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 In this paper, an algorithm was presented to control the satellite attitude in 

orbit in order to reduce the fuel consumption and increase longevity of 

satellite. Because of proper operation and simplicity, fuzzy controller was 

used to save fuel and analyze the uncertainty and nonlinearities of satellite 

control system. The presented control algorithm has a high level of reliability 

facing unwanted disturbances considering the satellite limitations. The 

controller was designed based on Takagi-Sugeno satellite dynamic model, a 

powerful tool for modeling nonlinear systems. Inherent chattering related to 

on-off controller produces limit cycles with low frequency amplitude. This 

increases the system error and maximizes the satellite fuel consumption. 

Particle Swarm Optimization (PSO) algorithm was used to minimize the 

system error. The satellite simulation results show the high performance of 

fuzzy on-off controller with the presented algorithm. 
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1. INTRODUCTION 

The fuel saving is highly desirable in the satellite attitude control system. Two-level on-off 

controllers are generally used with the thrust reaction actuator for satellite attitude control. These controllers 

act very fast and are time independent. They control the satellite attitude with or without thrust power in 

minimum time.In on-off control systems, the valves operate reliably to stay open for a short time as a few 

milliseconds. The full opening of valves for a finite time changes the discrete angular velocity with the 

actuations. As a result, it’s impossible to obtain zero residual angular quickness. To prevent the interaction of 

thrusters, a dead band is introduced between the on-off control, and the controller is shut down in this dead 

band region. Thus, the controlled system reaches the equilibrium point (origin) with reduced velocity or 

increased dampness. This generates low frequency (and amplitude) limit-cycles, and dissipates the thruster 

force. 

Since the satellite behavior is inherently nonlinear and uncertain, it’s recommended to use nonlinear 

control algorithms like fuzzy logic. This algorithm is independent of the accurate model of micro satellite. 

Stein applied three multi-input single-output (MISO) fuzzy controllers to stabilize a small (micro) satellite in 

low earth orbit. He proved that fuzzy controllers can erase the control limitations by choosing the best 

magnetic moment, polarity and switching times [1]. Satellite control system can save fuel and enhance the 

satellite performance. on-off attitude control by on-off and sliding mode was investigated in reference [2]. 

One of the problems of using sliding mode controller is that it generates a great control signal due to the 

system uncertainty. Fuzzy controller was used to solve this problem [3]. Fuzzy controller is an appropriate 

choice to control nonlinear systems. Minimizing the time required for the system to reach the steady state is 

an important point in fuzzy controller design. This is achieved by optimal adjustment of membership 

functions [4]. The controller investigated in reference [5] needs different initial values to improve the system 
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operation and minimize the response time. But these applications are not proper to design standard linear 

controller. In this case, on-off controller is an appropriate option [6,7]. Reference [8] compared various 

controllers and concluded that the fuzzy on-off controller is the best one based on the efficiency. Fuzzy 

controller is a multi-level relay. It uses average least squares method for defuzzification. In the present paper, 

a special hardware was used to convert control signals from defuzzificator. The minimum control time of 

fuzzy on-off controller using a relay was presented in reference [9]. Particle swarm optimization is an 

optimization technique based on a population of initial responses. This technique was designed considering 

the social behavior of birds and fishes in bunch [10, 11]. It was widely used by the researchers and many 

efforts were performed to improve its efficiency in Inertia formula from different points of view. Calculating 

the velocity of these changes is a static agent [12]. This parameter makes equilibrium between local and 

overall searches in the problem space. It means that higher values of this parameter are suitable for the 

overall search and its lower values are appropriate for the local search. Gradual reduction of this parameter 

was also investigated in [13]. Its effects on the particle optimization parameters were discussed in [14]. 

Nonlinear reduction of this parameter due to fuzzification was described in [14]. This value was also 

considered in [15] except resetting times. Gradual reduction of maximum velocity was also introduced in 

[16]. Another interesting research area is making improvement in particle optimization through designing 

different vicinity models. Thus, it was assumed that nonlinear equations of satellite system are known, and its 

actuator is on-off thruster. The algorithm that transfers command of axis controlling moments to the thrusters 

is complicated for two reasons: 

[1] Thrusters are not linear controllers because their output is fixed. Therefore the moment generated by 

thrusters depends on its starting period. 

[2] Thrusters can only generate moment in one direction. Thus, another thruster is needed to generate 

moment in the opposite direction. 

In this paper, a three-axis fuzzy on-off controller was presented for satellite attitude control system. 

It generates two levels of on-off switching on the output. Smooth operation of the control law was achieved 

by fuzzy laws and Mamdani fuzzy inference. There is no need to hardware limitator in the on-off controller 

due to using two switching plates on the output. Two linguistic variables were used in the system. These 

variables provide the thrusters used to orient the satellite. In order to control the attitude, one thruster was 

used for clockwise rotation (positive angle) and the other one was used for counterclockwise rotation 

(negative angle). When thruster activates, the fuel is burned at high pressure and the attitude changes.This 

paper includes 7 sections. After introduction, state space model of satellite is presented in section 2. Takagi-

Sugeno model was described in section 3. Section 4 is an introduction to fuzzy on-off algorithm. Section 5 

describes the particle swarm algorithm and using absolute error integration to reduce limit cycle on fuzzy 

system. The simulation results are given in section 6. Finally, the conclusions are down in section 7. 

  

 

2. THREE DEGREE OF FREEDOM SATELLITE STATE SPACE MODEL  

The rigid satellite model with three degrees of freedom is presented in this section. The satellite 

model is shown in Fig. 1. Axes XB, YB, and ZB define the satellite body axis frame, and the origin of 

coordinates is considered at the centre of gravity as shown in this fig.. The roll (), pitch (), and yaw () 

angles are the satellite rotational speeds about axes XB, YB, and ZB in the body fixed frame. The non-linear 

state model of the satellite can be derived by partial derivatives of the model states     x = [ pb, qb, rb, I , I , 

I ]
T 

 . 

 
 

Figure 1. Satellite reference and body coordinates [17] 
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Table 1.  Satellite Parameters [17] 
Value Description Parameter 

1.928
2kg m  

Moment of inertia along x-axis 
xxI  

1.928
2kg m  

Moment of inertia along y-axis 
yyI  

4.953
2kg m  

Moment of inertia along z-axis 
yyI  

1
2kg m  

Satellite inlet moments 

( , , )x y ZM M M  

Thruster 

0.362 rad (20 deg) 
Initial value of roll Euler angel 

0  

0.524 rad (30 deg) Initial value of pitch Euler angel 
0  

-0.262 rad (-15 deg) Initial value of yaw Euler angel 
0  

0 rad s  Body pitch roll rate p  

0 rad s  Body yaw rate q  

0 rad s  Body roll rate r  

0.01 rad (0.58 deg) Dead band   

 

 

3. T-S FUZZY MODEL IDENTIFICATION FROM NONLINEAR MODELS [18] 

With a known nonlinear model, its approximate T–S fuzzy model can be obtained by linearization 

about an interested operating point. Thus, the local linear models of T–S fuzzy system should be determined. 

In this case, the local model of T–S fuzzy model that approximates the nonlinear system model at the 

equilibrium can be expressed as: 

                                                                                                      (2)             

                                                                                     

                            (3) 

 

The next step is to determine the fuzzy membership functions for fuzzy sets about those operating 

points or local regions. The ideal case is to select the membership functions mluxl ,.....2,1),,(   that 

minimize the following modeling error: 

 

 

                                                           (4) 
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the key parameters is that the centers of these membership functions can be determined by the operating 

points mlux ,.....,3,2),,( 11  , and the other parameters such as the width and decay rate may be selected by 

the designer. 

3.1.  Takagi-Sugeno Parameters, Attitude Control Descriptor 

Considering nonlinear expressions and their relating membership functions, there are a large number 

of membership functions, fuzzy laws and required subsystems to show the system behavior. Therefore, the 

procedure is as follows. Satellite dynamic parameters are defined according to the specific rules based on the 

selected operating points using the state feedback that stabilizes the response to initial conditions. Gaussian-

type functions were selected as:   
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Where  4321
,,,

 
are the widths of the corresponding functions, respectively Then, the 

normalized membership functions for local models are obtained as: 
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Table 2. Parameters of  takagi-sugeno model 





























000

000

000

2018.000

05186.00

005186.0

1B

 

Subsystem  1  

Tx ]0,0,0,0,0,0[)1(   

 

Subsystem  2 

 
Tx ]2600.0,5240.0,3620.0,0,0,0[)2(   

 

Subsystem  3 

Tx ]0388.0,0429.0,0220.0,1645.0,0908.0,0613.0[)3( 

 



































04415.00063.00000.100

000075.0010

00075.00063.00100.001

000000

0000138.000117.0

0000099.00117.00

4A

 

Subsystem  4 

Tx ]0084.0,0100.0,0,0075.0,0063.0,0088.0[)4( 

 







































00051.00945.00007.10220.00

001625.00220.09998.00

01628.00910.00429.04420.01

000000

0000962.002581.0

0001425.02581.00

3A

2 2 2 2 2 2

1 2 3 4 5 6
21

1

2 2 2 2 2 2

1 2 3 4 5 6
22

2

2 2 2 2 2 2

1 2 3 4 5 6
23

3

2 2 2 2 2 2

1 2 3 4 5 6
24

4

exp

exp

exp

exp

x x x x x x
h

x x x x x x
h

x x x x x x
h

x x x x x x
h









     
  
 
 

     
  
 
 

     
  
 
 

     
  
 
 

1

1
1 2 3 4

2

2
1 2 3 4

3

3
1 2 3 4

4

4
1 2 3 4

( )

( )

( )

( )

x

x

x

x

h
h h h h

h
h h h h

h
h h h h

h
h h h h










  


  


  


  

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

A

 
 
 
 

  
 
 
 
 































0000801.14090.00

0003541.09352.00

0005404.02047.01

000000

000000

000000

2A



                ISSN: 2252-8938 

IJ-AI  Vol. 3, No. 4,  December 2014 :  166 – 176 

170 

In satellite nonlinear dynamic modeling, the system matrices are extracted considering the satellite 

dynamic equations on main coordinates system and (6). These matrices are presented in Table 2. Operating 

point (task point) of local linearization of dynamic satellite was selected so that the satellite operating region 

was covered. The above system was linearized based on Takgi-Sugeno model at four points around the 

equilibrium point. Four linear subsystems were derived from the satellite nonlinear model. It should be 

mentioned that the system B matrix was the same in all four states. 

 

4. FUZZY ON-OFF CONTROLLER  

The detailed explanation of the algorithm can be found in reference [17]. A brief description is 

presented here. The difference is that the range of membership function changes was modified in this work to 

analyze the limit cycle. A fuzzy on-off controller was developed in this section. The controller was developed 

for only roll-axis. It’s identical for the other two axes. The controller takes the advantage of Largest Maxima 

Defuzzification (LOM) technique to obtain on-off output directly. The following ranges were selected for 

simulation purposes: Φ (t) = [-1, 1] rad, )t( = [-1, 1] rad/sec and control signal ur = [-Mx , +Mx]. 

 

4.1.  Linguistic Description 

The input and output variables of the fuzzy controllers were explained in this section. The inputs xi є 

i, where i, i =1, 2 is the universe of discourse of the two inputs.  For linguistic input variable, 1x~  = “error 

angle,” the universe of discourse, 1 = [-1, 1] rad, represents the range of perturbation angle from the zero 

reference. For linguistic input variable 2x~  = “error angle rate,” the universe of discourse is 2 = [-1, 1] rad 

/sec. The output universe of discourse  = [-Mz, +Mz] represents the on-off output ỹ є. The set 
j

iA
~

 defines 

the j
th

 linguistic value of linguistic variable ix~ , defined over the universe of discourse i. The control level of 

the system operation can be defined for input 1x~   by the following linguistic values: 

 

LPASPAZASNALNAA j
i 

5
1

4
1

3
1

2
1

1
11

~
,

~
,

~
,

~
,

~~
                                                (7)

 

 

Similar linguistic values are selected for input 2x~ ; i.e., 
j

2A
~

  
j

1A
~

.  The set 
j

1B
~

 denotes the 

linguistic values for output linguistic variable ỹ1 and is defined as 

 

]12
1

~
,21

1
~

[
~

JBJB
j

iB 
                                                                                                                (8)                                 

where J1 and J2 are on/off commands for thrusters.  

 

4.2.  Fuzzy Rules 

The rules are based on two input variables. These variables have five linguistic values. Thus, there 

are 25 possible rules. The rules were described in matrix form in Table 3. The rules partitions are 

heuristically chosen to reset the angle smoothly over the universe of discourse. 

 

 

Table 3.   Fuzzy Rules 

  .

  

LP SP Z SN LN  

____ 
XM  XM  XM  XM  LN 

 

XM  ____ 
XM  XM  XM  SN 

XM  XM  ____ 
XM  XM  Z 

XM  XM  XM  ____ 
XM  SP 

XM  XM  XM  XM  ____ LP 
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Figure 2. Membership functions of input “error angle” 

 

 

 
 

Figure 3. Membership functions of input  “error angle rate” 

 

 

 
 

Figure 4. Output Membership functions 

 

 

5. PARTICLE SWARM OPTIMIZATION (PSO) ALGORITM 
Particle swarm optimization method includes a definite number of particles with random initial 

values. Values of attitude and velocity are defined for the particles. These values are modeled by a position 

vector and velocity vector, respectively. These particles move in n-dimensional space of the problem to find 

new options based on the optimality value as the assessment criterion. The problem space dimension is equal 

to the number of effective parameters in the optimization function. The best location of particles in the past 

and the particle with the best conditions are saved in separate memory spaces. Based on these memories, 

particles decide how to move in future. In the repetitions, all particles move in n-dimensional problem space. 

Finally, the public optimum point is found. Particles modify their velocity and location based on the local and 

public best solutions. 

 

)()( ,,22.,11,, pprpprvv
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nm
globalbest
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nm
localbest
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nm
new

nm 
 

vpp new
nm

old
nm

new
nm ,,, 

                                                                                                                   (9)                                                

where 
v

new
nm,

 is particle velocity, 
p nm,  is particle variable, 

rr 21,
 are independent random numbers 

with uniform distribution,  21, are learning factors, 
p

localbest

nm, is the best local response, and 
p

globalbest

nm, is the 

best absolute solution. Particle swarm optimization algorithm updates the particles velocity vector and then 

adds the new velocity value to attitude or particle value. The velocity update is affected by both local and 
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absolute best solutions. The local and absolute  best solutions are the ever best solutions obtained by a 

particle and in the population, respectively. Constants  21,  are cognitive (perceptual) parameter and 

social parameter. The main advantages of particle swarm optimization are simplicity and low number of 

effective parameters. Also, this algorithm can optimize complex cost functions with a large number of local 

minimums. 

 

 

 
 

Figure 5. General structure of particle swarm algorithm 

 

 

 
 

Figure 6. Roll angle operation of fuzzy on-off controller with dead band (nonlinear model) 

 

 

5.1.  Applying particle swarm algoritm in fuzzy on-off system to reduce limit cycle  

Particle swarm algorithm was used to determine the membership functions parameters of the fuzzy 

system inputs. The intervals of these parameters should be determined first. Thus, it’s necessary to obtain the 

interval changes of the introduced characters. The interval change is (-1،1). Then, the membership functions 

parameters of all principles can be defined by analyzing the intervals. The optimization variables are fuzzy 

parameters selected according to the membership functions. The number of these variables is 30; therefore, a 

30-dimensional space was considered to find the optimum state. Then, the factors were supposed. The 

minimum number of factors is twice the number of variables. 90 factors were considered in this research. 

These factors spread in the space. The particles move to the location with lower value of cost function. 

Finally, after a few trials, the optimum point was found with the minimum value of membership function. 

Then, the output was computed using absolute error integral technique for time range of 1000 to 2500 that is 

equal to 10 to 25 seconds, i.e. the time when state variables reach the steady state; in fact, the time when the 

state oscillates around zero and reach the steady-state. The membership function should be integrated to 

reduce the amplitude. Finally, the system outputs, Euler angles, were computed. 

 

 

6. SIMULATION 

In this section the system response to initial conditions (zero input response) was analyzed .In fig.6, 

For fuzzy on-off controller, the roll angle oscillates after 18 seconds with the amplitude of 0.02 radians (1.1 

degrees) with frequency of 0.028 hertz. Since rate feedback introduces damping to the system, the phase 

plane trajectory shows that the time response decays toward the origin where both rate and position are zero. 

Viewed in terms of the phase plane trajectory, a limit cycle is a closed path which is approached from a 
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starting condition either from inside the closed path (usually with the exception of the origin), or from the 

outside. in the following, we used a deadband for designing controller,. When the angles approach to  0.01 

radians (0.58 degrees), the fuzzy control leaves the orbit by a switch and comes to zero. The control signal 

remains zero until the angle value is in this range. This reduces the oscillations of control system and 

enhances the attitude control. Limit cycle performance is determined by simulation of response to small 

values of initial conditions for the controllers. The same value of limit cycle in the same fuzzy plate is equal 

to frequency of the limit cycle.  

Fig.7a shows the simulation based on Takagi-Sugeno model. As shown in the simulation, the rules 

represent the locus of the moving line. It means that the outputs can move in output space linearly. The extent 

and displacement values are determined based on the inputs. Simulation results show that oscillation 

amplitude for the rolling angle in fig.7a. it is very small after 9 seconds and the frequency is 0.14 hertz. Then 

we used particle swarm optimization algorithm to reduce the oscillation amplitude. The idea was to 

approximate the integrals value by discrete plurals on small intervals. Because of using discrete time to 

compute the integral, its maximum limit is usually considered up to three times of the summit time. So, an 

acceptable result is obtained for the integral. The cost function should be integrated under the optimum state 

to reduce the oscillation amplitude while the system state is oscillating around zero. Thus, the rolling angle 

was computed from 10 seconds to 25 seconds and the optimum state was shown. 

 

 
 

Figure 7a. Roll angle operation of fuzzy on-off controller (T-S model) 

 

 

 
 

Figure 7b. Roll angle operation of optimized fuzzy on-off controller (T-S model) 
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As shown in Figure.7b, the oscillations of control system were reduced. This affects the output. The 

required control torques was reduced and the satellite power decreased at the same time. It’s clear from the 

simulation of optimized fuzzy in fig7b that the oscillation amplitude is near 0.001 radians (0.05 degrees) for 

the rolling angle after 25 seconds. Desirable factors in the fuzzy plate are smaller limit cycle and no bias (i.e. 

angles center should be close to zero). In fuzzy structure, the system is observed as node or oscillation around 

zero. According to the figure of fuzzy plate, satellite power reduces and remains near zero in a limit cycle. 

The difference between the optimum state and the previous one is that the circles in the optimum state reach 

to zero faster. In fact, the convergence was obtained faster. Absolute zero of error value in the steady-state is 

another benefit of the algorithm. 

Figure 8 compares the solutions of zero input response at various roll angles. It is the result of fuzzy 

on-off with dead band (fbbdc), fuzzy on-off Takagi-Sugeno model (ts) and optimized fuzzy on-off (ts-pso). 

Results show that oscillation amplitude of rolling angle was reduced from. 1.1 degrees to 0.05 degrees using 

particle swarm algorithm. Steady-state error and system damping time were reduced using this algorithm. 

 

 

 
 

Figure  8. roll angle comparison of controllers 

 

 

Table 4 shows thruster power before and after applying the particle swarm algorithm. The results 

denote that the power was reduced after using the algorithm and the gas consumption was also reduced in 

thrusters. This is favorable. 

 

 

Table 4.   Power consumption 
Yaw 

angle(NM.S) 

Pitch 

angle(NM.S) 

Roll 

angle(NM.S) 

controller 

44346 54222 44464 fuzzy on-off with dead 
band 

44441 54373 44442 fuzzy on-off based on 

T-S model 

44244 3417 24741 Optimized fuzzy on-

off 

 

 

6.1.  The effects of disturbance on the controllers performance 

Attitude control system was checked under disturbance and controllers resistance was checked by 

step disturbance operation )20(5.0)(  kukdis . The operation was performed by step input of 10 degrees. 

Combination of the disturbance and the control signal affects the system state 

. 
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Figure 9. Roll angle Operation of fuzzy on-off controller With dead band under )20(5.0)(  kukdis (nonlinear 

model) 

 

 

 

Figure 10a. Roll angle Operation of fuzzy on-off controller )20(5.0)(  kukdis (T-S model) 

 

 

 
Figure 10b. Roll angle Operation of optimized fuzzy on-off controller 

)20(5.0)(  kukdis (T-S model) 

 

 
As shown, in the presence of disturbance, the outputs reach to the final value without the steady-

state error. Controller is also capable to remove disturbance. 
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