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 The fact of using the classic descriptors such as Zernike Moment and Gist for 
a large data base has never been a satisfying method for perfect recognition 
rates. In this paper, we came up with a different approach based on the 
combination of the different descriptors already mentioned, it is the result of 
a comparative study of the different descriptors and the different 
combinations (Zernike + Gist, Zernike + PCA, Gist + PCA) in terms of 
recognition rate. Eventually, we have deduced that the combination of 
Zernike moment with Gist descriptors ended up to be the best hybrid 
description. For the recognition process, we opted for support vector machine 
(SVM) and Neural Networks (NN). We illustrate the proposed method on 3D 
objects using a 2D/3D approach based on characteristic views. 
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1. INTRODUCTION  

A central problem in object recognition resides in the complexity of real objects (a complex shape 
representation and a non-uniform color distribution) [1 2 3 4 5]. Without forgetting the impact of changing 
the angle of view .A recognition system is composed of: 
• Extraction of the characteristics. 
• Learning (indexing). 
• Recognition (Research) [6 7].     

The feature extraction is a crucial step in the recognition process. In this paper we tried to verify the 
complementarity of three categories of descriptors and we used the literature to choose the best descriptor of 
each category : 
• For descreptors based on color description, we chose the Gist descriptors 
• For  invariant moments descreptors we vote for Zernike moments  
• For data-analays descriptors we chose the Principal component analysis (PCA) 

We propose a hybrid approach based on the combination of descriptors, including Zernike 
descriptor + Gist, Gist  + PCA and PCA + Zernike.  

To test our approach, we opted for two classifiers well-known for their robustness: Neural Networks 
and Wide Margin Separators (SVM). 
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2. GIST DESCRIPTOR 
GIST descriptor, constructed by (Oliva and Torralba, 2001) [8 9] for a comprehensive description of 

the scene. In its original description (and in the implementation we use), it is close enough to the Gabor filter 
bank. The use of GIST occurs in three stages: 
 Calculation of a descriptor "raw" high-dimensionality of learning some basic  
 Calculation of a PCA on the training set 
 For a new image, the descriptor is calculated gross, and it is projected with the PCA to reduce 

dimensionality. 
The descriptor "gross" is constructed as follows: 
 We move the image in a Gabor filter bank with Nσ  scales Nθ orientations scale we obtain  

N = Nθ × Nσ  pictures 
 Each image is cut to  M × Msub images  
 calculating the energy of each sub-picture; is obtained thus a vector of size M × N 
For color images, it doesso for each channel, the descriptorsize will be3 × M × N . 
 
 
3. THE PRINCIPAL COMPONENT ANALYSIS (PCA) 

PCA is a method of family data analysis and more generally of multivariate statistical [10], which is 
to transform these variables (called "correlated" in statistics) in new variables decorates each other. These 
new variables are called "principal components", or axes. It allows the practitioner to reduce the information 
in a more limited number of components in the original number of variables. 

This is an approach that is both geometric (representation of variables in a new geometric space 
along directions of maximum inertia) and statistics (search for independent axes explaining the most 
variability - variance - data). The algorithm can be summarized as follows: 
 This explode matrix eigenvectors, eigenvalues {pi, ℷi} 
 Center of data 
 To order the eigenvalues in descending order 
 Construct the covariance matrix Σ 
 The subspace of dimension q that best represents the data in the sense of mean square error is generated 

by the matrix: 
 

P = (p1, p2, … , pn−1, pq) 
 
Where {p1, p2, … , pn−1,pq� are the eigenvectors associated to the q largest eigenvalues. 
 All the main components are written in matrix form: 
 

C = XP = (c1, c2, … , cn−1, cq) 
 
 
4. ZERNIKE MOMENTS 

   Zernike moments were introduced by F. Zernike in 1934 [11]. In the field of information processing, 
Zernike moments have been used extensively for their orthogonality property that allows the generation of 
non-redundant descriptors and their invariance properties in translation, rotation and scale. Thus, we find the 
Zernike moments in many works on recognition of images of people [12], image indexing in the database, 
analysis and description of the form of 2D or 3D object. 
The formulation of these moments is given by: 
 

Znm = n+1
π ∬ f(x, y)xy . [Vnm(x, y)]∗ dx dy (1.1) 

 
[…]* is used to indicate the complex conjugate value, here n is the order of decomposition (n=0, 1, 2…∞), 
also known as radial order and m the number of repetitions of the decomposition or azimuthal frequency for a 
given order n. 
The order and repetition are bound by the following two conditions: 
 

n-|m| always even and  |m| n (1.2) 
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Vnm(x, y) represents the Zernike polynomials constituents based orthogonal projection. 
They are written in general polar representation in the following form: 
 

Vnm(r, θ) = ℛ𝓃𝓂(r)e−imθ  (1.3) 
 
Or ℛ𝓃𝓂(r) are polynomials radial of the form: 
 

 ℛ𝓃𝓂(r) = ∑ rkn
k=|m|

(−1)(n−k)/2 .(n+k)!                

�n−k2 �!�m+k
2 �!�k−m2 �!

 (1.4) 

 
The application of Zernike moments to a discrete function h (x, y) (such as for example) requires rewriting 
(1.1) as follows: 
 

Znm = n+1
π
∑ ∑ h(x, y)y [Vnm(x, y)]∗x  (1.5) 

 
Wherex2 + y2 ≤ 1 
 
 
5. RESEARCH METHOD  
We apply the classical phases of learning and decision as follows: 
• The image is resized to 128x128 pixels. 
• The Gist descriptor is calculated for color images. 
• The Zernike moments are calculated from the image for each color channel. 
• The set of descriptors (512 values for descriptors and GIST 21pour Zernike moments) and 533 for the 

combination of both PCA and (MZ) and 10 with PCA (GIST) with 21 used to power the classifier. 
• The classifier used is a neural network with an intermediate layer of 50 neurons fixed loan for all tests. 
• SVM[13] was used as the second classification method for comparison with the results obtained with the 

neural network. 
 
 
6. RESULTS AND ANALYSIS  

 
6.1. Performance Evaluation 

We present in this part the results obtained from the descriptors described above, applied to the 
Coil100 database,  Performance has been systematically evaluated by the methodology described in section 
5. 

 
6.2. COIL-100 database 

The database COIL [14] (Figure 1) contain 100 color images of objects. For each object, there are 
72 images of rotating object (5 ° between each image). 

 
 

 
               

Figure 1. Differents objects in the database COIL-100 
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6.3. Analysis of results 
Indexing and research methods must have the ability to give results even with big data baseFor this, 

we presented the classification results in a comparison table (Table1) between the hybride descriptors and 
each one of Zernike, Gist & PCA descriptors. 
 
 

Table 1. Recognition rates obtained by using SVM on the basis COIL for each family of descriptors. 
Image M.Zernike PCA (Ze,14) D. Gist PCA (Gist, 100) Gist+ Zernike PCA 

400 98,75% 93% 99,25% 98,75% 99% 90% 

800 92,13% 24,25% 94,25% 97,88% 99,12% 80,40% 

1200 92% 18,37% 99,50% 93,42% 99,25% 79,01% 

1600 69,31% 3,13% 86,81% 84,50% 91,56% 68,12% 

 
 
The best recognition rate is obtained for a combination of Gist descriptors and Zernike moments 

with an error of 1% for a database of 400 images. All combination gives good results for small database, for 
large database, the positive impact of hybrid methods is clear. 

Also we can notice that Gist descriptors are more robust than Zernike moments when it comes to 
color objects. 

When applying PCA on the descriptors, we find the following two properties: 
 A reduction in computing time and recognition rate (PCA and Zernike). 
 A reduction in computing time and stability but a recognition rate (PCA and Gist). 

We also studied the influence of the number of images used during the learning phase. Indeed, in 
real applications, it is common to have only a very small number of images per object. It is therefore 
important that the method is sufficiently efficient in this case. Figure 2 shows the resulting error. With only 
45% of training images, Gist descriptors have an error of only 3% while the error is 4% higher with the 
Zernike moments. The best convergence is obtained with a combination of both approaches the error is less 
than 1%. 

Tests were made by incorporating a binary image noise (pepper and salt). Hybrid descriptors can 
tolerate up to 30% without substantially disturbing noise ratios. 
 
 

 
        

Figure 2. Classification error obtained by using NN on the basis COIL for each family of descriptors 
 

 -

 0.000500000

 0.001000000

 0.001500000

 0.002000000

 0.002500000

400i 800i 1200i 1600i 2000i 2400i 2800i

 ZERNIKE

ACP(ZER)

GIST

ACP(GIST)

ACP

HYBRID



IJ-AI   ISSN: 2252-8938  

Indexing of three dimensions objects using Gist, Zernike & PCA descriptors (M. FAKIR) 

5 

We proposed and compared two approaches to global color object recognition: neural networks like 
multilayer perceptron (NN) and Support vector machines (SVM). The NN is already well known for this kind 
of work, and the SVM are currently emerging in this area for ease of use and excellent results. The 
comparison with SVM or giving advantage, and the use of SVM as a classifier makes the results more 
accurate, Table 2 shows the result obtained by SVM Compared to the results obtained by NN. 
 
 

Table 2. Recognition rate for SVM and with NN (1200 images) 

 NN SVM 

Zernike 92% 97,65% 

PCA (Zer,14) 18,37% 67,33% 

Gist 99,50% 100,00% 

PCA(Gist,100) 93,42% 96,49% 

Gist+Zernike 99,25% 100,00% 

PCA 79,01% 82,60% 

 
 
7. CONCLUSION  

In this work, we used three extraction methods and we evaluated their performance hybrid. The 
results of this evaluation showed that the hybrid method (GIST Zernike +) marks the best recognition rate 
compared to other descriptors. The assessment of the results was carried out by neural networks and SVM 
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