
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 5, No. 3, September 2016, pp. 119~126

ISSN: 2252-8938  119

Journal homepage: http://iaesjournal.com/online/index.php/IJAI

The Cheapest Shop Seeker: A New Algorithm For Optimization

Problem in a Continous Space

P. B. Shola
 Department of Computer Science , University of Ilorin, Ilorin, Nigeria.

Article Info ABSTRACT

Article history:

Received Jun 7, 2016

Revised Aug 10, 2016

Accepted August 26, 2016

 In this paper a population-based meta-heuristic algorithm for optimization

problems in a continous space is presented.The algorithm,here called

cheapest shop seeker is modeled after a group of shoppers seeking to identify

the cheapest shop (among many available) for shopping. The algorithm was

tested on many benchmark functions with the result compared with those

from some other methods. The algorithm appears to have a better success

rate of hitting the global optimum point of a function and of the rate of

convergence (in terms of the number of iterations required to reach the

optimum value) for some functions in spite of its simplicity.

Keyword:

Continous

Metaheuristic

Optimization

Population
Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

P. B. Shola,

Department of Computer Science,

University of Ilorin, Ilorin, Nigeria.

Email: shola.bp@unilorin.edu.ng

1. INTRODUCTION

Many optimization methods have been developed for solving optimization problems. Among these

are exact methods such as dynamic programming, branch and bound but these are not suitable for large

scale problems as they have exponential running time. The traditional numerical methods such as

(conjugate) gradient method and its likes not only require some conditions (for instance differentiability)

that may violate their applicability to some problems but usually get trapped in local optimums when

applied to optimization problems with multi-modal objective functions. The heuristic-based methods are

limited in application to those problems for which the heuristics are devised. The general purpose heuristics

such as greedy method, hill climbing, and nearest neighbour usually produce near-optimum solutions.

Indeed finding a method that could produce solution to all optimization problems is practically impossible[1].

The only available approach or option we are left with, is then that of developing methods that are able to

solve some classes of the problem but unable to solve others: each optimization method each with its own

area of strength and weakness.

This paper presents a population-based, meta-heuristic method for solving optimization problem in

a continous domain based on a model that mimics the behavior of a group of shoppers collaborating

together to identify the cheapest shop to buy some items in a specified area or region. In general a heuristic-

based method uses a kind of measure or rule to guide the search process within the search space hopefully

towards the solution. A good heuristic for a given problem enables the search procedure to avoid

unprofitable path or dead-end (avoiding excessive backtracking) thereby hastening the search process

towards reaching a solution to the problem in a reasonable amount of time.

Of a general utility is the meta-heuristic which can be applied to many optimization problems even

though they could only guarantee near optimum solution (and not optimum) in many cases. A meta-

heuristic is a high-level procedure or heuristic designed to find, generate or select a heuristic (partial search

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 3, September 2016 : 119 – 126

120

algorithm) that may provide a sufficiently good solution to an optimization problem especially with

incomplete or imperfect information or limited computation capacity [2]. In deed meta-heuristic seems yet

to have a serious rival (with respect to computational time) when it comes to solving large scale optimization

problem. These other methods

1.1. Cheapest Shop Seeker: The model and the proposed Algorithm
The cheapestShopSeekers here proposed is modeled after a group of shoppers cooperatively

seeking for the cheapest shop for shopping. Consequently the method is a population-based type. A

population based technique engages a collection of agents to cooperatively explore the search space for

a solution to a given optimization problem. Unlike a single solution search-based approach that modifies

and improves on a single candidate solution at each iteration step, the population-based maintains and

improves on multiple candidate solutions at each step of its iteration. The success of the method hinges on

the

a. ability of the individual in the group to remember past experiences (i.e the best position attained so

far)

b. cooperation (of group members in terms of experience sharing in pursuant of the common goal).

c. competition (of group members working to survive or be relevant in the group). Intent to look for

position that could improve on the current best global position (in pursuant of the common goal).

d. Independence and self –improvement of each member of the group: the ability of the individual

agent to independently determine its own movement and its intent to improve on its current

position.

Based on these premises the following assumptions are made to produce the algorithm

a. The search space is densely packed with shops available for shopping [each shop is a candidate

solution or a position to be tested for optimality]

b. There is a specified number of shoppers (i.e buyers looking for cheapest shop for shopping)

visiting these shops, all with the common goal : working cooperatively to identify the cheapest shop

among the shops.

c. The shoppers communicate with each other (sharing their experience or adventure – sharing the

cheapest shops they have attained so far).

d. Each shopper uses this information received from other shoppers and his past experience to

determine the next shop to visit.

e. A shopper at or near the current cheapest shop may sometimes ignore his experience or

information available and so launch out to explore other positions in an attempt to find a point

better than the current global optimum point: intent to improve on the current global best (in

pursuant or furtherance of the common goal of seeking the cheapest shop).

In making decision about its next position , the i
th

 seeker (for i=1,2,.. populationSize) considers

adjusting its current position
 to

 (i.e moving to a neighbouring shop) and then moving along

the direction (

) to select the point,

 (

)

 (

)

where is a diagonal matrix for some diagonal entries. This is obtained by noting that can be written

as
 for some diagonal matrix . The addition of (which can be random or otherwise) provides

way of enhancing diversification or explorative process. Since I+D’ is still arbitrary due to arbitrariness of

D’ we could equal write the above as

 (

)

for a diagonal matrix D. This position is now compared with the position

IJ-AI ISSN: 2252-8938 

The Cheapest Shop Seeker : A New Algorithm For Optimization Problem in a Continous Space (P. B. Shola)

121

obtained by moving in the direction
 from its current position

 . The better of

the position in terms of the fitness value is then selected:

 {

 () ()

However if the position selected is too close to the current global optimum, the seeker, (driven by

the desire to be relevant, compete, or improve on the current point) may launch out to explore other points

in the space (generating its position randomly) other than those in the directions
 ,(

).

By this act the explorative process of the algorithm is enhanced.

 G

 (
)

 L

 X

Figure 1. A show of directions of movement of a particle for the case with =0

Based on the model the following algorithm results.

The Algorithm

With the following parameters as defined,

 : positive constants probably in the range [2,4]. In this experiment, , = 3.5 are

used.

dim : the dimension of the problem.

rand() : a random number generator that returns a random number in the range [0,1]

 : a vector denoting the position of particle i at time k (i.e at k

th
 iteration)

 : a vector denoting the global best position (among all the particles) ever attained up to

time k .

 : a vector denoting the best position up to time k ever attained by particle i

 : the geometric distance of position from

minx =(minx1, minx1, ….., minxdim , maxx =(maxx1, maxx1, ….., maxxdim)

where minxj, maxxj (for j=1,2..,dim) are respectively the lower and upper bound for value of

component j of

fitValue(z): the fitness value of position z.

 :

 the bound on the distance of the particle from the current global position below which

particles generate

their position randomly The value =10
-10

 is used in this experiment.

The algorithm is thereby stated as follows,

Initialization step:

a. INITIALIZE randomly the positions
 of all the particles in the population:

 , for i=1,2…,noOfParticles

b. COMPUTE the fitness value, fi =fitValue(
), of each particle’s position

 (for

i=01,2,…noOfParticles).

c. Set the global best position to the particle position with the best fitnesss value

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 3, September 2016 : 119 – 126

122

Iterative step:

for k=1,2,……….noOfIterations do the following looping

for (i=1 ,….., noOfParticles) do the following

{ (i) UPDATE xi
k
 to obtain xi

k+1
 :

a.

b.
 (

)

 (with any component of or out of interval bound generated randomly as in step (a) of

initialization step)

c. If (fitValue(v) >fitValue(u)) then set

 else set
 ;

d. if (distance(
 ,) <) then

(ii) UPDATE global best position GB to obtain and the fitness value of :

if (fitValue() < fitValue(
)) then set =

else =

1.2. Output

 The current global best position, , and its fitness value, fitValue().

2. RESULTS of TEST EXPERIMENT and DISCUSION

The proposed algorithm was implemented in Java using Netbeans 5.0 and tested on many

existing benchmark functions devised for optimization search algorithms. The benchmark functions may

be grouped according to whether they are unimodal (U) having one global optimum point , multimodal

(M) have many local optimum points and separable(S) being expressible as a sum of functions each of

which is a function of one variable. Having this in mind the following benchmark functions were

considered for presentation with results obtained placed on the Tables. The minimization problem is turned

into optimization problem by negating the objective function (i.e min{F(x)} is turned into max{-F(x)}).

F0: Rosenbrock’s(UN): ∑ [

]
 . Global Min: 0

at =1 in [-3,3]
 d
.

F1: De Jong’s ∑

 . Global Min:0 at (0,0,…..,0) in [-10,10]
 d
.

F2: Schwefel (UN) ∑ (∑

)

 . Global Min:0 at (0,0,..,0) in [-10,10]

 d
.

F3: Eggerate :

 . Global Min:0 at (0,0,..,0) in [-2π,

2π]
2
.

F4: Ackley’s (MN) (√

∑

)

∑

Global Min:0 at point (0,0,…..,0) in [-10,10]
 d
.

F5: Griewank (MN): ∑

 ∏

√

 . Global Min :0 at (0,0,…,0)

in [-10,10]
 d
.

F6:

 ∑

 ∏

√

 . Global Min:10 at (0,0,…,0) in [-10,10]
 d
.

IJ-AI ISSN: 2252-8938 

The Cheapest Shop Seeker : A New Algorithm For Optimization Problem in a Continous Space (P. B. Shola)

123

F7 Rastrigin (MS): ∑

 .Global Min:0 at (1,1,..,1)

in [-10,10]
 d
.

F8 Schwefel(MS): –∑ √

 . Global Min:0 at

 =420.9867 in [-500,500]
 d
.

F9 Styblinski-Tang():

∑

 .Optimum. value:39.165999*d

at =-2.903534

F10 Dixon-Price (MS): ∑

 .Global Min:0, in

 [-10,10]
d

F11 Zakharov(MS): ∑

 ∑

 ∑

 . Global Min:0 at

 =0 in [-5,10]
 d
.

F12 Trial 6 (MS): ∑
 ∑

 . Global Min:-50 for d=6,-200 for

d=10, in [-d
2
,d

2
]

d
.

Tables 1, 2 present the results obtained from the method on the these functions but with the

dimension 10,20,30,40 and population size 20. The average best (ave. Best), average (Ave) and the

standard deviation (Std. Dev) of fitness values were computed over 20 runs of the algorithm with each run

comprising of 50,000 iterations over the particle population.The parameter values D=[] (with = 2.4

here for all i) , , = 3.5 , = 10
-10

 were used in the test.

The algorithm attains the global optimum for all the functions except on F10 for dimension above

20 to which the algorithm converges to 0.666667 instead of the optimum 0. Although for dimension 40

the algorithm fails to reach the optimum for function F2 for population size 20 and 50 000 iterations it

does reach it when the population and the number of iterations were increased to 70 and 500 000

respectively (see Table 3).

Table 1. Result comparing the algorithm with PSO for Dimension = 10 population = 20

with 50 000 iterations per run
Func Dimension 10 Dimension 20

 Best Ave Std. Dev Best Ave Std.Dev

F0 0.000001 0.000002 0.000001 0.000000 0.000000 0.000000

F1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F2 0.000000 0.000000 0.000000 0.000000 0.001855 0.006687
F3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000

F7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F8 0.000000 0.000000 0.000000 -0.000000 0.000000 0.000000
F9 391.661804 391.661682 0.000092 783.323669 783.323425 0.000147

F10 0.000000 0.533333 0.266667 -0.000000 -0.633333 0.145297

F11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 2. Result for Dimension=30, 40 population = 20 with 50 000 iterations per run
Fuc Dimension:30 Dimension: 40
 Best Ave Std.Dev Best Ave Std.Dev

F0 0.000237 6.837006 8.143482 0.037839 17.211248 9.353196

F1 0.000000 0.000000 0.000000 -0.000000 -0.000000 0.000000
F2 0.000000 2229.653809 1231.072388 1628.177368 4119.499023 1432.933960

F3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F4 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

F6 10.000000 10.000000 0.000000 10.000000 10.000000 0.000000

F7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
F8 0.003906 0.003906 0.000000 0.009766 0.009766 0.000000

F9 1174.98571 1174.985596 0.000281 1566.648315 1566.647705 0.000391

F10 0.666667 0.666667 0.000000 0.666667 3.235879 9.577686
F11 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 3, September 2016 : 119 – 126

124

Figure 2 presents a graph showing the performance of the algorithm with respect to the increase

in the dimension of the functions with the population size and number of iterations fixed at 20 and 50 000

respectively. It is a plot of the standard deviation of the fitness values against the functions’ dimension.

Except on F2, the graph shows that the performance of the algorithm on these other functions is not

much affected with this increase in the function’s dimension. But For F2, the number of iterations had to be

increased to improve performance as the dimension increases beyond 20.

 Dimension

Figure 2. A graph of standard deviation of fitness values of the functions against the dimension of the

functions population:20, number of iterations:50000

The graph in Figure 3 (that contains a plot of standard deviation against the number of iterations)

shows the effect of increase in the number of iterations on the algorithm with dimension fixed at 10. The

graph appears to lend credence to this view that an improvement in the result may sometimes be attained

with more iterations.

 No of iterations

Figure 3. A graph of standard deviation of fitness values of the functions against the number of iterations

 for dimension 10, population 20

The graph also shows that about 5000 iterations are needed to get reasonable result for these

functions.Table 4 below presents the result from the popular algorithms genetic algorithm (GA),Differential

evolution(DE), artificial bee colony (ABC) as recorded in [19,20] for population size 50 and 500 000

iterations on some benchmark functions. Also presented on the table is the result of the

cheapeastShopSeekers (CSS) (but for population 20, and 50 000 iterations) for comparison. Those

algorithms with the best results for those functions are written in bold.

0

200

400

600

800

1000

1200

1400

1600

10 20 30 40

F0

F1

F2

F3

F4

F5

F6

F7

0

50

100

150

200

250

300

5
0
0

1
0
00

2
0
00

5
0
00

1
0
00
0

2
0
00
0

3
0
00
0

4
0
00
0

5
0
00
0

F0

F1

F2

F3

F4

F5

F6

F7

IJ-AI ISSN: 2252-8938 

The Cheapest Shop Seeker : A New Algorithm For Optimization Problem in a Continous Space (P. B. Shola)

125

Table 4. comparing results of the algorithm with those of other popular algorithms CSS (population:20,

iterations:50 000), GA,PSO,DE,ABC (population:50 iterations: 500 000) Dimension:30
Fun Algorithm Ave. Best Std. Dev Fun Algorithm Ave. Best Std. Dev

F0 CSS

GA

PSO
DE

ABC

0.000237

1.96E+05

15.088617
18.203938

0.0887707

8.143482

3.85E+04

24.170196
5.036187

0.077390

F7 CSS,ABC

GA

PSO
DE

0

52.92259

43.9771369
11.716728

0

4.564860

11.728676
2.538172

F8 CSS
GA

PSO

DE
ABC

0.003906
-11593.4

-6909.1359

-10266
-1256.487

0
93.254240

457.957783

521.849292
0

F1 CSS, PSO,

DE, ABC

GA

0

0

1.11E+03

0

0

74.214474

F2 CSS

PSO,DE,ABC
GA

0

0
7.40E+03

1231.072388

0
1.14E+03

F4 CSS,DE,ABC

GA
PSO

0

0
14.67178

0.16462236

0

0
0.178141

0.493867

F10 CSS

GA
PSO

DE

ABC

0.66666667

1.22E+03
0.66666667

0.66666667

0

0

2.66E+02
E-8

E-9

0

F5 CSS,PSO,DE

GA

ABC

0

0.013355

0.0002476

0

0.004532

0.000183

F11

CSS,ABC

GA

PSO
DE

0

10.63346

0.1739118
0.0014792

0

1.161455

0.020808
0.002958

The algorithm is able to match these algorithms (in terms of results) even with population size 20

and 50 000 iterations (being among the best for these functions even for that population size and the

number of iterations) except for function F10 where the algorithm fails to reach the optimum (rather

hanging at 0.666667) for dimension greater than 20.

3. CONCLUSION

In this paper a population based meta-heuristic algorithm for optimization problems is presented.

The algorithm, called cheapest shop seeker, is modeled to mimic a group of shoppers cooperatively seeking

for the cheapest shop for shopping.The algorithm is tested over some benchmark functions with dimension

10,20.30, 40 and some of the results are presented on the table above. The graphs depicting its tolerance

to dimension increase (at least up to 40) and its sensitivity to the number of iterations required to attain

optimum are also presented. A comparison of the results the algorithm produced on these functions and

those recorded in [19,20] for genetic algorithm(GA), particle swarm optimization (PSO), Differential

evolution (DE) and artificial bee colony(ABC) was also made and presented.The algorithm appears to have

a better success rate of reaching the global optimum point and with fewer number of iterations required to

attain it.The simplicity of the algorithm compared with some of these algorithms is another feature of the

algorithm.

REFERENCES
[1] Wolpert D. H, Macready W. G(1997), “No free lunch theorem for optimization”; IEEE Trans. Evol.

Comput. 1997:1:67-82.

[2] Bianchi,Leonora, M Dorigo and others (2009) “A survey on metaheuristic for stochastic combinational

optimization” Natural computing: an international Journal 8 (2):239-289

[3] R.S.Parpinelli And H.S. Lopes (2011), New inspirations in swarm intelligence: A survey, International

Journal of Bio-inspired computation Vol 3. No. 1 2011 pp1-15

[4] Kennedy J. and Eberhart J. (1995) Particle swarm optimization. In Proc. IEEE International

Conference Neural Networks , Piscataway, NJ, vol 4, 1995, pp 1942-1948.

[5] Reynolds C.W(1987).Flocks, herbs and schools: A distributed behavioral model, Proceedings on

computer Graphics-ACM SIGGRAPH ’87, vol 21 No 4 pp25-34

[6] Rashedi E. and others (2009) GSA: a gravitational search algorithm . Information sciences 179(13):(

2232-

2248.2009)

[7] Albert Y.S. Lam and Victor O.K.Li(2009) Chemical-Reaction-Inspired Metaheuristic for

optimization, Technical Report TR-2009-003, Dept of Electrical & Electronic Engineering, The

University of Hong Kong.

  ISSN: 2252-8938

IJ-AI Vol. 5, No. 3, September 2016 : 119 – 126

126

[8] Y.Tan and Y. Zhu (2010) “Fireworks algorithm for optimization”, Advances in Swarm Intelligence.

LNCS, vol. 6145, pp. 355-364

[9] S.Zheng, J.A., and Y.Tan,(2013) “Enhanced fireworks algorithm”, in Proc. Of the 20134 IEEE Congress

on Evolutionary Computation (CEC 2013), pp.2069-2077

[10] Cheng M & Prayogo D. (2014) Symbiotic Organisms search: A new metaheuristic optimization

algorithm, Computers and Structures 139 pp 98-112

[11] Iztok Fister Jr and others (2013) A Brief Review of Nature-inspired Algorithms for optimization,

ELEKTROTEHNISKI VESTNIK 80 (3) (2013) English edition.

[12] Veenu Mangat(2010) Swarm Intelligence Based Technique for Rule mining in Medical

Domain,International Journal of Computer application (0975-8887) vol 4 N0 1, July 2010

[13] Tiago Sousa and others (2004) Particle Swarm based Data Mining Algorithms for classification

tasks, Parallel Computing 30 (2004) 767-783

[14] Sadollah A., Bahreininejad A., Eskandar H., Hamdi M. (2013) Mine blast algorithm: A new

population based

algorithm for solving constrained engineering optimization problems , Applied soft computing 13 pp

2592-2612

[15] Yang X.S., Deb S (2010) Engineering optimization by Cuckoo search, Int. J. Mathematical Modelling

and Numerical optimization, 1(4): 330-343.

[16] Cupic M, Golub M. , Jakobovic D(2009) Exam Timetabling using Genetic algorithm, Proceeding of

ITI 2009 31 Int. Conf, on Information Technology interfaces June 22-25, 2009 Cavtat, Croatia.

[17] Hybrid Genetic Algorithm and TABU Search Algorithm to solve class Time Table Scheduling

Problem, International of Research studies in Computer Science and Engineering (IJRSCSE) volume

1, issue 4, August 2014 pp19-26

[18] Edmund K. Burke and others(2008) A hybrid heuristic ordering and variable neighbourhood search

for the nurse rostering problem, European Journal of Operation research 188(2008) 330-341

[19] Dervis Karaboga, Bahriye Akay(2009), Comparative study of Artificial Bee Colony Algorithm, Applied

Mathematics . and computation 214 (2009) 108-132],

[20] Dervis Karaboga & Bahriye Basturk(2007) A powerful and efficient algorithm for numerical function

optimatization: artificial bee colony (ABC) algorithm, J. Glob optim 39:459-471 Dol 10.1007/s10898-

007-9149-X.

