A Novel Optimization Algorithm Based on Stinging Behavior of Bee

S. Jayalakshmi, R. Aswini

Department of Computer Science and Engineering, IFET College of Engineering, Villupuram, India

Article Info

ABSTRACT

Article history:

Received Jul 20, 2018 Revised Sept 5, 2018 Accepted Sept 25, 2018

Keyword:

Anomaly detection Bio-Inspired Algorithms Host intrusion detection system Index Terms-Optimization algorithms Stinging behavior

Optimization algorithms are search methods to find an optimal solution to a problem with a set of constraints. Bio-Inspired Algorithms (BIAs) are based on biological behavior to solve a real world problem. BIA with optimization technique is to improve the overall performance of BIA. The aim of this paper is to introduce a novel optimization algorithm which is inspired by natural stinging behavior of honey bee to find the optimal solution. This algorithm performs both monitor and sting if any occurrence of predators. By applying a novel optimization algorithm based on stinging behavior of bee, used to solve the intrusion detection problems. In this paper, a new host intrusion detection system based on novel optimization algorithm has been proposed and implemented. The performance of the proposed Anomaly-based Host Intrusion Detection System (A-HIDS) using a novel optimization algorithm based on stinging behavior of bee has been tested. In this paper, after an explanation of the natural stinging behavior of honey bee, a novel optimization algorithm and A-HIDS are described and implemented. The results show that the novel optimization algorithm offers some advantage according to the nature of the problem.

> Copyright © 2018 Institute of Advanced Engineering and Science. All rights reserved.

Corresponding Author:

S. Jayalakshmi, Department of Computer Science and Engineering, IFET College of Engineering, Villupuram, India. Email: sjayalakshmiicon@gmail.com

1. INTRODUCTION

Optimization is the process of getting the best result from the given circumstances. Design, construction and maintenance of engineering systems comprises of decision making both at the managerial and the technological level. Goals of such decisions are to minimize the effort required or to maximize the desired benefit. Needs of optimization is the most cost effective or highest attainable performance under the given constraints, by maximizing desired factors and minimizing undesired ones. The maximization is defined as to obtaining more result without cost. An optimization problem is the problem of finding the best solution from all feasible solutions. The optimization problems are knapsack problem, traveling salesman, vehicle routing problem, Job Shop Scheduling, etc.

An optimization algorithm is a process which is executed repeatedly by comparing various results until exact solution is found. There are two types of optimization algorithms. Deterministic Algorithms use specific order for changing one result to other. These algorithms are in used in some times and which is applied in engineering design problems. Stochastic Algorithms are achieving popularity due to certain properties with probabilistic translation rules.

The bio-inspired (biologically inspired) methods have several features and advantages compared to conventional optimization solvers and also to solve hard-to-define (in simple expressions), real-world problems. These bio-inspired methods have provided novel ways of problem-solving for practical issues in

traffic routing, networking, games, industry, robotics, civil, water resources and others fields. The needs to go for bio-inspired algorithm is finding the solution for complex optimization problem based on animal behavior. Biologically Inspired Systems are observing animal and human behaviors and Study biological structures. Acquired knowledge may help us mimic nature and develop better engineering systems and machines.

Bio-inspired computing is deal with complicated issues using computational methods. The objective is to produce informatics tools with enhanced robustness, flexibility, scalability and that can interface more effectively with humans. It is a multi-disciplinary process with based on Biology, Informatics, Cognitive Science, Computer Science and robotics. We study bio-inspired algorithms in security, computational intelligence, information retrieval, robotics, modeling and simulation, machine learning, and biology itself.

2. PROBLEM STATEMENT

Most of the contemporary computer security research work is based on Intrusion detection is a component of detection processes. It tries to identify if a host is under attack or not. HIDS (host Intrusion Detection System) based on location from which it collects data and anomaly based HIDS (A-HIDS). The most popular approach for today's HIDS is still signature based. It performs intrusion detection by searching for content or sequence of bytes in a single packet. This approach works well if the pattern of attacks could be found in advance. This approach is reliable and has low false negatives rate for detecting known attacks. However, it cannot detect new attacks or mutation of known attacks because have not been discovered. Anomaly-based detection (A-HIDS) builds models of normal behavior in a system, and attempt to identify attacks on deviations from the normal network activities. Anomaly-based detectors can detect new and completely unknown attacks but may have high false positive rates.

3. PROPOSED SYSTEM

3.1. Bee Stinging Behaviour

Honey bees have three castes are queens, workers, and drones. Drones are male, while workers and queens are female. Queen bee will spend half period of her life for mating (i.e. Outside of hive) and remaining lifetime it lays eggs. It has stinger used to sting other queen bees during mating for dominance. Drone is used to find the queen bee only for mating, after mating it will be dead. It has no stinger. Workers develop in 21 days. Their duties change upon the bee age in the order (birth with cleaning out their own cell after eating through their capped brood cell) are feed brood, receive nectar, clean hive, guard duty, scout, onlooker and foraging (employed bee). Some workers employ in other functional behaviors, such as "undertaking" (removing corpses of their nest mates from inside the hive).

Honeybees attack only to protect their colony, but will also attack if they are continuously disturbed outside the nest. Typical sources of attack which motivation for honeybees to add alarm pheromone, vibrations, carbon dioxide, hair, and dark colors. Stinging is the eventual final act of a honeybee, because after that she will die. First the bee becomes alerted; she takes on a guarding stance and extends the sting that recruits other bees by generating alarm pheromone. Secondly, the bee will search for the origin of stimulus and conform towards it. Final one is she will attack; emitting a high pitched buzz sound and making body thrusts against the origin of disturbance. In such a protection activity, honeybees rarely pursue stimuli for long distances (pursue victims for hundreds of meters). If a sting occurs, then the bee will die soon, after stinging because the sting is left behind the predators and the bee eviscerate itself in flying away. Once the bee's stinger is inside a victim, it pumps out more venom and release alarm pheromones. During this time, the stinging bee will spend its dying moments disturbing its victim by flying around its head as if it were going to sting (attack) again the victim.

3.2. Bee Stinging Behaviour

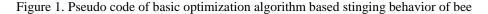
In this proposed algorithm, as it has already been mentioned, an algorithm based on the stinging behavior of honey bee is presented. The general steps of the proposed novel optimization algorithm based on bee stinging behavior are presented in Figure 1.

The proposed algorithm is novel optimization algorithm based on the stinging behavior of honey bee. The novel optimization algorithm based on stinging behavior of bee is a population based search algorithm inspired by the natural stinging behavior of honey bee. Bees are species that adapt to the environment easily, so organized society is generated. The hive of the honeybee protect from many predators(Insects) such as ants, wasps, and other hive bees are intruders, as well as many mammals are bears, skunks, mice, and humans. The attack behavior of bees is protective to certain stimuli that signal the colony is in danger.

A bee will rarely sting when it is away from the hive foraging on pollen, nectar or water and also a bee sting if it is handled roughly. Venom is generated from the worker's venom gland and that is stored in the venom sac, which is filled within 14 days after their birth. The age distribution of the bees in a hive is relevant,

and that colonies with many bees less than 2 weeks, whose venom sacs are not yet filled, it show relatively little defensive behavior. A worker stings another bee to without injury to sting, but if worker stings into any other thicker skin get died.

Pseud	o code of basic optimization Algorithm based stinging behavior of bee
1.	Initialazion
2.	Generate the initial population randomly.
3.	Assignment of the task as the guard bee.
4.	Sensing abnormal activities for protection of colony.
5.	While (sens any abnormal activities)
6.	Release alarm pheromone for communication with worker bees to locate and mark threat.
7.	If evaluate activities to be continued then
8.	recruit bees to sting threat
9.	stinging release more pheromone to increase attack.
10.	End if
11.	Repeat the process until the disturbance is over.
12.	End while



In the basic algorithm, the first step of the algorithm starts by worker bees being placed randomly in search space. The second step of the algorithm is assigning the duties to each and every worker bees. The worker bee contains many duties like nursing bee, hive cleaning, foraging, guard duty, etc. the algorithm mainly based on guard bees to protect the hive. The guard bees are used to protect the hive, queen and themselves from intruders (insects), mammals and other bees (robbing bees). The third step of the algorithm is based on the guard duty which is used to protect hive, queen, food and themselves. It is randomly checking any abnormal activities done form the outside of colony. If any abnormal activities are done then the guard bees are releases alarms pheromones to recruit the other bee to attack the intruders. All the bees are located and marker the intruders based on some identification like hair, smell, color, etc. If the process is continued simultaneously then sting the intruder which emits pheromone to recruit all bees to sting the intruders (i.e. increase the attacks). The process is continued until the intruder is stopped disturbance or move away from the colony.

The first step to our model is describes hunting behavior. Worker bees duties change upon the bee age in the order (birth with cleaning out their own cell after eating through their capped brood cell) are feed brood, receive nectar, clean hive, guard duty, scout, onlooker and foraging (employed bee). Some workers employ in other functional behaviors, such as cleaning corpses of their nest mates from inside the hive. The initial state of all worker bee is the state 'decided' U(t), means that they are doing their duties continuously. If such an decided worker bee meets a living prey animal in its surrounding environment, it stings (thus kills) this prey and thus becomes a stinger worker bee (S(t)) for some time (τ Stingers). After this time period it stops stinging and becomes an decided worker bee U(t) again. Assumed that the higher the spatial density of prey is expressed by variable Ψ (t)-the faster decided worker bee encounters a living prey item and the faster it is recruited to the stinging task. This process of recruitment R for stinging is therefore modeled as the following Equation 1,

$$\mathbf{R} = \alpha_{\text{Stingers}} \cdot \Psi(\mathbf{t}) \cdot \mathbf{U}(\mathbf{t}) \tag{1}$$

whereby α Stingers is the recruitment rate of decided worker bees to stingers. The abandoning from the stinging task is expressed by β Stingers (t) modeled as the following Equation 2, whereby.

$$\beta_{\text{Stingers}} = 1/\tau_{\text{Stingers}} \tag{2}$$

 $\beta_{\text{Stingers}}(t)$ is the abandonment rate of stinging worker bees. These considerations finally lead to Equation 3, which describes the dynamics of the stinger worker bee task group

$$\frac{dS}{dt} = \alpha_{\text{Stingers}} \cdot \Psi(t) \cdot U(t) - \beta_{\text{Stingers}} \cdot S(t)$$
(3)

As consider worker bee population as being a closed system, it can model the dynamics of the decided worker bee by the following Equation 4, whereby nHunters expresses the total number of hunting ants and U(t) expresses the number of decided worker bee:

$$U(t) = n_{Hunters} - S(t)$$
⁽⁴⁾

A Novel Optimization Algorithm Based on Stinging Behavior of Bee (S. Jayalakshmi)

The number of worker bee that engage in the hunting task in the full colony population (nColony) depends on the colony size. Even smaller colonies have a higher number of workers engaging in hunting than larger colonies modeled as the following Equation 5.

$$n_{\text{Hunters}} = n_{\text{Colony}} \cdot \frac{0.0795}{n_{\text{Colony}}^{0.1309} - 1.22}$$
(5)

3.3. Flowchart for Proposed System

The below flow chart represent how bees are protect their hive by using stinging behavior is used in optimization algorithm to improve the performance of the bio-inspired algorithm. Worker bees duties change upon the bee age in the order (birth with cleaning out their own cell after eating through their capped brood cell) are feed brood, receive nectar, clean hive, guard duty, scout, onlooker and foraging (employed bee). Some workers employ in other functional behaviors, such as cleaning corpses of their nest mates from inside the hive. This section describes about stinging behavior of bee. In Honey bee colony, guard bees are monitoring the entrance to their hive for intruders. Guard bees are sting for three reasons. First one is intruders, Honey bees behave defensively when intruder are near. While monitoring, if guard bees are find intruder for example prey, then it will signal the intruder and also release alarm pheromone to other bees. If the process is continued, then it will sting the intruder.

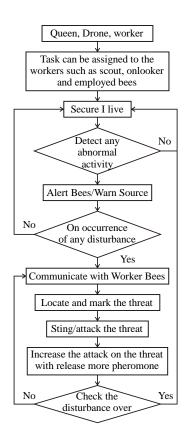


Figure 2. Flow chart of the proposed algorithm

Second one is other hive bees; guard bees are won't allow other hive bee because they will rob honey, pollen and nectar. They identify the other hive bees based on pheromone (i.e each hive contains a unique pheromone) by using guard bees' sensing antennas. If other bees are continued to enter the hive then they will sting other bee.

Third one is to protect our self from any other while gathering pollen and nectar. Honey bees are capable to sting only once. Because stingers consist of barbs and are attached to the worker's intestine, they detach from the stinging bee's body after attacking a victim. After stinging, honey bee will die soon after transferring its venom; pheromones released at the time of attack will alarm and stimulate other worker bees to attack described in the Figure 2.

4. PERFORMANCE EVALUATION

4.1. Intrusion Detection System

Intrusion is the set of actions that attempts to compromise integrity, confidentiality or availability of network resources; while an intruder is any user or group of users who initiates such intrusive action. An Intrusion Detection System is engineered to generate an alert when it observes potentially malicious traffic. It monitors packets from network connections and determines if it is an intrusive activity or not. Once an intrusion is detected, the IDS simply performs one of the following actions: (a) Logs in a message into system audit file to be later analyzed by network security experts, (b) Send email alert to a network administrators, and (c) Stops such connection to end an intruder's attack (as placed under Intrusion Prevention System) amongst many other functions.

Intrusion Detection Systems (IDS) are security tools that provided to strengthen the security of communication and information systems. This approach is similar to other measures such as antivirus software, firewalls and access control schemes. It is divided into an anomaly detection system and signature detection system [3]. The signature based detection identifies traffic data which is to be dangerous attack where anomaly detection compares activities against a normal behavior. Hybrid intrusion detection systems combine the techniques of both these approaches. Each technique has its own advantages and disadvantages. The advantage of anomaly detection system as follows. Firstly, they are capable of detecting insider attacks. For example if any user is using any stolen account and perform such actions that are beyond normal profile of the user, an alarm will be generated by the anomaly detection system. Secondly, the detection system is based on custom made profiles. It becomes very difficult for an attacker to carry out any activity without setting off an alarm. Finally, it can detect the attacks that are previously not known. Anomaly detection systems look for anomalous events rather than the attacks.

Many HIDS employ techniques for both signature and anomaly based IDS. Signature based HIDS can only derive from well known attacks, whereas anomaly IDS can derive from both unknown and known attacks. Based on this reason, I have chosen the anomaly technique in the proposed system. Basically, the anomaly intrusion detection technique can be categorized into three categories: 1) statistically based, 2) knowledge based. The traditional detection method is also as called behavioral or statistical anomaly detection. It selects key data about network traffic as behavior to recognize the regular activities [1]. Another anomaly technique is knowledge based anomaly detection which compromise of set of rules. These set of rules are the basis of the desired model that determine the system behavior [2].

Anomaly detection is also called a hybrid detection system. It is a method to detecting the patterns in a data knowledge whose activity is not natural on certain condition. These unexpected behaviors are also termed as anomalies or outliers. The anomalies are not always considered as an attack but it identifies abnormal behavior which is previously not known. It may or may not be harmful. The anomaly detection provides very significant and critical information in various applications, for example Credit card thefts or identity thefts [4]. Mining techniques are used to analyzing the data by predict relationship between data. These include clustering, classification and machine based learning techniques. Hybrid approaches are also being created in order to attain higher level of accuracy on detecting anomalies. In this approach the authors try to combine existing data mining algorithms to derive better results. Thus detecting the abnormal or unexpected behavior or anomalies will yield to study and categorize it into new type of attacks or any particular type of intrusions.

4.2. Basic Methodology of Anomaly Detection Technique

Although different anomaly approaches exists, as shown in Figure 3 parameter wise train a model prior to detection.

- 1. *Parameterization*: Pre processing data into a pre-established formats such that it is acceptable or in accordance with the targeted systems behavior.
- 2. *Training stage*: A model is built on the basis of normal (or abnormal) behavior of the system. It can be both manual and automatic.
- 3. *Detection stage*: It is compared with the pre defined observed traffic activities with available data. If the deviation found exceeds (or is less than when in the case of abnormality models) from a pre defined threshold then an alarm will be triggered.

(7)

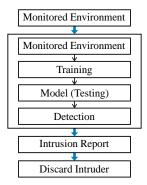


Figure 3. Methodology of Anomaly Detection

4.3. OABBS Algorithm for A-HIDS

The proposed algorithm for anomaly based host intrusion detection system (A-HIDS) which is based on a novel optimization algorithm based on stinging behavior of bee. The proposed algorithm is used to find the malicious node and discard the malicious node. The proposed algorithm mimics the guard duty of honey bee for monitoring and stinging behavior of honey bee for find and discard malicious node. Let 'X' be the population of 'I' individuals packets (indiv1, indiv2, indiv3,...indivn). The proposed algorithm consist of three main steps of monitoring the host, finding malicious node, and discard malicious node which is described in the Figure 4.

In the monitoring phase, Initialize the 'Xn' population and 'Dn' generated detectors randomly whereby 'n' is the number of packet. The 'Dn' detectors monitoring the host and incoming 'n' packets (n=1, 2, 3,...wb) and 'T' is the total number of detectors. The detector finds the malicious node based on the malicious node. The formula for 'threshold value' and m is the number of generated detectors.

Threshold value =
$$\frac{\sum_{i=0}^{m} \text{ fitness of detector}}{m}$$
 (6)

In finding the malicious node phase, let 'maxthershold' is the maximum threshold value and 'threshold' is the initial threshold value. If initial threshold value of the packet is greater than maximum threshold value then it will find the malicious node through that value. The threshold value is set or increased based on the anomaly behavior. Furthermore, comparing the normal behavior and anomaly behavior from host 'H(n)' whereby 'H(n)' is the number of host. If all the condition is true (i.e found anomaly) then it will generate alarm 'Aj' to neighbor node 'N(n)' whereby 'Aj' is the number of alarm generated and 'N(n)' is the number of neighbor node.

In discarding the malicious node phase, based on the alarm to the neighbor node will find the malicious node 'A(n)' whereby 'A(n)' is the number of anomaly node. After finding the anomaly node, check the anomaly behavior is continued based on the threshold value. If it is reached the threshold value then recruit nearest neighbor node to the anomaly node and store new intrusion in the records. The nearest neighbor node will locate and mark anomaly node then discard the anomaly node from the network.

BEGIN

'X' be the population of 'I' individuals X={*indiv*₁, *indiv*₂, *indiv*₃, ...*indiv*_n}

- 1. Initialize the population 'X_n' randomly for threshold=0, maxthershold, A_j , H(n), N(n), A(n), m, n=1, 2, 3, ..., wb
- 2. Initialize randomly generated detectors D_n
- 3. Set *T*=Total number of detectors

Threshold value =
$$\frac{\sum_{i=0}^{m} \text{ fitness of detector}}{m}$$

- 4. Repeat the step 7 until threshold < maxthershold
- 5. IF
 - 4.1 Compare ((H(n)=normal)V(H(n)=anomaly))
 - 4.2 If it is anomaly then produce a alarm A_j to neighbor node N(n)
 - 4.3 Calculate *threshold value* by (1) based on A_j for D_n
- END IF
 WHILE
 - 7.1 Check H(n)=anomaly is continued based on threshold value

7.2 Check *threshold value* by step 2.

7.3 If the *threshold value* is satisfied by step 2, then

7.4 Assign $D_n = new_intrusion$

- 7.5 Recruit nearest N(n) for Anomaly node A(n) by (1)
- 7.6 Locate and mark the A(n)
- 7.7 Discard A(n)
- 7.8 Repeat until it continued by step 2 8. END WHILE

END

Figure 4. Optimization Algorithm Based on Bee Stinging (OABBS) for A-HIDS

4.4. Flowchart for A-Hids

Initialize the entire node and it is in monitored environment by checking the threshold value of incoming packet and comparing the normal and anomaly behavior.

If the entire condition is satisfied then it will generate the alarm otherwise it will allow packet to the host. If the threshold value of the packet is reached the maximum threshold value then recruit other nearest neighbor node by generating continuous alarm and also store it as a new intrusion. The neighbor nodes are located and mark the anomaly node. Finally discard the anomaly node form the network. This process is continued until the disturbance is stopped which is described in the Figure 5.

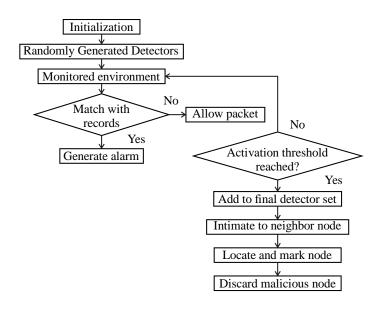


Figure 5. Flowchart of Optimization Algorithm Based on Bee Stinging (OABBS) for A-HIDS

5. EXPERIMENTAL RESULTS

In this section, to discuss our approach to evaluate the effectiveness of the proposed algorithm in detecting malicious activities in web server log files. Moreover, we examine the capability of the features that are extracted from log files to capture the properties of attributes that have been collected in Enhanced Custom Log file (ECL) files.

The proposed OABBS algorithm, three different algorithms including Real-valued Negative Selection (RNS), Artificial Bee Colony (ABC) and Support Vector Machine (SVM) algorithm are chosen to learn the dataset which is generated from the ECL log files.

Both SVM and ABC have been employed in network based IDSs. The reason that they are chosen is that, they proved to have high ability in detecting intrusion in the network based systems. Consider that, due to the independency of the detector system's modules from the analysis and detection module, it is possible to change the algorithms employed in this part or use the combination of that algorithms as a new one.

In this section different kind of metrics are measured to evaluate the ability of the algorithms to learn the properties of the features of the data and also detecting the malicious activities. The results are presented for each algorithm in analysis and detection module. Generally, four situations can be assumed corresponding the relation between the result of an analysis for a sample event and its actual nature in an IDS. These situations include: false positive (FP), if the analyzed event is not an attack, but it is classified as a malicious activity; true positive (TP), if the analyzed event is correctly classified as intrusion; false negative (FN), if the analyzed event is malicious, but it is classified as a normal activity in the system; and true negative (TN), if the analyzed event is correctly classified as a normal activity.

6. PERFORMANCE ANALYSIS

The performance of proposed system can be done using Precision, Recall, F-measure, Standard Accuracy Rate (SAR) and Fitness Value (FV). Precision, Recall, F-measure, SAR and FV of Optimization Algorithm Based on Bee Stinging (OABBS) compared with Real-valued Negative Selection (RNS), Artificial Bee Colony (ABC) and Support Vector Machine (SVM) and the comparison results are described in Table 2 and Table 3.

Precision (P) is the proportion of the predicted positive cases that were correct, as calculated using the Equation (6). Recall or Sensitivity or True Positive Rate (TPR) is the proportion of positive cases that were correctly identified, as calculated using the Equation (7). The F-Measure computes some average of the information retrieval precision and recall metrics. An arithmetic mean does not capture the fact that a (50%, 50%) system is often considered better than an (80%, 20%) system, as calculated using the Equation (8). Accuracy (AC) is directly proportion to the total number of predictions. It is determined using the Equation (9). Fitness value (FV) is required to determine the quality of certain classified as positive instances between the good and bad individuals, as calculated using the Equation (10).

$$Precision = TP/(TP + FP)$$
(8)

Recall= TP/(TP + FN)

F-measure= $2\left(\frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}\right)$

Standard Accuracy Rate= (TP+TN)/(TP+FP+TN+FN)

Fitness Value=
$$\frac{\text{TP}}{\text{TP}+\text{FN}} \times \frac{\text{TN}}{\text{TN}+\text{FP}}$$
 (9)

The precision graph represents the discussed measures for each of four algorithms where when 'n' number of attacks occurs every time the IDS alarm the user for attack. It is shown that the number of precision percentage in the proposed work (OABBS) increases compare to SVM, ABC, and RNF since it guarantees alerting the user at the correct time of attack. The proposed OABBS algorithm has the highest values for precision while producing the least false alarm. The algorithm performs more effectively in detecting malicious attack when compared to other algorithms which is described in the Figure 6.

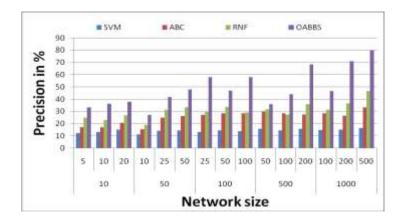


Figure 6. Precision of OABBS on Comparison with SVM, ABC and RNF

IJ-AI

ISSN: 2252-8938

D 161

				1	able 1.	The ala		asures	TOT eau		iing alg	ornini	5.					
Sl.no Network Anomaly			ABC			RNF				SVM				OABBS				
	size	input	TP	FP	TN	FN	TP	FP	TN	FN	TP	FP	TN	FN	TP	FP	TN	FN
1	10	5	2	4	3	5	3	3	2	4	3	2	2	3	4	1	1	2
		10	4	7	6	10	6	6	4	8	7	4	3	6	8	2	2	3
		20	7	12	13	17	11	10	9	14	13	7	7	11	16	4	4	5
2 50	50	10	5	8	5	12	7	6	3	8	8	4	2	6	9	2	1	2
		25	11	17	16	26	13	11	12	14	16	8	9	11	21	4	4	4
		50	21	31	29	49	26	21	24	27	31	15	19	21	41	7	9	7
3	100	25	12	17	13	27	13	10	12	13	17	8	8	11	27	4	8	4
		50	22	31	26	47	26	19	24	25	33	15	17	19	43	6	7	6
		100	49	69	51	99	53	38	47	49	73	33	27	39	79	11	21	10
4	500	50	23	32	27	43	26	18	24	23	36	16	14	17	46	6	4	5
		100	51	70	49	93	57	39	43	47	77	34	23	36	89	12	11	7
		200	99	133	101	169	119	80	81	97	139	59	61	57	153	17	47	1
5	1000	100	53	71	47	87	59	39	41	47	79	27	21	31	91	9	9	6
		200	111	148	99	179	127	83	73	97	149	49	51	58	167	11	33	9
		500	259	343	241	389	263	169	241	197	332	103	178	117	411	16	81	1′

Table 1. The alarm measures for each learning algorithms

Table 2. The results of the efficiency measures for each four learning algorithms.

	Network size	Anomaly input	Precision	1		Recall				F-measure				
Sl.no si			SVM	ABC	RNF	OABBS	SVM	ABC	RNF	OABBS	SVM	ABC	RNF	OABBS
		5	33.33333	50	60	80	28.57143	42.85714	50	66.66667	30.76923	46.15385	54.54545	72.72727
1 10	0	10	36.36364	50	63.63636	80	28.57143	42.85714	53.84615	72.72727	32	46.15385	58.33333	76.19048
		20	36.84211	52.38095	65	80	29.16667	44	54.16667	76.19048	32.55814	47.82609	59.09091	78.04878
		10	38.46154	53.84615	66.66667	81.81818	29.41176	46.66667	57.14286	81.81818	33.33333	50	61.53846	81.81818
2 50	0	25	39.28571	54.16667	66.66667	84	29.72973	48.14815	59.25926	84	33.84615	50.98039	62.7451	84
		50	40.38462	55.31915	67.3913	85.41667	30	49.0566	59.61538	85.41667	34.42623	52	63.26531	85.41667
		25	41.37931	56.52174	68	87.09677	30.76923	50	60.71429	87.09677	35.29412	53.06122	64.15094	87.09677
3 10	00	50	41.50943	57.77778	68.75	87.7551	31.88406	50.98039	63.46154	87.7551	36.06557	54.16667	66	87.7551
		100	41.52542	58.24176	68.86792	87.77778	33.10811	51.96078	65.17857	88.76404	36.84211	54.92228	66.97248	88.26816
		50	41.81818	59.09091	69.23077	88.46154	34.84848	53.06122	67.92453	90.19608	38.01653	55.91398	68.57143	89.32039
4 50	00	100	42.14876	59.375	69.36937	88.11881	35.41667	54.80769	68.14159	92.70833	38.49057	57	68.75	90.35533
		200	42.67241	59.79899	70.20202	90	36.9403	55.09259	70.91837	93.29268	39.6	57.3494	70.55838	91.61677
		100	42.74194	60.20408	74.5283	91	37.85714	55.66038	71.81818	93.81443	40.15152	57.84314	73.14815	92.38579
5 10	000	200	42.85714	60.47619	75.25253	93.82022	38.27586	56.69643	71.98068	94.88636	40.43716	58.52535	73.58025	94.35028
		500	43.02326	60.87963	76.32184	96.25293	39.96914	57.17391	73.94209	96.02804	41.44	58.96861	75.11312	96.14035

Table 3. The results of the efficiency measures for each four learning algorithms.

Sl.no	Network size	Anomaly input	SAR FV							
			SVM	ABC	RNF	OABBS	SVM	ABC	RNF	OABBS
		5	35.71429	41.66667	50	62.5	12.2449	17.14286	25	33.33333
1	10	10	37.03704	41.66667	50	66.66667	13.18681	17.14286	23.07692	36.36364
		20	40.81633	45.45455	52.63158	68.96552	15.16667	20.84211	27.08333	38.09524
		10	33.33333	41.66667	50	71.42857	11.31222	15.55556	19.04762	27.27273
2	50	25	38.57143	50	56.81818	75.75758	14.41441	25.12077	31.37255	42
		50	38.46154	51.02041	58.13953	78.125	14.5	26.16352	33.31448	48.04688
		25	36.23188	52.08333	56.81818	81.39535	13.33333	27.27273	30.35714	58.06452
3	100	50	38.09524	53.19149	59.52381	80.64516	14.54361	28.45417	33.71394	47.25275
		100	37.31343	53.47594	58.13953	82.64463	14.07095	28.73126	29.33036	58.2514
		50	40	54.94505	60.24096	81.96721	15.94761	30.3207	31.69811	36.07843
4	500	100	38.02281	53.76344	58.82353	84.03361	14.58333	28.74062	27.49573	44.33877
		200	39.84064	53.0504	63.29114	87.7193	15.94432	27.71739	36.05017	68.51181
		100	38.75969	53.76344	63.29114	86.95652	15.07869	28.52594	31.42045	46.90722
5	1000	200	39.10615	52.63158	65.14658	90.90909	15.34134	26.53102	36.71014	71.16477
		500	40.58442	57.93103	69.86301	93.71429	16.49411	33.6071	46.83876	80.18836

The recall graph represents the discussed measures for each of four algorithms where when 'n' number of attacks occurs. The SVM and RFN are performing quite the same and they can excel the ABC algorithm in detecting attacks correctly and not producing incorrect alarms. The proposed OABBS algorithm has the highest

A Novel Optimization Algorithm Based on Stinging Behavior of Bee (S. Jayalakshmi)

values for recall while producing the least false alarm. It is shown that the number of recall percentage in the proposed OABBS algorithm has highest value in compare to SVM, ABC, and RNF. The algorithm performs more effectively in detecting malicious attack when compared to other algorithms which is described in the Figure 7.

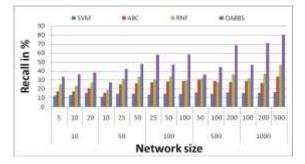


Figure 7. Recall of OABBS on Comparison with SVM, ABC and RNF

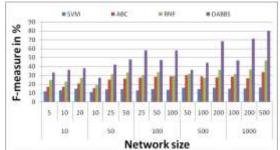


Figure 8. F-measure of OABBS on Comparison with SVM, ABC and RNF

However, the Figure 8 shows that the false alarm rate generated by the ABC algorithm is slightly smaller compared to that of RFN. Moreover, the recall and the precision, and hence the F-measure corresponding to ABC exceed that of RFN. As a result, that the proposed OABBS algorithm is performing more effectively in detecting malicious activities compared to other three algorithms which is described in the Figure 8.

In additions, the proposed OABBS algorithm has the highest values for Standard Accuracy Rate (SAR) while producing the least false alarm. As a result, that the proposed OABBS algorithm is performing more effectively in detecting malicious activities compared to other three algorithms which is described in the Figure 9.

As suggested by this Figure 10, the SVM and RFN are performing quite the same and they can excel the ABC algorithm in detecting attacks correctly and not producing incorrect alarms. As a result, that the proposed OABBS algorithm is performing more effectively for fitness value in detecting malicious activities compared to other three algorithms.

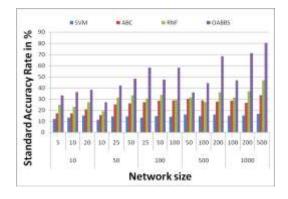


Figure 9. SAR of OABBS on Comparison with SVM, ABC and RNF

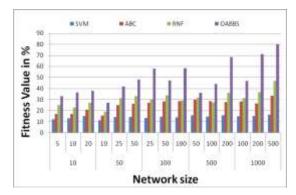


Figure 10. FV of OABBS on Comparison with SVM, ABC and RNF

7. DISCUSSION

In this section we summarize the obtained results from the evaluation mechanism presented in previous sections. As discussed earlier, the execution time of the RNF is too higher than that of the ABC algorithm and SVM. Furthermore, we can see that the ABC is the fastest algorithm in building the normal model and detecting anomalies. Also, the proposed OABBS algorithm has a mediocre execution time.

The errors of the predicted values for the ABC algorithms are the highest among all three algorithms, indicating how ABC is performing poorly in predicting the values for sample data. RNF is performing more accurately in predicting the values corresponding to data samples. Finally, the SVM, with a slight difference from MLP, is performing quite powerfully in predicting the values for data samples.

On the other hand, from the efficiency point of view, the proposed OABBS algorithm is performing more powerfully in detecting anomalous behaviors with generating fewer mistaken alarms compared to other three learning algorithms. As the results of Table 2 suggest, the ability of the ABC and RNF are quite the same. Furthermore, we can conclude that the SVM algorithm is performing poorly in detecting attacks, although it is the fastest algorithm.

To sum up, from both the cost (execution time) and the efficiency points of view, the proposed OABBS algorithm can be selected as the best choice for the analysis and detection module among the other three algorithms discussed in this paper.

8. CONCLUSION

The proposed systems introduce a novel optimization algorithm based on the stinging behavior of honey bee to Anomaly based Host Intrusion Detection System (A-HIDS). The performance of the proposed Anomaly based Host Intrusion Detection System (A-HIDS) using novel optimization algorithm based stinging behavior of bee has been compared Real-valued Negative Selection (RNS), Artificial Bee Colony (ABC) and Support Vector Machine (SVM). The experimental result showed that the proposed method can outperform than exiting system and is suitable for the host intrusion detection

REFERENCES

- [1] A. Lazarevic, V. Kumar and J. Srivastava. Intrusion detection: A survey, Managing Cyber Threats. *Massive Computing*. vol.5, pp.19-78, 2005.
- [2] P. Garc_a-Teodoro, J. D_az-Verdejo, G. Marci_a-Fern_andez and E. V_azquez. Anomaly-based network intrusion detection: Techniques, systems and challenges, Computers & Security. vol.28, pp.18-28, 2009.
- [3] Patcha A., Park J. M., An overview of anomaly detection techniques: Existing solutions and latest technological trends; *Computer Networks*; 51(12); 2007; p. 3448-3470.
- [4] Chandola V., Banerjee A., Kumar V. Anomaly detection: A survey. ACM Computing Surveys (CSUR). 41(3); 2009; p. 15.
- [5] Manish Dixit, Sanjay Silakari. "An Exhaustive survey on Nature Inspired Optimization Algorithm". *International Journal of Digital Contents and Applications*. Vol.1, No.1 (2014), pp.9-20.
- [6] P. Lucic and D.Teodorovic, "Bee system: Modeling Combinatorial Optimization Transportation Engineering Problems by Swarm Intelligence" *Preprints of the TRISTAN IV Triennial Symposium on Transportation Analysis*, Sao Miguel, Azores Islands, pp. 441-445, 2001.
- [7] D. Teodorovic, and M. Dell'Orco, "Bee Colony Optimization-A Cooperative Learning Approach to Complex Transportation Problems," Advanced OR and AI Methods in Transportation, pp. 51-60, 2005.
- [8] S. Nakrani, and C. Tovey, "On Honey Bees and Dynamic Allocation in an Internet Server Colony," Proceedings of 2nd International Workshop on the Mathematics and Algorithms of Social Insects, Atlanta, Georgia, USA, 2004.
- [9] C.S. Chong, M.Y.H. Low, A.I. Sivakumar, and K.L. Gay, "A Bee Colony Optimization Algorithm to Job Shop Scheduling," Proceedings of the 37th Winter Simulation, Monterey, California, pp. 1954-1961, 2006.
- [10] H.F. Wedde, M. Farooq, and Y. Zhang, "BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior," Ant Colony, *Optimization and Swarm Intelligence*, Eds. M. Dorigo, LNCS 3172, Springer Berlin, pp. 83-94, 2004.
- [11] H. Drias, S. Sadeg, and S. Yahi, "Cooperative Bees Swarm for Solving the Maximum Weighted Satisfiability Problem", *IWAAN International Work Conference on Artificial and Natural Neural Networks*, Barcelona, Spain, 318-325, 2006.
- [12] D. Karaboga, "An Idea Based on Honey Bee Swarm for Numerical Optimization," Technical Report-TR06, Erciyes University, Computer Engineering Department, Turkey, 2005.
- [13] X.S. Yang, "Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms," *IWINAC* 2005, LNCS 3562, Yang, J. M. and J.R. Alvarez, Springer-Verlag, Berlin Heidelberg, pp. 317-323, 2005.
- [14] D.T. Pham, E. Kog, A. Ghanbarzadeh, S. Otri, S. Rahim, and M. Zaidi, "The Bees Algorithm-A Novel Tool for Complex Optimisation Problems," IPROMS 2006 Proceeding 2nd International Virtual Conference on Intelligent Production Machines and Systems, Oxford, Elsevier, 2006.
- [15] H.A. Abbass, "A Single Queen Single Worker Honey-Bees Approach to 3-SAT," (GECCO2001) the Genetic and Evolutionary Computation Conference, San Francisco, USA, 2001.
- [16] M. Fathian, B. Amiri, and A. Maroosi, "Application of Honey-Bee Mating Optimization Algorithm on Clustering," *Applied Mathematics and Computation*, 190(2), pp.1502-1513, 2007.
- [17] D. Karaboga, B. Basturk, "On the Performance of artificial bee colony (ABC) algorithm", *Applied Soft Computing* 8 (2008), Elsevier, pp. 687-697.

- [18] Laiq Khan, IkramUllah, "Virtual Bees Algorithm Based Design of Damping Control System for TCSC", Australian Journal of Basic and Applied Sciences, 4(1): 1-18, 2010
- [19] FahimehAghazadeh, Mohammad Reza Meybodi, "*Learning Bees Algorithm for optimization*", International Conference on Information and Intelligent Computing, IPCSIT vol.18, 2011.
- [20] Konrad Diwold, Daniel Himmelbach, "Bonding as a Swarm: Applying Bee Nest-Stie Selection Behavior to Protein Docking", GECCO'11, ACM 978-1-4503-0557-0/11/07, 2011.
- [21] Magdalene Marinaki, YannisMarinakis, Constantin Zopounidis, "Honey Bees Mating optimization Algorithm for financial classification problem", *Applied Soft Computing* 10 (2010), Elsevier, pp. 806-812.
- [22] P. Victer Paul, N. Moganarangan, S. Sampath Kumar, R. Raju, T. Vengattaraman, P. Dhavachelvan, "Performance analyses over population seeding techniques of the permutation-coded genetic algorithm: An empirical study based on traveling salesman problems", *Applied Soft Computing*, Elsevier, Volume 32, July 2015, pp. 383-402.
- [23] M. Shanmugam, M.S. SaleemBasha, P. Victer Paul, P. Dhavachelvan and R. Baskaran, "Performance Assessment over Heuristic Population Seeding Techniques of Genetic Algorithm: Benchmark Analyses on Traveling Salesman Problems", *International Journal of Applied Engineering Research (IJAER)*, Research India Publications, Volume 8, Number 10 (2013) pp. 1171-1184, ISSN 0973-4562.
- [24] N. Moganarangan, R. Raju, R. Ramachandiran, P. Victer Paul, P. Dhavachelvan, V.S.K. Venkatachalapathy, "Efficient Crossover Operator for Genetic Algorithm with ODV based Population Seeding Technique", *International Journal of Applied Engineering Research (IJAER)*, Volume 9, Number 17 (2014), pp. 3885-3898. ISSN 0973-4562.
- [25] N. Pazhaniraja V. Priyadharshini P. Divya D. Preethi P. Victer Paul, "Bio Inspired Algorithm Based Web Service Optimization-A Survey", *International Journal of Applied Engineering Research (IJAER)*, Volume 10, Number 5 (2015), pp. 13231 -13242. ISSN 0973-4562.
- [26] G.Kiruthiga, S.Krishnapriya, V. Karpagambigai, N.Pazhaniraja, P.VicterPaul, "SurveyOn Swarm Intelligence Based Optimization Algorithm", *International Journal of Applied Engineering Research (IJAER)*, Volume 10, Number 7 (2015), pp. 18445-18457. ISSN 0973-4562.
- [27] http://www.beesource.com/resources/usda/bee-behavior