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 This paper deals with the analysis and design of the optimal robust controller 
for the fuzzy parametric uncertain system. An LTI system in which 
coefficients depends on parameters described by a fuzzy function is called as 
fuzzy parametric uncertain system. By optimal control design, we get control 
law and feedback gain matrix which can stabilize the system. The robust 
controller design is a difficult task so we go for the optimal control approach. 
The system can be converted into state space controllable canonical form with 
the α-cut property fuzzy. For optimal control design, we find control law and 
get the feedback gain matrix which can stabilize the system and optimizes the 
cost function. Stability analysis is done by using the Kharitonov theorem and 
Lyapunov-Popov method. The proposed method applied to a response of 
Continuous Stirred Tank Reactor (CSTR). 
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1. INTRODUCTION  

To design a proper controller for real time nonlinear system have many problems such as uncertainty, 
disturbance, unknown exact mathematical model etc. Uncertainty is either structure or Unstructured. 
Mostly the nonlinear system defined in terms of mathematical model doesn't have the exact parameter the 
calculated parameters are considered. So that type of model consists the parametric uncertainty. And because 
of that uncertain parameter, we have some information loss, which may be incomplete, unreliable. Also, the 
uncertainty affects the system response. So, we must design a controller such that it can deal with this type of 
uncertainty and remove the effects occurred because of that. For that, the fuzzy logic controller gives the best 
solution. In this paper, the design a controller which deal with parametric uncertainty with a fuzzy controller 
is given. That is the system with known mathematical model represent in terms of fuzzy membership function 
i.e. fuzzy parametric uncertain system. That means we consider some range of parameter variation. Then find 
the α-cut set for that fuzzy parametric uncertain system. From that we get the nominal system, then find the 
feedback gain matrix for that system which stabilize the system. We can design a control law for worst case 
condition i. e. for α = 0 when the greatest uncertainty Considered. The stability is checked by 
Kharitonov theorem. 

Robustness is the property of the system which deal with the variation in parameters in some range or 
bound [4]. In [5] this the method for fuzzy parametric uncertain system we discussed to design the robust 
controller with considering two examples. In first example, two uncertain parameters considered and in another 
example three uncertain parameters considered checked the response for that. The arithmetic calculation for α-
cut set property of fuzzy are given in [1]. The stability of system is checked by Kharitonov theorem [3]. Because 
for this theorem we consider some range of parameter and in fuzzy parametric uncertain system uncertain 
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parameter considered in some range. In [2] the design of Popov-Lyapunov stability method is discussed. 
The design of paper is as follows, in section II represent the proposed methodology in that we discuss the α-
cut for fuzzy parametric uncertain system. In section III we study the CSTR and apply the proposed method to 
for system and study the result. In section IV the stability of system by applying method is checked using 
kharitonov polynomial and Popov-Lypunov method [2].  In section V we end the paper. 

 
 

2. PROPOSED METHODOLOGY 
2.1.  α-cut set 

Fuzzy parametric uncertain system is the co-ordinates of system depend on parameters represented as 
fuzzy membership function. A parametric uncertainty is present when system represent in mathematical model 
form, which is not exactly known. Here, the uncertain parameters can be defined in-terms of fuzzy function 
	𝑝# ∈ 𝑝	 with membership function 𝛼 = 𝜇 𝑝( ∈ [0,1]  as shown in Figure 1 The p is a universe of discourse 
for, 	𝑝(.The membership functions 𝜇 𝑝#  are having single mode and decrease to the interval last limit. Thus, 
the fuzzy uncertain parameter 𝑝# with α-cut is given by  

 
𝑝# 𝛼# = [𝑝#. 𝛼# , 𝑝#/(𝛼#)] (1) 
 
 

 
 

Figure 1. α cut for fuzzy uncertain parameter p ̃_i 
 
 

Where αi is the membership height for the,	𝑝# also 𝑝#. .   is a growing function and 𝑝#/ .  is a reducing 
function. Therefore, 

 
𝑝#3. 0 = 𝑝#3. 𝑝#/ 0 = 𝑝#3/ 𝑝#3. 1 = 𝑝#3/ =𝑝#34  (2) 
 

The membership value αi can be taken as the confidence degree form that we get the nominal system. The value 
𝛼# = 1 indicates the precise knowledge. 
 

𝑝#3= ker (𝑝#3) =𝑝#34 	 (3) 
 

Whereas 𝛼# = 0	represents maximum uncertainty 
 

𝑝#3= supp (𝑝#3) =[𝑝#3. , 𝑝#3/ ] (4) 
 
2.2.  Optimal controller design 

Consider a plant with uncertainty: 
 
𝑇′ 𝑠′, 𝑎′, 𝑝′ = 9:;<=>:;<=/	..../9:?

>@;/A;<=>:;<=/	..../A:?
 (5) 

 
Where	a′C and 	p′C	,r = 0, 1, 2, ···, n-1, interpreted as fuzzy function. If a degree of confidence α ∈ [0, 1] in 
the coefficients is given, then in (5) can be interpreted as an interval system as: 
 

𝑇 𝑠′, 𝑎′(𝛼), 𝑝′(𝛼) = 9:<=(E)>:;<=/	..../9:?(E)
>:;/A:;<=(E)>:;<=/	..../A:?(E)

 (6) 
 

Where aC(𝛼) and aC(𝛼), r = 0, 1, 2, ···, n-1, interpreted as fuzzy function. The FPU system in (6) can be 
represent in state space controllable canonical form: 
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𝑥: =

0 	1 			⋯ 0
⋮
0

	⋮ 			⋱
				0 			⋯

⋮
1

−𝑝4 𝛼 −𝑝4 𝛼 ⋯ −𝑝4 𝛼
𝑥: +

0
⋮
0
1

𝑢: 

 
𝑦: = −𝑎4(𝛼) −𝑎3(𝛼) ⋯ −𝑎N.3(𝛼)  (7) 

 
Where α ∈ [0, 1]. The system in (7) represented as 
 

𝑥 = 𝐴′ 𝑝 𝛼 𝑥 + 𝐵′𝑢 
 

𝑦′ = 𝐶′(𝑎 𝛼 )𝑥 (8) 
 
Where 𝑝′  is the parametric uncertainty vector in terms of α, and A, B, and C are the state space matrices. 
The uncertainty in state matrix (A’) represented by (8) is balanced with B’, if this uncertainty is in the bound 
of B’. Now a nominal value, 𝑝NRS ∈ 𝑝(𝛼) such that (A’ (𝑝NRS), B’) is stable. Also, it is assumed that for any 
𝑝′(𝛼) ∈ 𝑝 there exists a 1×n matrix ∅(	𝑝′(𝛼))so that, we can represent the uncertainty in State matrix (A’) as 

 
𝐴′ 𝑝′ 𝛼 − 𝐴′ 𝑝NRS = 𝐵′∅(	𝑝′(𝛼)) (9) 
 

Where ∅(	𝑝(𝛼)) is bounded and 𝑝NRS ∈ 𝑝(𝛼)is the nominal value of 𝑝(𝛼) 
 

𝐴′ 𝑝′ 𝛼 = 𝐴′ 𝑝NRS + 𝐵′∅(	𝑝′(𝛼)) (10) 
 

From (10) the (8) becomes, 
 

𝑥′ = 𝐴′𝑝NRS 𝛼 𝑥′ + 𝐵′∅(𝑝′ 𝛼 𝑥′ + 𝐵′𝑢′ (11) 
 
is stable for all 𝑝(𝛼) ∈ 𝑝  for all α ∈ [0, 1]. Robust controller design for this problem is difficult. Hence optimal 
controller is designed for FPUS in (8). If the system is stable then only we can design LQR controller. The 
system in (9) is always controllable, hence it implies that pair A’ (𝑝′(𝛼)B’) is stable for each α ∈ [0, 1] 
LQR design 
The problem can be solved using LQR controller which can be designed as: 
For the nominal system correlate to each α ∈ [0, 1]. 
 

𝑥′ = 𝐴 𝑞NRS 𝑥′ − 𝐵𝑢′ (12) 
 

A control law, u’=-k*x’ which reduces the cost functional 
 

𝐽′3 = (𝑥′W𝐹′𝑥′ + 𝑥:W𝑥′ + 𝑢:W𝑅′𝑢′)𝑑𝑡\
4  (13) 

 
Where F’ is an upper bound on the uncertainty ∅(𝑝′(𝛼))W∅(𝑝′(𝛼)), that is, for all 𝑝(𝛼)𝜖𝑝 
 

∅′(𝑝′(𝛼))W∅(𝑝′(𝛼)) ≤ 𝐹′ (14) 
 

The theorem in (11) can be used to design an optimal controller for FPUS in (8). When ∅(𝑝′(𝛼))is enclosed 
the existence of the upper bounce on F’ is guaranteed. The cost function J can be written as 
 

𝐽′3 = (𝑥′W𝑄′𝑥′ + 𝑢′W𝑅′𝑢′)𝑑𝑡\
4  (15) 

 
Where Q’= [F’+I] and R’= [1]. Thus, if (14) satisfied then an optimal controller designed. 
Error weighted matrix  

Design a controller for α=0 which consist of maximum ambiguity that controller stabilizes the all 
other system for different values of α. For α = 0, the parametric ambiguity is described by	𝑝# ∈ [𝑝#.	𝑝#/], for r 
= 0, 1, 2, ···, n – 1. Calculate the error weighted matrix which satisfy the condition in (14)  
Consider the nominal value as, 
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𝑝′NRS = [𝑝4.	𝑝3.	. . . . 𝑝N.3. ] 
 
Take the nominal value, 
 

𝑝′NRS = [𝑝4/	𝑝3/	. . . . 𝑝N.3/ ] 
 

or any value in between [𝑝#.	𝑝#/] Then the nominal system of (8) is given by 
 

𝑥′ =

0											 1 ⋯ 0
⋮								 ⋮ ⋱ ⋮
0

−𝑝4.
0

−𝑝3.
…
…

1
−𝑝N.3.

𝑥′ +
0
⋮
0
1

𝑢′ 

 
The uncertainty can be written as 
 

0											 1 ⋯ 0
⋮								 ⋮ ⋱ ⋮

0
𝑝4. − 𝑝4

0
𝑝3. − 𝑝3

…
…

1
𝑝N.3. − 𝑝N.3

=
0
⋮
0
1

𝑝4. − 𝑝4
𝑝3. − 𝑝3

⋮
𝑝N.3. − 𝑝N.3

 

 
Hence the uncertainty satisfies the matching condition. The uncertainty is given by 
 

∅′ = [𝑝4. − 𝑝4	𝑝3. − 𝑝3𝑝N.3. − 𝑝N.3] (18) 
 
Which is bounded by 
 

∅:W	∅′ = 𝐹′ (19) 
 

Using F’ optimal controller is designed which reduces the cost function J. 
 
 
3. CASE STUDY CSTR  

A real-time experimental setup for highly nonlinear tank is constructed shown in Figure 2. DAC is 
used to interface CSTR with the Personal Computer (PC). The overall system consists of a tank, pump, 
Rotameter, RTD, an electro-pneumatic converter (I/P converter), a pneumatic control valve, an interfacing 
DAC module and a Personal Computer (PC). The differential pressure transmitter output is interfaced with the 
computer using DAC module in the RS-232 port of the PC. Figure 3 shows the block diagram of a CSTR tank 
interfaced with PC. The pneumatic control valve uses air as an input and adjusts the flow of the water pumped 
to the CSTR jacket from cold water tank. This flow maintains the temperature inside the tank at the 
desired value. The temperature of the liquid inside the tank is measured with the help of RTD and is transmitted 
in the form of (4-20) mA to the interfacing DAC module with the help of temperature transmitter to the 
Personal Computer (PC). 
 
 

 
 

Figure 2. Experimental setup 
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Figure 3. Block diagram of CSTR 
 
 

In Figure 3 the block diagram for CSTR gives in that we see the three regions first computer in that 
we design a controller which connect to the system through the data acquisition system, third is process flow. 
After calculating the control algorithm in the PC, required control signal in the form of current signal (4-20) 
mA is transmitted to the I/P converter, which passes the air signal to .operate by this signal to produce the 
required flow of water in and out of the tank. 

 
Calculation of TF: 
For calculating Transfer function of CSTR cooling process, the step response is taken into consideration. 
The transfer function is calculated by using process reaction curve. The process has very large dead time and 
is highly damped. Therefore, the step response can be fitted into a simple first-order model with dead-time. 
 

G: b =
A′e.e@b

τ:s + 1
 

 
Where, A=Process gain, θ’ =Dead-time, τ’=Time constant Therefore, the transfer function of the process is 
given by 
 

𝐺′ 𝑠 =
0.12𝑒.k>

3𝑠 + 1
 

 
The Transfer Function of Valve is 
 

	𝐺′m 𝑠 =
0.112
0.8𝑠 + 1

 
 

By using Pade’s approximation the second order transfer function is calculated as 
 

𝐺′ 𝑠 =
−0.12𝑠 + 0.12
3𝑠k + 4𝑠 + 1

 

 
The state space matrices are given as 
 

𝐴′3 =
−1.33 −0.667
0.5 0       𝐵′3 = 0.25

0  
𝐶′3 = −0.16 0.32            𝐷′3= [0] 
 
 

Simulink design: ` 
3.1.  Proposed Technique 

System transfer function 
 

𝐺:>t> 𝑠 =
0.0056

𝑠k + 1.583𝑠 + 0.417
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Consider two uncertain parameters which represent in fuzzy no. as first a=tri (0.03 0.05 0.07) and 
second is b=tri (1.2 1.5 1.7) and c=tri (0.2 0.4 0.6). The αcut for this is a= [(0.02α+0.03), (0.07-0.02α)] b= 
[(0.2α+1.2), (1.7-0.2α)], and c= [(0.2α+0.2), (0.6-0.2α)]. For different values of α the values of a, b, c are given 
in table 
 
 

Table 1. α−cut set 
α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1 
[0.03 0.07] [0.035 0.065] [0.04 0.06] [0.045 0.055] [0.05 0.05] 
[1.2 1.7] [1.25 1.75] [1.3 1.6] [1.35 1.55] [1.4 1.4] 
[0.2 0.6] [0.25 0.55] [0.3 0.5] [0.35 0.45] [0.4 0.4] 

 
 

Feedback gain matrix: K’= [0.8954 0.9168]  
The closed loop characteristic Equation for α = 0: 
 

[1.1168, 1.5168] + [2.095, 2.59] s + s2 = 0 
 

Kharitonov polynomials are: 
 

K’1 = 1.5168 + 2.59s + s2 
 
K’2 = 1.5168 + 2.095s + s2 

 
K’3 = 1.1168 + 2.095s + s2 
 
K’4 = 1.1168 + 2.59s + s2 

 
Step Response for different values of α ∈ [0, 1] 
 
 

 
 

Figure 4. Step Response of states for 
different values of α 

 
 

Figure 5. Step Response of states for 
different values of α 

 
 
In Figure 4 and Figure 5 shows the state response for different values of α. In that, the response for α=0 gives 
the stable response for other values α. In Figure 6 the bode plot for interval plant is shown. 
Bode plot for interval plant: 
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Figure 6. Bode plot 
 
 
Algorithms: 
 
 

 
 

Figure 7. Flowchart for JAYA algorithm 
 
 

 
 

Figure 8. Flowchart for GA algorithm 
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Figure 9. Flowchart for TLBO algorithm 
 
 

 
 

Figure 10. Flowchart for PSO algorithm 



      r          ISSN: 2252-8938 

IJ-AI Vol. 8, No. 1, March 2019:  14 – 25 

22 

 
 

Figure 11. Flowchart for ABC algorithm 
 
 

To avoid membership function as too redundant or too separate we use this algorithms for 
optimization. Fuzzy JAYA gives best result among all this algorithms namely GA, TLBO, ABC, PSO. 
 
 

 
 

Figure 12. comparative results by using different algorithms 
 
 

Table 2. Comparative Parameters with different algorithms 
Algorithms Rise Time Settling Time Overshoot Peak  ISE 
JAYA 1.9947 4.5821e+03 1.0207e+04 18.0752 381.2 
GA 0.3289 5.0521e+03 2.8753e+04 9.9626 415.7 
TLBO 1.0061 5.1323e+03 1.5342e+05 10.8502 475.7 
ABC 1.4707 5.5821e+03 1.8207e+04 18.0752 475.7 
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PSO 1.4707 5.5691e+03 1.8207e+04 10.5219 345.7 
3.2.  Hardware Result 

For this, we have considered the error as 0-5 i.e. the difference between the setpoint and the actual 
value is 0-5 and control action is taken between 0-100. 
 
 

 
 

Figure 13. Hardware Result 
 
 

The figure. 9 shows the response for the real-time system. In this, we see that the set point is tracked 
by the actual temperature value. Also at the same time control action is also plotted. 
 
 
4. STABILITY ANALYSIS 
4.1.  Kharitonov Theorem  

Consider a family n of real rational polynomials 
 
∆(𝑠)	 = 	∆3𝑠 + ∆k𝑠k+. . . . . . +∆N.3𝑠N.3+∆N𝑠N	 (20) 
 

This polynomial family is called the family of uncertain or interval polynomial. 
 

xi ≤ ∆i ≤ yi, where, i=0, 1, 2, ···, n. 
 
In accordance with Kharitonov theorem every polynomial in the family ∆(s) is Hurwitz if and only if the 
following four extreme polynomials are Hurwitz [3]. 
 

𝐾′3 = 𝑥4 + 𝑥3𝑠 + 𝑦k𝑠k + 𝑦w𝑠w + 
 

𝐾′k = 𝑦4 + 𝑦3𝑠 + 𝑥k𝑠k + 𝑥w𝑠w + 
 

𝐾:
w = 𝑦4 + 𝑥3𝑠 + 𝑥k𝑠k + 𝑦w𝑠w + 

 
𝐾:

x = 𝑥4 + 𝑦3𝑠 + 𝑦k𝑠k + 𝑥w𝑠w + 
 
To apply this theorem, we need consider some range and for fuzzy parametric uncertain system we consider 
uncertain parameter in the form some range.  
 
4.2.  Popov-Lyapunov Method 

The stability of fuzzy control system is checked by Popov-Lyapunov approach [2]. In order to do this, 
we transform the fuzzy system into Lure system with uncertainty. After that Lyapunov direct method is used 
to guarantee the stability than the robustness measurement which gives the bound on allowable uncertainty. 
The allowable bounds can help us to estimate the robust stability of fuzzy control system. The dynamic 
Equation of the system is 

 
𝑥′ = 0 1

−0.417 −1.583
𝑥3
𝑥k + 0

1 𝑢′ 
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𝑦′ = 1 0
𝑥3
𝑥k  

 
From (21) we know the𝐴4	, 𝐵4, 𝐶4. Now, first consider fuzzy control system, 
 

𝑒′	 = 	𝑟′ − 𝑦′ 
 

Where, r’ is reference input and u’ is controller output. For this system. 𝐾3, . 𝐾k  And. 𝐾z   are the gain values 
which will be 0.8954, 0.9168 and 1 respectively. And K1	𝐾k  , are the feedback gain values. 
The system can be representing in the form of, 
 

𝐴′ = 𝐴:4 − 𝐾:
z𝐾:

S(N𝑏:4𝐶:3		, 𝑏′ = −𝐾′z𝑏′4		 [23] 
 
 
C’=−𝐶3′,𝑥 = 𝐴′𝑥 − 𝑏:4𝜎 = −𝐶′3W𝑥 the values of A’, b’ and c’ are, 
 

𝐴′3 =
0 1

−2.59 −1.5196 , 𝑏′ = 0
1 , 𝐶′ = 1 0  [24] 

 
The transfer function can be obtained as 
 

𝐺′	 = 	𝐶(𝑠𝐼	 − 	𝐴).3	𝑏 [25] 
 

This is the Lur’e perturbed system. The system defined in (25) satisfies the following condition then the system 
is asymptotically stable 
1. The nonlinearity σ always belongs to the sector [0,	𝐾3¯	] where𝐾3¯	 is a positive number. 
2. The system matrix 𝐴3 is Hurwitz (G(s) is stable), and there exists a scalar r > 0 such that -1 / r 6=	𝜆( , where 

𝜆(is an eigenvalue of 𝐴3, and 
 

1/𝐾′¯	 + 	𝑅′𝑒	[1	 + 	𝑗𝜔𝑟]	𝐺′	(𝑗𝜔) 	> 	0, ∀𝜔	 ∈ 	𝑅′ [26] 
 

3. Let = 3
k#���

+ 𝑐 ,𝛾 = 𝑟𝐶W𝑏 + 3
�<

 γ = rcT (27) where r is chosen such that γ ≥ 0. Where W is symmetric 
positive-definite matrix, there exists 𝛼		 > 	0, a vector q, P is symmetric positive-definite matrix and W0, 
and δ > 0 satisfying 
 

𝐴:W𝑃′ + 𝑃′𝐴′ = −𝑞′𝑞:W − 𝜖𝑊′𝑃′𝑏′ − 𝑣′ 𝛾′𝑞′ 
											= 𝜖𝑊′ 
= 𝜖𝑊′𝜃′ + 𝛿′𝐼′ [28] 
 

The robust stability is found by satisfying theorems 1, 2 and 3 
 

𝐺′ 𝑠 =
1

𝑠k + 1.519𝑠 + 2.59
 

 
 

 
 

Figure 14. Popov plot 
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In Figure 10 the Popov plot is shown. From this plot, we can find the slope of the line which is used for the 
further calculations. From the Popov plot for G (jω), we get the value or r=0.5. 
 

𝑉 −1.1070
0.1503  and  

 
 𝛾 = 5.0198 
 
Let 𝜀𝑊′ = 2.5 0

0 2.5  
 

 After solving the algebraic Riccati (28) get the P matrix as 
 

𝑃′ = 4.4455 0.5796
0.5796 1.1618  and β=0.2591 [29] 

 
The P matrix is positive definite, so the system is stable. 
 
 
5. CONCLUSION 

The controller is designed for FPUS using the α-cut property of fuzzy set. Controller designed for a 
critical condition that is for maximum uncertainty interval and that will stabilize the other interval of 
uncertainty. This technique is applied to continuous stirred tank reactor and study the responses. Also, the 
proposed technique is applied with a fuzzy optimized membership function using Jaya algorithm. The stability 
of the system is checked by Kharitonov polynomials and Popov-Lyapunov stability theorem.  
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