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 The minimum edge dominating set (MEDS) is one of the fundamental 
covering problems in graph theory, which finds many practical applications 
in diverse domains. In this paper, we propose a meta-heuristic approach 
based on genetic algorithm and local search to solve the MEDS problem. 
Therefore, the proposed method is considered as a memetic search algorithm 
which is called Memetic Algorithm for minimum edge dominating set 
(MAMEDS). In the MAMEDS method, a new fitness function is invoked to 
effectively measure the solution qualities. The search process in the proposed 
method uses intensification schemes beside the main genetic search 
operations in order to achieve faster performance. The experimental results 
proves that the proposed method is promising in solving the MEDS problem. 
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1. INTRODUCTION 

The Minimum Edge Dominating Set (MEDS) is a subset of edges of minimum cardinality, where 
each edge is be in the edge dominating set, or adjacent to some edges in the edge dominating set [1, 2, 3]. 
The MEDS problem is a hard combinatorial problem, classified as NP-hard [3], and in general cannot be 
solved exactly in polynomial time. Several research works have been introduced on exponential-time 
algorithms for some natural and basic problems, such as independent set [4, 5], coloring [6]. Nowadays, there 
are a great interest of proposing efficient algorithms for domination problems in graph especially those are 
coming from networking area [7, 8, 9]. Actually, different types of domination problems; such as dominating 
set [10], edge dominating set [11] and feedback set [12], have also drawn much attention in this line of 
research. These domination problems in graphs have been subject of many studies in graph theory, and have 
many applications in operations research, resource allocation and network routing, as well as in coding 
theory [1, 2]. The Edge Dominating Set (EDS) problem is a fundamental problem in graphs which 
simultaneously generalizes and melds vertex cover and edge cover into a restricted version of the total cover 
problem [13, 14]. 

There are many algorithms proposed for solving MEDS, these algorithms takes two tracks exact 
algorithm and parameterized algorithm. Although these algorithms guarantee the optimality of the solutions 
they find, they may fail to give a solution within reasonable time for large instances. As the size of the 
problem increases, these methods become futile. Meta-heuristics are powerful search methods which can be 
efficiently in providing satisfactory solutions to large and complex problems such as vertex cover [15], 
dominating set [16] and edge coloring [17] in a reasonable time. However, up to the authors’ knowledge, 
there are no studies up to day used meta-heuristic techniques for solving MEDS problem. Genetic Algorithms 
(GAs) are the most popular meta-heuristic algorithms that have been employed in wide variety of problems 
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[18]. Actually, GAs are able to incorporate other techniques within its framework to produce a hybrid method 
that brings more promising one. One direction of such hybridization is to use local search which can 
accelerate the search process in a pure GA. This modification yields another search approach which is called 
the Memetic Algorithm (MA) [19]. 

Several meta-heuristic methods have been developed to solve different problems in graph theory 
and combinatorial optimization [20, 21]. However, the number of contributions that deal with the graph 
domination problems is very limited. In this paper, we propose a memetic algorithm for finding the minimum 
edge dominating set, called shortly MAMEDS. It uses a 0-1 variable representation of solutions in searching 
for the MEDS, and invokes a new fitness function to measure the solution qualities. Two intensification 
search schemes are used beside local search in order to enhance the performance of the MAMEDS method.  

The paper is organized as follows. The next section gives a brief description about the MEDS 
problem as preliminaries needed throughout the paper, and highlights the related works in solving the 
considered problem. Section 3 describes the proposed method steps in details. Section 4 reports numerical 
experiments and results. Finally, the conclusions make up Section 5. 
 
 
2. PROBLEM FORMULATION AND RELATED WORKS 

The domination problems in graph are mainly classified as vertex dominating set (or dominating set) 
and edge dominating set. The latter can be defined as follows [3]. Given an undirected graph G = (V, E), 
without loops and multiple edges, where V is the set of nodes (or vertices) and E the set of edges. An edge 
{u, v} of G is said to dominate itself and any edge adjacent to it in G. An edge dominating set in a graph G is 
a subset of the edges D ⊆ E such that every edge in E is in D or adjacent to at least one edge in D. The 
MEDS problem is that of finding an edge dominating set of minimum cardinality in the given graph. The 
edge domination number of G is denoted by 𝛾̀(G) and defined as the minimum number of edges in a set D 
such that every edge not in D has a vertex in common with at least one edge in D. One can note that the 
MEDS may not be unique. 

The problems of finding the minimum dominating set and minimum edge dominating set have been 
considered in the literature. For the dominating set problem, there are many studies focus on solving this 
problem, see for example [16, 22] and references therein. The edge dominating set problem is a basic 
problem introduced in Garey and Johnson’s work [23] on NP-completeness. Yannakakis and Gavril [3] 
proved that the edge dominating set problem is NP-hard even in planar or bipartite graphs of maximum 
degree 3. Randerath and Schiermeyer [24] designed the first nontrivial exact algorithm for the minimum edge 
dominating set problem of time complexity O(1.4423m), where m is the number of edges in the graph. Later 
Raman et al. [25] gave an O(1.4423n) algorithm, and Fomin et al. [26] improved this to O(1.4082n). Rooij 
and Bodlaender [11] got an O(1.3226n) algorithm by using the “measure and conquer” method, which was 
further improved to O(1.3160n) [27], where n is the number of vertices. 

In terms of parameterized algorithms with parameter k being the size of the solution, there are also a 
long list of contributions to the upper bound of the running time. Let us quote the O*(2:6181k)-time 
algorithm by Fernau [28], the O*(2:4181k)-time algorithm by Fomin et al. [26], the O*(2:3819k)-time 
algorithm by Binkele-Raible and Fernau [29], and finally the O*(2:3147k)-time algorithm by Xiao et al. [30]. 
Although these algorithms provide the optimal solution, they are too slow on graphs with few hundreds of 
nodes. Therefore, when deals with a very large graphs, these algorithm become impractical. This motivates 
us to consider meat-heuristics to design more efficient algorithm to solve the MEDS problem. 

 
 
3. PROPOSED METHOD 

In this section, we describe the components of MAMEDS, and then state its formal algorithm at the 
end of this section. The MAMEDS method is an evolutionary algorithm, therefore, we first start by 
describing the solution representation and the fitness function. Then, the genetic operators; selection, 
crossover and mutation are defined. The main memetic search element, local search, is stated after that. 
Finally, our intensification schemes are explained. 
 
3.1.  Graph Representation 

The graph represented as nV x nV adjacency matrix, where nV is the number of vertices in the graph. 
Form an adjacency matrix, we create edges matrix Em which include all edges in the graph. Edge matrix 
dimension is nE x 2, where nE is the number of edges in the graph, the two columns are the vertex numbers 
which represent the endpoints of edges. 
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3.2.  Solution Representation and Fitness Function 
A solution s will be represented as a bit vector with size equal to the number of edges in the graph. 

Therefore, s is equal to (s1, s2, … , snE), as shown in Figure 1. The subscript numbers 1, 2, …, nE, are related 
to the corresponding edges in Em. If a component si of s, i = 1, …, nE, has the value 1, then the edge 
represented by the i-th row in Em is contained in the edge subset represented by solution s. Otherwise, the 
solution s does not contain the i-th edge. 

 
 

 
Figure 1. Solution Representation 

 
 
Fitness function fit is a function designed to measures the quality of a solution which plays a major 

role in the selection process. The main idea in designing the fitness function is that better solutions will have 
a higher fitness function value than worse one. 

 
𝑓𝑖𝑡(𝑠) = 𝑛𝐷

𝑛𝐸
+ 1

𝛾̀𝑠(𝐺)𝑥𝑛𝐸
 (1) 

 
where nD is the number of edges dominated by the sub set of edges D represented by the solution s, 

and 𝛾̀s(G) is the number of edges in D. 
The fitness function fit consist of two parts, the first part nD/nE, reflects the size of domination on G 

by s. If s represents an edge dominating set, then this part is equal to 1. While the second part 1/(𝛾̀s(G) x nE) 
distinguishes between solutions that have the same values of the first part based on the number of nodes 
contained in each of them. It is worthwhile to mention that the second term is designed to make fit(s1) < 
fit(s2) in only two cases: 
• c1< c2, where c1 and c2 are the number of edges covered by s1 and s2 respectively, or 
• c1 = c2 and 𝛾̀s1 (G) > 𝛾̀s2(G). 
 
3.3. Genetic Operators 

The parent selection mechanism first produces an intermediate population, say P0 from the initial 
population P: P’ ⊆ P as in the canonical GA. For each generation, P’ has the same size as P but an individual 
can be present in P’ more than once. The individuals in P are ranked with their fitness function values based 
on the linear ranking selection mechanism [31, 32]. Indeed, individuals in P’ are copies of individuals in P 
depending on their fitness ranking: the higher fitness an individual has, the more the probability that it will be 
copied is. This process is repeated until P’ is full while an already chosen individual is not removed from P.  

The crossover operation has an exploration tendency, and therefore it is not applied to all parents. 
First, for each individual in the intermediate population P’, the crossover operation chooses a random number 
from the interval (0, 1). If the chosen number is less than the crossover probability pc ∈ (0, 1), the individual 
is added to the parent pool. After that, two parents from the parent pool are randomly selected and mated to 
produce two children c1 and c2, which are then replacing their parents in P’. These procedures are repeated 
until all selected parents are mated. The standard one-point crossover [33] is used in MAMEDS to compute 
children.  

For each gene each in all individuals in the intermediate population P’, a random number from the 
interval (0, 1) is associated. If the associated number is less than the mutation probability pm, then the 
individual is mutated using the standard uniform mutation operation [33]. 

 
3.4. Local Search 

In Local Search mechanism, we add or delete some edges to improve the best solution sbest found so 
far, and this process is repeated nl times. The formal description of this mechanism is shown in Procedure 1. 
Procedure 1 (Local Search) 
1. Repeat the following steps nl times. 
2. Set 𝑠̃best = sbest. 
3. If fit(𝑠̃best) < 1, select a component 𝑠̃i

best with value 0. This selection is randomly and proportional to the 
degree of its corresponding node. Set 𝑠̃i

best = 1- 𝑠̃i
best. 

4. If fit(𝑠̃best) < 1, select a component 𝑠̃i
best with value 1. This selection is randomly and inversely 

proportional to the degree of its corresponding node. Set 𝑠̃i
best = 1- 𝑠̃i

best. 
5. If fit(𝑠̃best) > fit(sbest), set sbest = 𝑠̃best. 
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3.5. Intensification Schemes 
Two mechanisms are used in MAMEDS to reduce the cardinality of the solution computed. The best 

edge dominating set sbest will be refine with another intensification scheme called Filtering. This echanism 
basically checks if an edge contained in sbest can be removed without losing the coverage. 
Procedure 2 (Filtering) 
1. If fit(sbest) < 1, return. 
2. Compute the set X = {x1, …, x|X|} of all positions of value one in sbest. 
3. Repeat the following steps for j = 1, …,|X|. 
4. Set 𝑠𝓍𝑗𝑏𝑒𝑠𝑡  = 0, and compute the new fitness value. 
5. If the fitness value is increased, update sbest. 

The final intensification mechanism is called Elite Edge Dominating Sets Inspiration. In this 
mechanism the best edge dominating set which have been visited are saved in a set called Edge Dominating 
Sets (EDS). A trial solution sCore is define as the intersection of the nCore best edge dominating sets in EDS, 
where nCore is a pre-specified number. If the number of edges contained in sCore is less than that in sbest by at 
least two, then the zero position in sCore which gives the highest edge-degree is updated to be one. This 
mechanism is repeated until the number of edges contained in sCore becomes less than that in sbest by one. 
Procedure 3 (Elite Inspiration) 
1. If EDS is empty, then return. 
2. Set nF equal to the number of edges contained in sbest, and set sCore equal to the intersection of the nCore 

best edge dominating sets in EDS. 
3. If ∑ 𝑠𝑖𝐶𝑜𝑟𝑒

|𝐸|
𝑖=1  < nF - 1, then go to Step 4. Otherwise, return. 

4. If fit(sCore ) ≥ 1, then return. 
5. Update the zero position in sCore which gives the highest fitness, and go to Step 3. 
 
3.6. MAMEDS algorithm 

MAMEDS starts with an initial population of chromosomes P0 generated randomly. Each 
chromosome represents a trial solution to the MEDS problem. During each generation, the quality of each 
chromosome in the population is evaluated by using a fitness function fit (see Equation (4.1)). MAMEDS 
applies Procedure 1 to improve the best solution. In each generation, the population is updated through 
genetic operators. Linear ranking selection algorithm uses to select parents for standard one-point crossover 
and uniform mutation to generate members of the new population [16]. MAMEDS invokes LocalSearch 
Procedure to update the current population. If a certain number of consecutive generations without 
improvement is achieved, MAMEDS invokes Procedure 2 to improve the best edge dominating set sbest 
obtained so far, if it exists. The search will be terminated if the number of generations exceeds gmax, or the 
number of consecutive generations without improvement exceeds a pre-specified number. Finally, Elite Edge 
Dominating Set Inspiration Procedure is applied as a final intensification mechanism. 
Algorithm 4 (MAMEDS) 
1. Initialization. Set values of Psize, gmax, nstep, nCore. Set the crossover and mutation probabilities pc ∈ (0, 1) 

and pm ∈ (0, 1), respectively. Set EDS to be an empty set. Generate an initial population P0 of size Psize. 
2. Local Search. Evaluate the fitness function of all chromosomes in P0 by using the Equation (4.1), and 

then apply Procedures 1 to improve the best trial solution in P0. Set the generation counter t := 0. 
3. Parent Selection. Select an intermediate population 𝑃́t from the current population Pt using the linear 

ranking selection. 
4. Crossover. Apply the standard one-point crossover to chromosomes in 𝑃́t, and update Pt. 
5. Mutation. Apply the standard uniform mutation to chromosomes in 𝑃́t, and update 𝑃́t. 
6. Survival Selection. Evaluate the fitness function of all generated children in the updated 𝑃́t, and set Pt +1 

= 𝑃́t. If the best solution in Pt +1 is worse than the best solution in 𝑃́t, then replace the worst solution in 
𝑃́t +1 by the best solution in 𝑃́t. 

7. Local Search. Apply Procedure 1 to improve the sbest, update EDS. 
8. Filtering. If sbest represents an edge dominating set, then apply Procedure 2 to improve it, update EDS. 
9. Stopping Condition. If t > gmax, then go to Step 10. Otherwise, set t := t + 1, and go to Step 3. 
10. Final Intensification. Apply Procedure 3 to obtain sCore. Update EDS by sCore if a better solution is found, 

and terminate. 
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4. NUMERICAL EXPERIMENTS 
The MAMEDS algorithm was programmed using MATLAB. In this experimental section, we 

technically discuss the implementation of the MAMEDS code as well as its results. This section also shows 
how the test graphs used in the numerical simulations are generated. 

 
4.1. Graph Generation 

In order to measure the performance of MAMEDS we apply it on number of graphs with different 
sizes. The previous works in solving MEDS did not implemented for special types of graphs. Thus, the 
graphs which we used in our experiments are randomly generated with a known edge domination number 
𝛾̀(G). The following algorithm describe how these graphs are constructed. 
Algorithm 5 (Graph Generation) 
1. Set the maximum number of edges maxE = nV x (nV - 1)/2, and the number of edges nE = maxE x d, where 

d is the density of edges in the graph which is set to be in (0, 1), and nV is the number of vertices. 
2. Divide the vertices into two groups: 

- VED with size equal to 𝛾̀(G) x 2, and has vertices incident to dominant edges. Therefore, each pair of 
them is connected. 
- VE with size equal to nV - (𝛾̀(G) x 2), and has vertices not incident to dominant edges. 

3. Add edges to connect the graph vertices to reach the edge density d. This edge adding process should 
satisfy the following condition in order to maintain the edge domination number equal to 𝛾̀(G). 
- No edge connects two vertices belong to different pairs in VED. 

MAMEDS was applied 9 instances of MEDS problems created from the three graphs G1-G3, see 
Table 1. These three graphs generated randomly with a number nV of vertices and different number nE of 
edges depending on the density number d for each instance. For each problem instance, the edge domination 
number 𝛾̀(G) was known and the code was run 10 times. 

 
4.2. Parameter Setting and Tuning 

Table 3 summarize all parameters setting used in MAMEDS with their assigned values. These 
chosen values are based on our numerical experiments or their universal setting. In parameter tuning, we 
have tried to find the best parameter values with moderate costs and good performance. 
 
 

Table 1. Test Problems 
Test graphs No. of Nodes No. of Edges d 𝛾̀(G) 

𝐺0.1
20  

𝐺0.3
20  

𝐺0.5
20  

20 
20 
20 

19 
57 
95 

0.1 
0.3 
0.5 

4 
4 
4 

𝐺0.1
50  

𝐺0.3
50  

𝐺0.5
50  

50 
50 
50 

123 
368 
613 

0.1 
0.3 
0.5 

15 
15 
15 

𝐺0.1
150 

𝐺0.1
150 

𝐺0.1
150 

150 
150 
150 

1118 
3353 
5588 

0.1 
0.3 
0.5 

55 
55 
55 

 
 

Table 2. MAMEDS Parameter setting 
Parameter Definition Value 

Psize Population size 40 
pc Crossover probability 0.8 
pm Mutation probability 0.01 

nstep Number of iterations in LocalSearch 2 
nemphEDS Max number of the best edge dominating sets used to update EDS 10 

nCore The number of the best edge dominating sets used to compute sCore 3 
gmax Max number of generations 100 

 
 
4.3. Results and Discussion 

The performance of the proposed MAMEDS is tested on 9 instances of the MEDS problem created 
from the three graphs G1 - G3, as shown in Table 1. The results of the MAMEDS are reported in Tables 4 - 
6. The program runs 10 times for each instance. The average number of the best minimum edge dominating 
sets (Ave.) which we obtained for all instances of the MEDS problem will be compared with edge domination 
number 𝛾̀(G). The (rate) shows how many times MAMEDS acquires an optimal solution 𝛾̀(G). These best 
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solutions are different according to tuning parameter values which significantly affects solution qualities. In 
Table 4, when the value of Psize increases for 40 to 100 the results are improved relatively. In Table 5, the 
results are better than that in Table 4 and when the value of gmax increases the results are improved 
significantly. The best results which we obtained from our experiments are presented in Table 6, when the 
value of nstep increased form 2 to 6. In G1 instances, the tuning parameters Psize, gmax and nstep with values 100, 
100 and 2, respectively, are enough to acquire the optimal solution. In G2 and G3 instances the tuning 
parameters Psize, gmax and nstep with values 100, 100 and 6, respectively, are enough to acquire the optimal or 
near optimal solution. In large graphs, these values must be increased proportionally with raph size. The 
results that are obtained can be demonstrate the relationship between tuning parameter values and graph size. 
In addition the efficiency of the MAMEDS in the instances of the same graph are different according to its 
number of edges nE. In general the experiment results prove the efficiency of MAMEDS algorithm for 
solving MEDS problem. 
 
 
5. CONCLUSION 

The minimum dominating set problem in graph theory has been studied in this paper. A hybrid GA-
based method, called memetic algorithm for minimum dominating set (MAMEDS), has been proposed to 
solve the considered problem. New fitness function and intensification elements have been applied in 
MAMEDS to achieve better performance and to fit the problem. The values of tuning parameter are 
significantly affect the results. In general numerical experiments on 9 instances of graphs have are show the 
efficiency of MAMEDS. 
 
 

Table 3. Results of MAMEDS on G1, G2 and G3 (gmax = 100, nstep = 2) 
Graph no nE Psize 𝛾̀(G) Avg rate 
𝐺0.1
20  

𝐺0.1
20  

19 
19 

40 
100 

4 
4 

4 
4 

10 
10 

𝐺0.3
20  

𝐺0.3
20  

57 
57 

40 
100 

4 
4 

4.8 
4 

6 
10 

𝐺0.5
20  

𝐺0.5
20  

95 
95 

40 
100 

4 
4 

5.2 
4.2 

4 
8 

𝐺0.1
50  

𝐺0.1
50  

123 
123 

40 
100 

15 
15 

16.2 
15.8 

6 
7 

𝐺0.3
50  

𝐺0.3
50  

368 
368 

40 
100 

15 
15 

17 
16.8 

4 
4 

𝐺0.5
50  

𝐺0.5
50  

613 
613 

40 
100 

15 
15 

17.8 
17.4 

4 
5 

𝐺0.1
150 

𝐺0.1
150 

1118 
1118 

40 
100 

55 
55 

66 
64 

4 
3 

𝐺0.3
150 

𝐺0.3
150 

3353 
3353 

40 
100 

55 
55 

70 
68 

3 
3 

𝐺0.5
150 

𝐺0.5
150 

5588 
5588 

40 
100 

55 
55 

73 
68 

1 
0 

 
 

Table 4. Results of MAMEDS on G1, G2 and G3 (Psize = 100, nstep = 2) 
Graph no nE Gmax 𝛾̀(G) Avg rate 
𝐺0.1
20  

𝐺0.1
20  

19 
19 

120 
150 

4 
4 

4 
4 

10 
10 

𝐺0.3
20  

𝐺0.3
20  

57 
57 

120 
150 

4 
4 

4.8 
4.2 

5 
9 

𝐺0.5
20  

𝐺0.5
20  

95 
95 

120 
150 

4 
4 

4.2 
4.2 

9 
8 

𝐺0.1
50  

𝐺0.1
50  

123 
123 

120 
150 

15 
15 

15.4 
15 

6 
10 

𝐺0.3
50  

𝐺0.3
50  

368 
368 

120 
150 

15 
15 

16.4 
15.2 

4 
8 

𝐺0.5
50  

𝐺0.5
50  

613 
613 

120 
150 

15 
15 

15.8 
16 

5 
2 

𝐺0.1
150 

𝐺0.1
150 

1118 
1118 

120 
150 

55 
55 

64 
65 

3 
1 

𝐺0.3
150 

𝐺0.3
150 

3353 
3353 

120 
150 

55 
55 

64.4 
65 

2 
2 

𝐺0.5
150 

𝐺0.5
150 

5588 
5588 

120 
150 

55 
55 

66.8 
66 

0 
1 
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Table 5. Results of MAMEDS on G1, G2 and G3 (gmax = 100, Psize = 100) 
Graph no nE nstep 𝛾̀(G) Avg rate 
𝐺0.1
20  

𝐺0.1
20  

19 
19 

2 
6 

4 
4 

4 
4 

10 
10 

𝐺0.3
20  

𝐺0.3
20  

57 
57 

2 
6 

4 
4 

4.8 
4 

6 
10 

𝐺0.5
20  

𝐺0.5
20  

95 
95 

2 
6 

4 
4 

5.2 
4.2 

4 
9 

𝐺0.1
50  

𝐺0.1
50  

123 
123 

2 
6 

15 
15 

16.2 
15 

6 
10 

𝐺0.3
50  

𝐺0.3
50  

368 
368 

2 
6 

15 
15 

17 
15 

4 
10 

𝐺0.5
50  

𝐺0.5
50  

613 
613 

2 
6 

15 
15 

17.8 
15.8 

4 
6 

𝐺0.1
150 

𝐺0.1
150 

1118 
1118 

2 
6 

55 
55 

66 
62 

4 
2 

𝐺0.3
150 

𝐺0.3
150 

3353 
3353 

2 
6 

55 
55 

70 
62.4 

3 
0 

𝐺0.5
150 

𝐺0.5
150 

5588 
5588 

2 
6 

55 
55 

73 
62.8 

0 
1 
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