly infinity) 
by means of nonlinear transformation 𝝋(∙). So, the regularization term is referred to the regression vector in 
the RKHS. The following regression function is then 

 
                                                          𝐻�(𝑚 ∆𝑃) = 𝒘𝑻𝝋(𝑚 ∆𝑃) + 𝑏 + 𝑒𝑚,        𝑚 = 0,⋯ ,𝑁𝑃 − 1                        (17) 

 
where 𝒘 is the weight vector, 𝑏 is the bias term well and residuals {𝑒𝑚} account for the effect of both 
approximation errors and noise. In the SVM framework, the optimality criterion is a regularized and 
constrained version of the regularized Least Squares criterion. In general, SVM algorithms minimize a 
regularized cost function of the residuals, usually the Vapnik’s 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 cost function [4].  

To improve the performance of the estimation algorithm, a robust cost function is introduced which 
is 𝜀 -Huber robust cost function [10], given by  

                                 ℒ 
𝜀(𝑒𝑚) =

⎩
⎪
⎨

⎪
⎧

0,                                          |𝑒𝑚| ≤ 𝜀           
1

2𝛾
(|𝑒𝑚| − 𝜀)2,                  𝜀 ≤ |𝑒𝑚| ≤ 𝑒𝐶 

𝐶(|𝑒𝑚| − 𝜀) −
1
2
𝛾𝐶2,      𝑒𝐶 ≤ |𝑒𝑚|        

                                                            (18) 

 
where 𝑒𝐶 = 𝜀 + 𝛾𝐶, 𝜀 is the insensitive parameter which is positive scalar that represents the 

insensitivity to a low noise level, parameters 𝛾 and 𝐶 control essentially the trade-off between the 
regularization and the losses, and  represent the relevance of the residuals that are in the linear or in the 
quadratic cost zone, respectively. The cost function is linear for errors above 𝑒𝐶, and quadratic for errors 
between 𝜀 and 𝑒𝐶. Note that, errors lower than 𝜀 are ignored in the 𝜀 − 𝑖𝑛𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑒  zone. The quadratic 
cost zone uses the  𝐿2 − 𝑛𝑜𝑟𝑚  of errors, which is appropriate for Gaussian noise, and the linear cost zone 
limits the effect of sub-Gaussian noise [1]. Therefore, the 𝜀 -Huber robust cost function can be adapted to 
different types of noise.  

 
Let  ℒ 

𝜀(𝑒𝑚) = ℒ 
𝜀�ℛ(𝑒𝑚)� + ℒ 

𝜀�ℑ(𝑒𝑚)� since {𝑒𝑚}  are complex, where  ℛ(∙)  and 
 ℑ(∙)  represent real and imaginary parts, respectively.  Now, we can state the primal problem as  
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   𝑚𝑖𝑛  
1
2

 ‖𝒘‖2 +
1

2𝛾
 � (𝜉𝑚 + 𝜉𝑚∗ )2

 

𝑚∈𝐼1

+ 𝐶 � (𝜉𝑚 + 𝜉𝑚∗ ) 
 

𝑚∈𝐼2

+
1

2𝛾
 � (𝜁𝑚 + 𝜁𝑚∗ )2

 

𝑚∈𝐼3

 + 𝐶 � (𝜁𝑚 + 𝜁𝑚∗ )
 

𝑚∈𝐼4

  

−
1
2

� 𝛾𝐶2
 

𝑚∈𝐼2,𝐼4

                                                                                                                                                                  (19) 

 
constrained to 
 

          ℛ�𝐻�(𝑚 ∆𝑃) −𝒘𝑻𝝋(𝑚 ∆𝑃) − 𝑏� ≤ 𝜀 + 𝜉𝑚                               
 

          ℑ�𝐻�(𝑚 ∆𝑃) −𝒘𝑻𝝋(𝑚 ∆𝑃) − 𝑏� ≤ 𝜀 + 𝜁𝑚                                
 

             ℛ(−𝐻�(𝑚 ∆𝑃) + 𝒘𝑻𝝋(𝑚 ∆𝑃) + 𝑏) ≤ 𝜀 + 𝜉𝑚∗                                
 

             ℑ(−𝐻�(𝑚 ∆𝑃) + 𝒘𝑻𝝋(𝑚 ∆𝑃) + 𝑏) ≤ 𝜀 + 𝜁𝑚∗                                
 

                                                                   𝜉𝑚
(∗), 𝜁𝑚

(∗) ≥ 0                                                                                                   (20)  
 
for  𝑚 = 0,⋯ ,𝑁𝑃 − 1, where 𝜉𝑚 and 𝜉𝑚∗  are slack variables which stand for positive and negative 

errors in the real part, respectively. 𝜁𝑚 and 𝜁𝑚∗   are the errors for the imaginary parts.  
𝐼1, 𝐼2, 𝐼3 and 𝐼4 are the set of samples for which: 
𝐼1 ∶  real part of the residuals are in the quadratic zone; 
𝐼2 ∶  real part of the residuals are in the linear zone; 
𝐼3 ∶  imaginary part of the residuals are in the quadratic zone; 
𝐼4 ∶  imaginary part of the residuals are in the linear zone. 
 
To transform the minimization of the primal functional (19) subject to constraints in (20), into the 

optimization of the dual functional, we must first introduce the constraints into the primal functional.  
Then, by making zero the primal-dual functional gradient with respect to 𝜛𝑖, we obtain an optimal 

solution for the weights  
 

                                               𝒘 = � 𝜓𝑚

𝑁𝑃−1

𝑚=0

𝝋(𝑚 ∆𝑃) = � 𝜓𝑚

𝑁𝑃−1

𝑚=0

𝝋(𝑃𝑚)                                                                 (21) 

 
where  𝜓𝑚 = (𝛼ℛ,𝑚 − 𝛼ℛ,𝑚

∗ ) + 𝑗(𝛼𝐼,𝑚 − 𝛼𝐼,𝑚
∗ ) with  𝛼ℛ,𝑚,𝛼ℛ,𝑚

∗ ,𝛼𝐼,𝑚,𝛼𝐼,𝑚
∗  are the Lagrange 

multipliers (or dual variables) for real and imaginary part of the residuals and  𝑃𝑚 = (𝑚 ∆𝑃),  𝑚 =
0,⋯ ,𝑁𝑃 − 1  are the pilot positions. 

 
Let the Gram matrix defined by 
  

                                                      𝑮(𝑢, 𝑣) =< 𝝋(𝑃𝑢),𝝋(𝑃𝑣) >= 𝐾(𝑃𝑢 ,𝑃𝑣)                                                              (22) 
 
where 𝐾(𝑃𝑢,𝑃𝑣) is a Mercer’s kernel which represent the RBF kernel matrix which allows obviating 

the explicit knowledge of the nonlinear mapping 𝝋(∙). A compact form of the functional problem can be 
stated in matrix format by placing optimal solution 𝒘 into the primal dual functional and grouping terms. 
Then, the dual problem consists of  

 

                           𝑚𝑎𝑥 −
1
2
𝝍𝐻(𝑮 + 𝛾𝑰)𝝍 + ℛ(𝝍𝑯𝑌𝑃) − (𝜶𝓡 + 𝜶𝓡∗ + 𝜶𝑰 + 𝜶𝑰∗)𝟏ℰ                                          (23) 

 
 
constrained to 
 

                                                           0 ≤ 𝛼ℛ,𝑚,𝛼ℛ,𝑚
∗ ,𝛼𝐼,𝑚 ,𝛼𝐼,𝑚

∗ ≤ 𝐶                                                                          (24) 
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where 𝝍 = [𝜓0,⋯ ,𝜓𝑁𝑃−1]𝑇 ; I and 1 are the identity matrix and the all-ones column vector, respectively; 
𝜶𝓡 is the vector which contains the corresponding dual variables, with the other subsets being similarly 
represented. The weight vector can be obtained by optimizing (23) with respect to 𝛼ℛ,𝑚,𝛼ℛ,𝑚

∗ ,𝛼𝐼,𝑚 ,𝛼𝐼,𝑚
∗  and 

then substituting into (21).  
Therefore, and after learning phase, frequency responses at all subcarriers in each OFDM symbol 

can be obtained by SVR interpolation 
 

                                                                    𝐻�(𝑘) = � 𝜓𝑚

𝑁𝑃−1

𝑚=0

𝐾(𝑃𝑚, 𝑘) + 𝑏                                                                  (25) 

 
for 𝑘 = 1,⋯ ,𝑁. Note that, the obtained subset of dual multipliers which are nonzero will provide 

with a sparse solution. As usual in the SVM framework, the free parameter of the kernel and the free 
parameters of the cost function have to be fixed by some a priori knowledge of the problem, or by using 
some validation set of observations [4]. 

 
 

6. SIMULATION RESULTS 
 

6.1.  SISO CASE 
In order to demonstrate the effectiveness of our proposed technique and evaluate the performance, 

two objective criteria, the signal-to-noise ratio (SNR) and signal-to-impulse ratio (SIR) are used. The SNR 
and SIR are given by [3] 
 

                                  𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 �
𝐸{|𝑦(𝑛) − 𝑤(𝑛) − 𝑖(𝑛)|2}

𝜎𝑤2
�                                                                 (22)   

and 

                                    𝑆𝐼𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 �
𝐸{|𝑦(𝑛) − 𝑤(𝑛) − 𝑖(𝑛)|2}

𝜎𝐵𝐺2
�                                                                 (23)   

Then, we simulate the SISO-OFDM downlink LTE system with parameters presented in table 2. The 
nonlinear complex SVR estimate a number of OFDM symbols in the range of 140 symbols, corresponding to 
one radio frame LTE. Note that, the LTE radio frame duration is 10 ms [9], which is divided into 10 
subframes. Each subframe is further divided into two slots, each of 0.5 ms duration. 

For the purpose of evaluation the performance of the nonlinear complex SVR algorithm under high mobility 
conditions, we consider a scenario for downlink LTE system for a mobile speed equal to 120 Km/h. 
Accordingly, we take into account the impulse noise with  𝑝 = .05  which was added to the reference signals 
with different rates of SIR.  

Figure 2 presents the variations in time and in frequency of the channel frequency response for the 
considered scenario. 

Table 2. Parameters of simulations [9], [10] and [11]. 
 

Parameters Specifications 

Constellation 16-QAM 

Mobile Speed (Km/h) 120 

𝑇𝑠 (µs) 

𝑓𝑐  (GHz) 

𝛿𝑓 (KHz) 

B (MHz) 

Size of DFT/IDFT  

Number of paths 

72 

2.15 

15 

5 

512 

9 
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Figure 3.a shows the performance of the LS and nonlinear complex SVR algorithms as a function of SNR in 
the presence of additive Gaussian noise and impulse noise for SIR = -5 dB with 𝑝 = .05., while figure 3.b 
shows the performance of the LS and nonlinear complex SVR algorithms as a function of SIR for SNR =30 
dB and 𝑝 = .05.  

A poor performance is noticeably exhibited by LS and better performance is observed with nonlinear 
complex SVR.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
An example of the proposed channel tracking and the nonlinear time variant channel frequency response 
simulated at the given multipath channel parametersis presented in figure 4. Blue line is the channel response 
tracked by the the proposed method at a) SNR=30 dB and SIR=-5 dB and b) SNR=30 dB and SIR=-10 dB. 
Fig.4 shows that the nonlinear channel response is well tracked by the proposed method. 
 
 
 
 
 
 
 

Figure 2. Variations in time and in frequency of the channel frequency response for a  
mobile speed at 120 Km/h. 

Figure 3.  a) BER as a function of SNR for SIR=-5 dB with 𝑝 = .05 and b) BER as a function of SIR for 
 SNR=30 dB with 𝑝 = .05 for a mobile speed at 120 Km/h. 

  a)   b) 
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6.1.  MIMO CASE 

LTE MIMO-OFDM Downlink system with parameters shown in table 2 with Alamouti coding is 
simulated. Also, these parameters are based on Downlink LTE system and the number of transmit and 
receive antennas. The performance of the proposed estimator is evaluated with the variation of the number of 
transmit and receive antenna. 
Figure 5.a shows the variations of BER as a function of SNR without and with impulse noise for SIR=-5 and 
-10 dB with 𝑝 = .05 for two transmit antennas (𝑁𝑡 = 2) and one receive antenna (𝑁𝑟 = 1). Figure 5.b 
shows the variations of BER as a function of SIR in the presence of additive Gaussian noise for SNR=10, 20 
and 30 dB with  𝑝 = .05  for two transmit antennas and one receive antenna.  

We can remark that BER decrease and good performances are obtained when SNR and SIR increase.  

Figure 6.a presents the performance of the nonlinear complex SVR estimator for the Alamouti MIMO-
OFDM system with (𝑁𝑡 = 2) and (𝑁𝑟 = 2) as a function of SNR in the presence of impulse noise 
interfering with pilot signals for a mobile speed at 120 Km/h for SIR = -10 and -5 dB with  𝑝 = .05 . In 
addition, figure 6.b shows the performance of the nonlinear complex SVR estimator for the Alamouti 
MIMO-OFDM system with (𝑁𝑡 = 2) and (𝑁𝑟 = 2) as a function of SIR in the presence of additive 
Gaussian noise  for SNR = 10, 20 and 30 dB with  𝑝 = .05 .  

Good performance is realised when the number of transmit and receive antennas increases which increases 
transmit and receive diversity.  

 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

  a)   b) 
Figure 4.  An example of the proposed channel tracking and the nonlinear time variant channel                  
frequency response simulated at a) SNR=30 dB and SIR=-5dB b) SNR=30dB and SIR=10 dB. 

Figure 5.  a) BER as a function of SNR and b) BER as a function of SIR for 
 (𝑁𝑡 = 2)  and (𝑁𝑟 = 1)  with 𝑝 = .05  for a mobile speed at 120 Km/h. 

  a)   b) 



IJ-AI  ISSN: 2252-8938  
 

Title of manuscript is short and clear, implies research results (First Author) 

223 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. CONCLUSION 
 In this paper, a new nonlinear complex SVR based channel estimation technique for a highly 
selective multipath fading downlink MIMO-OFDM LTE system with Alamouti coding under high mobility 
conditions in the presence of non-Gaussian impulse noise interfering with OFDM reference symbols is 
presented. The proposed channel estimation method is based on learning process that uses training sequence 
to estimate the channel variations. Our formulation is based on nonlinear complex SVR specifically 
developed for pilot-based OFDM systems with MIMO architecture. Simulations have confirmed the 
capabilities of the proposed nonlinear complex SVR in the presence of Gaussian and impulse noise 
interfering with the pilot symbols for a high mobile speed when compared to LS standard method. The 
proposal takes into account the temporal-spectral relationship of the OFDM signal combined with the 
Alamouti scheme for highly selective channels. The Gram matrix using RBF kernel lead to a significant 
benefit for tracking channel variations in OFDM systems especially in those scenarios in which impulse 
noise and deep fading are presents. 
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