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 Recent research studies on outlier detection have focused on examining the 

nearest neighbor structure of a data object to measure its outlierness degree. 

Moreover, popular outlier detection methods require the pairwise comparison 

of objects to compute the nearest neighbors. This quadratic problem is not 

scalable to large data sets, making multidimensional outlier detection for big 

data still an open challenge. In this article, we present a new approach 

for outlier detection, based on highly scalable approach to compute the nearest 

neighbors of objects using fuzzy rough set theory. At the same time, the outlier 

ranking process is accelerated by using a high-performance and a parallel 

computating using mapreduce framework. 
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1. INTRODUCTION 

Outliers are the unusual, unexpected patterns in the observed world. Outliers exist extensively in real 

world, and they are generated from different sources: a heavily tailed distribution or errors in inputting the data. 

While there is no single, generally accepted, formal definition of an outlier, Hawkins’ definition captures the 

spirit: “an outlier is an observation that deviates so much from other observations as to arouse suspicions that 

it was generated by a different mechanism” [1]. Anomaly detection is an important problem that has been 

researched within diverse research areas and application domains such as fraud detection [2], intrusion 

discovery [3], video surveillance, pharmaceutical test and weather prediction. There are different surveys about 

classical outliers and abnormal detectio. They vary between density based approaches [3], statistical [4], 

distance-based [5], neural networks and machine learning techniques. 

Recent research studies on outlier detection have focused on examining the nearest neighbor structure 

of a data object to measure its outlierness degree [6-7]. Such techniques are based on the key assumption that 

instances of normal data occur in dense neighborhoods, while outliers occur far away from their closest 

neighbors [8]. Popular outlier detection methods require the pairwise comparison of objects to compute the 

nearest neighbors. This quadratic problem is not scalable to large data sets, making outlier detection for large 

scale data still an open challenge. This paper proposes a fast outlier detection method for large scale datasets, 

which consists of two steps: a granulation of the universe into parts with the same properties then the computing 

of the degree of outlierness called Fuzzy neighborhood rough set outlier factor (FNROF) for each granule 

formed. Granulation of the obesevable universe involves grouping of similar elements into granules. With 

granulated views, we deal with approximations of concepts, represented by subsets of the universe, in terms of 

https://creativecommons.org/licenses/by-sa/4.0/
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granules [9]. The remainder of this paper is organized as follows. In the next section, we present some 

preliminaries of rough set theory that are relevant to this paper and discussion of the granularity of knowledge 

in connection with rough and fuzzy sets. In Section 3, we propose an efficient parallel computing system based 

on Map Reduce in order to improve the speed of computation and the algorithm proposed that deal with more 

complex outlier detection problems for large scale data. 

 

 

2. ROUGH SETS (RST) 

Rough set theory RST [10-11] is a new mathematical approach to imperfect knowledge. The theory 

has attracted attention of many researchers and practitioners all over the world, who contributed essentially to 

its development and applications. The main advantage of rough set theory in data analysis is that it does not 

need any preliminary or additional information about data. Rough set theory is a popular and powerful machine 

learning tool. It is especially suitable for dealing with information systems that exhibit inconsistencies. In rough 

set theory, an information table is defined as a tuple T = (U, A) where U and A are two finite, non-empty sets 

with U the universe of primitive objects and A the set of attributes. Each attribute or feature a ∈ A is associated 

with a set Va of its value, called the domain of a. We may partition the attribute set A into two subsets C and 

D, called condition and decision attributes, respectively. Let P ⊂ A be a subset of attributes. The indiscernibility 

relation, denoted by: 

 

IND(𝑃) = {(𝑥, 𝑦) ∈ 𝑈2/∀𝑎 ∈ 𝑃, 𝑎(𝑥) = 𝑎(𝑦)} (1) 

 

Where a(x) denotes the value of feature of object x. 

If (x, y) ∈ IND (P), x and y are said to be indiscernible with respect to P. The family of all equivalence classes 

of IND (P), referring to a partition of U determined by P, is denoted by U/IND(P). Each element in U/IND (P) 

is a set of indiscernible objects with respect to P. The family of all equivalence classes of IND (P), referring to 

a partition of U determined by P, is denoted by U/IND (P).  

 

Where   𝐴 ⊗ 𝐵 =  {𝑋 ∩ Y/X ∈ A,Y ∈ B,X ∩ 𝑌 ≠ ∅} (2) 

 

For any concept X ⊆ U, X could be approximated by the P-lower approximation and P-upper approximation 

using the knowledge of P. The lower approximation of X is the set of objects of U that are surely in X: 

 

𝑃(𝑋) = ⋃{𝐸 ∈ U/IND(𝑃): 𝐸 ⊆ 𝑋} (3) 

 

The upper approximation of X is the set of objects of U that are possibly in X, defined as: 

 

𝑃(𝑋) = ⋃{𝐸 ∈ U/IND(𝑃): 𝐸 ∩ 𝑋 ≠ ∅} (4) 

 

The concept defining the set of objects that can possibly, but not certainly, be classified in a specific way is 

called the boundary region, which is defined as: BN(𝑃) =𝑃(𝑋) − 𝑃(𝑋) as shown in Figure 1. 

 

 

 
 

Figure 1. Representation of the data partitioning for a subset X 
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2.1.  Rough set and fuzzy discretization 

The extraction of knowledge from a huge volume of data using rough set methods requires the 

transformation ofcontinuous value attributes to discrete intervals, in order to form a grid structure and then 

form clusters from the cells in the grid structure. Clusters correspond to regions that are denser in data points 

than their surroundings. The great advantage of grid-based clustering is a significant reduction in time 

complexity, especially for very large data sets. The concepts of real rough space, it is well known that one of 

the research premises in the classical rough sets theory is the information or the data to be discrete. 

Discretization can be viewed as a data reduction technique which reduces the range of values of a continuous 

values attribute into a minimum number of discrete intervals. The numbers of cut-points can determine the 

level of data reduction. The fewerthe number of cut-points the more the data will be reduced and hence a 

generalized classifierwill be possible. The term “cut-point” refers to a real value within the range of continuous 

values that divides the range into intervals. Cut-point is also known as split-point. The great advantage of grid-

based clustering is a significant reduction in time complexity, especially for very large data sets. But during 

the discretization process, if the discretization is too rough, much useful information may be lost. And if the 

discretization is too exact, it will take a lot of time complexity. So, it can be said that the disadvantages of 

classical rough sets are too much depending on good or bad of the discretization methods and the limited 

application domain. 

Let 𝑋 = (𝑥1, 𝑥2, . . , 𝑥𝑛) be a provided dataset having n objects and Aattributes,𝑣minj=min(𝑥𝑖),  

vmaxj=max(𝑥𝑖) be the minimum and maximum values of attributes i. Each attribute [𝑉mini,Vmaxi]
 
is equally 

divided into M intervals𝑤𝑖 = (𝑣maxi-vmini)/M. The set of all initial interval of an attribute i is shown 

as:𝐼𝑛𝑡𝑒𝑟𝑣𝑖 = {𝑣𝑚𝑖𝑛 𝑖,  (𝑣𝑚𝑖𝑛 𝑖+w𝑗),  (𝑣𝑚𝑖𝑛 𝑖+2*w𝑗), ..., v𝑚𝑎𝑥 𝑖} 

 

2.2.  Fuzzy rough sets 

Fuzzy rough set theory extends rough set theory to data with continuous attributes, and detects degrees 

of inconsistency in the data. Key to this is turning the indiscernibility relation into a gradual relation. The fuzzy 

set is actually a fundamentally broader set compared with the classical or crisp set. The classical set only 

considers a limited number of degrees of membership such as ‘0’ or ‘1’, or a range of data with limited degrees 

of membership as shown in Figure 2. 

 

Definition 1: (Fuzzy Sets) A fuzzy set, F, defined over universe X is a function defined as: 

 

𝐹 = {(𝑥, 𝜇(𝑥))|𝜇(𝑥) ∈ [0,1], ∀𝑥 ∈ 𝑋} (5) 

 

Function 𝜇(𝑥) is called the membership function, which maps object x to the membership space. The rough 

membership function expresses conditional probability that x belongs to X given P and can be interpreted as a 

degree that x belongs to X. One of the most important concepts in fuzzy set theory and applications is the α-

cut decomposition theorem developed by Zadeh in 1971 under the name resolution identity. These cuts are 

crisp sets associated with certain levels α that represent distinct grades of membership. 

 

Definition 2: (FS α-cut) given a number𝛼 ∈ [0,1], a α-cut or α-level set, ofa fuzzy set F is defined by: 

 

𝐹𝛼 = {(𝑥, 𝜇𝑥)|𝜇𝑥 ≥ 𝛼, ∀𝛼 ∈ [0,1]}𝑖𝑓𝛼0 < 𝛼1, 𝐹𝛼0
⊇ 𝐹𝛼1

  (6) 

 

 

 
 

Figure 2. (Alpha, Beta)-cuts of fuzzy set F 

 

 

We define the membership function of the Intersection of two fuzzy sets A(x,𝜇𝐴𝛼
(𝑥)) and B(x,𝜇𝐵𝛼

(𝑥)) as: 

(𝐴 ∩ 𝐵)𝛼 = (𝑥,  𝜇𝐴𝛼∩𝐵𝛼
(𝑥) =

1

2
∗ (𝜇𝐴𝛼

(𝑥) + 𝜇𝐵𝛼
(𝑥)) ) x ∈ 𝑋 
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2.3.  Rough sets: neighborhood systems 

The concept of information granulation was first introduced by Zadeh in the context of fuzzy sets in 

1979 [12]. The basic ideas of information granulation have appeared in fields, such as interval analysis, 

quantization, rough set theory and many others. There is a fast growing and renewed interest in the study of 

information granulation and computations under the term of Granular Computing (GrC). [13] Granulation of a 

universe involves grouping of similar elements parts, or the grouping of individual elements or objects into a 

family of disjoint subsets, based on available information and knowledge. The combination of topological 

spaces and rough sets and the properties of topological rough spaces are discussed [14] used neighborhood 

systems and topological concept in the study of approximations. Neighborhood system is a mathematical 

structure of granular computing to model granules, and can be used to compute structure of granules and/or 

between granules. A neighborhood system at a point is a framework to capture the concept of “near” objects, 

and any subset of objects can be approximated by a set of neighborhoods. A neighborhood system defines a 

set of binary relations, and a set of binary relationships can be used to define a neighborhood system. 

 

Definition 3 (neighborhood of object xi): Given an arbitrary𝑥𝑖 ∈ 𝑈 and P ⊆ 𝐶, the nearest neighborhood 𝛿𝜕
𝑃(𝑥𝑖) 

of xi in feature space P is defined as: 

 

𝛿𝑠
𝑃(𝑥𝑖) = {𝑥𝑗|𝛥𝑃(𝑥𝑖 , 𝑥𝑗) ≤ 𝜀, 𝑠 ∈ ℜ+} (7) 

 

Where 𝛥: 𝑈 × 𝑈 →  𝑅 +, a distance (similarity) function and R+ is the set of non-negative real number.𝛿𝑠
𝑃: The 

neighborhood information granule included objects xi and the size of the neighborhood 

depends on threshold𝜀. 

For each value of𝑠 ∈  𝑅 +, we propose the following neighborhood system as the collection of all 

neighborhoods of x ∈ U as: 

 

𝑁𝑠
𝑃(𝑥) = {𝛿𝑠

𝑃(𝑥)|𝑠 ∈ ℜ+, 𝑃 ⊆ 𝐶} (8) 

 

Where s is a sliding windows for overlapping computation: s<M. 

Theorem 1: For each𝑃1 ⊆ 𝐴, 𝑃2 ⊆ 𝐴
: 

𝑁𝑠
𝑃

(𝑥) is a neighborhood relation induced in feature subspace P.  

We have: 𝑁𝑠
 𝑃1∪𝑃2(𝑥) = 𝑁𝑠

𝑃1(𝑥) ∩ 𝑁𝑠
𝑃2(𝑥) 

 

𝑖𝑓 𝐴 = ⋃ 𝑃𝑖𝑖    so  𝑁𝑠(𝑥) = ⋂ 𝑁𝑠
𝑃𝑖(𝑥)𝑖  (9)

 
 

Given a set of objects U and a neighborhood system Ns over U, we call <U, Ns> a neighborhood approximation 

space. The lower and upper approximations (𝑁𝑋,𝑁𝑋) of X in <U, Ns>, are defined as: 

 

( )
( )

sN x X
NX N xs


 𝑁𝑋 = ⋃ 𝑁𝑠(𝑥)𝑁𝑠(𝑥)∩𝑋≠∅  

 

Obviously, 𝑁𝑋 ⊆ 𝑋 ⊆ 𝑁𝑋. The boundary region of X in the approximation space is defined as: 

 

𝐵𝑁𝑋 = 𝑁𝑋 − 𝑁𝑋
.  

 

The size of boundary region reflects the degree of roughness of set X in the approximation space <U,Ns>. 

Assuming X is the sample subset with a decision label; generally speaking, we hope the boundary region of 

the decision should be as small as possible for decreasing uncertainty in decision. The size of boundary region 

depends on X, attributes to describe U. 

For a fixed pair of numbers (𝛼0, 𝛼1) ∈ [0, 1]×[0, 1], we obtain a submodel in which a crisp set 𝐹𝛼is 

approximated in a crisp approximation space 𝑎𝑝𝑟ℜ𝛼 0
= (𝑈, 𝜇ℜ𝛼0

) The result is a rough set 

((𝑎𝑝𝑟ℜ𝛼
0

(𝐹), 𝑎𝑝𝑟
ℜ𝛼0

(𝐹)) with the reference set 𝐹.Each granule in fuzzy sets 𝐹is a neighborhood of an element 

of the universe. The approximation is defined by show in Figure 3: 

 

𝑁𝐴 = ⋃ 𝑁𝑠(𝑥)𝑁𝑠(𝑥)⊆𝐹𝛼1
      ,  for F𝛼1

⊆ 𝐹𝛼0
⊆ 𝑈 (10) 
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𝑁𝐴 = ⋃ 𝑁𝑠(𝑥)𝑁𝑠(𝑥)⊆𝐹𝛼0
 (11) 

 

In this case, the subset 
𝐹𝛼1

 
 (lower approximation) contains two clusters C1 (grid 2) and C2 (grid 3) 

𝐹𝛼1
= 𝐶1 ∪ 𝐶2

. 

 

 

 
 

Figure 3. Fuzzy rough set approximation 

 

 

The root grid Grid0 (𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑒 𝑈) with the coarsest granularity covers the entire datasets, which contains one 

sub grids: grids 1 (𝑢𝑝𝑝𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛: 𝐹𝛼0
) at level 1 also contains two sub grids at level 2 

(𝑙𝑜𝑤𝑒𝑟 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛. : 𝐹𝛼1
) 

 

2.4.  Fuzzy neighborhood rough set outlier factor (FNROF) 
In this paper, a new method for ranking outlier which is proposed based on fuzzy rough set denoted 

“Fuzzy neighborhood rough set outlier factor” FNROF. After dividing each dimension into intervals of equal 

length M, the density distribution of each cell (information granularity) can be defined as the ratio of its density 

and the average density of its k neighboring cells. 

 

ℑ𝑖
𝑃=  ∑ (

𝑑𝑖

𝑑𝑗
)𝑛

j=1  * log(
𝑑𝑖

𝑑𝑗
) = ∑ (

𝑛𝑖

𝑛𝑗
)𝑛

j=1  * log(
𝑛𝑖

𝑛𝑗
) (12) 

 

Proof: 
𝑑𝑖

𝑑𝑗
=

𝑛𝑖

𝑀𝑛 ∗
𝑀𝑛

𝑛𝑗
=

𝑛𝑖

𝑛𝑖
 

 

A normalized score of 𝜁𝑖
𝑃is given as follow: 

 

𝜁𝑖
𝑃 = 1 −

ℑ𝑖
𝑃 − ℑ𝑚𝑖𝑛

𝑃

ℑ𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
𝑃

   0 ≤ 𝜁𝑖
𝑃 ≤ 1

 

 

It’s viewed as the relative density measure of 𝑐𝑙𝑖 (di) with respect to the density of n surrounding neighbor’s 

cell. When the probability is uniformly distributed, we are most uncertain about the outcome, the entropy 

(score) is the highest in this case. On the other hand, when the data points have a highly probability mass 

function, we know that the variable is likely to fall within a small set of outcomes so the uncertainty and the 

entropy (score) are low. The size of interval must be carefully selected. If the interval size is too small, there 

will be many cells so that the average number of points in each cell can be too small. On the other hand, if the 

interval size is too large, we may not be able to capture the differences in density in different regions of the 

space. Unfortunately, without knowing the distribution of the data sets, it is difficult to estimate the minimal 

average number of points required in each cell to have the correct result. 

 

Definition 4: Directly density-reachable: A cell 𝑐𝑙𝑖 is directly density-reachable from a cell 𝑐𝑙𝑗 if only if, 𝜁𝑖
𝑃 ≥

𝛽 and 𝑐𝑙𝑗 ∈ 𝑁(𝑐𝑙𝑖)𝑤ℎ𝑒𝑟𝑒 𝛥𝑃(𝑐𝑙𝑖 , 𝑐𝑙𝑗) = 𝜁𝑗
𝑃 − 𝜁𝑖

𝑃 
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That is, 𝑐𝑙𝑖 is a core cell and 𝑐𝑙𝑗 is in its neighborhood. 

 

Definition 5: Density-connected. A cell 𝑐𝑙𝑖 is density-connected to a cell 𝑐𝑙𝑗 if there is a cell 𝑐𝑙𝑘 such that both 

𝑐𝑙𝑖 and 𝑐𝑙𝑗 are density-reachable from 𝑐𝑙𝑘 as shown in Figure 4. 

 

 

 
 

Figure 4. The concept of density-reachability and density-connectivity to form clusters as contiguous dense 

regions in lower approximation 

 

 

2.5.  A novel approach: A high-performance parallel and distributed computation using mapreduce 
In order to compute an optimal set of cut-points, most of discretization algorithms perform an iterative 

search in the space of candidate discretizations, using different types of scoring functions for evaluating a 

discretization, that take a lot of time. In this paper, we propose a parallel process of discretization based on 

MapReduce using sliding grid. A sliding grid is specified by defining its range M and slide S. The range M is 

an interval of discretization while the slide S specifies the portion of the grid that is moved forward. A sliding 

window is specified as a tuple (M,s). A smooth sliding specification is highly desired where the slide S issmall 

relative to the range M. where𝑆 < 𝑀. The proposed algorithm based on MapReduce computed for each node 

i(𝑃𝑖 ⊆ 𝐴) is a parallel process that consists of three steps: map, shuffle, and reduce as shown in Figure 5. 

 

 

 
 

Figure 5. Framework MapReduce proposed 

 

 

Example: S=<U,A={C1,C2,C3,C4,C5}> 

P1= {C1,C2 } 

P2= {C2, C3} 

P3= {C3, C4, C5} 

(𝑃𝑖 ⊆ 𝐴 and  𝐴 = 𝑃1  ∪ 𝑃2  ∪ 𝑃3 )
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At node 1 (P1): 

Each worker node that applies the map function related to each grid defined by tuple 

{(M,s1),(M,s2),(M,s3),(M,s4),(M,s5)}
 

 

Inmap phase, for each grid given tuple (M,s), we generates a list (key=𝑐𝑙𝑖,value=𝜁𝑖
𝑃) where 𝜁𝑖

𝑃 is a score of 

𝑐𝑙𝑖. In shuffle phase, the output pairs are partitioned and then transferred to reducers. In reduce phase, pairs 

with the same key are grouped together as (𝑐𝑙𝑗, list(𝜁𝑗
𝑃)) as shown in Figure 6. 

 

 

 
 

Figure 6. Illustrates how the cell overlaps when the grid move 

 

 

Then the reduce function generates the final output pairs list (𝑐𝑙𝑘,𝜁𝑘
𝑃) for each fuzzy approximation. 

The whole process can be summarized as follows: 

Map: (M,s)  (𝑐𝑙𝑖,𝜁𝑖
𝑃)

 
Reduce: (𝑐𝑙𝑖, list(𝜁𝑗

𝑃)) (𝑐𝑙𝑘,𝜁𝑘
𝑃) 

A parallel computing of FNROF and its template implementation 

 

Master: 

 

 Get {𝑐𝑙𝑖,𝜁𝑖
𝑃, 𝐿𝑖𝑠𝑡𝐶𝑙𝑗} from the result queue 

 If (𝜁𝑖
𝑃 ≥ 𝛽) 

for each cell 𝑐𝑙𝑐in 𝐿𝑖𝑠𝑡𝐶𝑙𝑗 

if (𝜁𝑐
𝑃 ≥ 𝛽 and 𝑐𝑙𝑐 is not labeled ) 

 { 

ℂ𝑐𝑙𝑢𝑠𝑡𝐼𝐷 = ℂ𝑐𝑙𝑢𝑠𝑡𝐼𝐷 ∪ 𝑐𝑙𝑐  

Label (𝑐𝑙𝑐) = clustID 

put𝑐𝑙𝑐 in the candidate queue 

 

 } 

 

Slave: 

Get Cell𝑐𝑙𝑖 from the candidate queue  

𝐿𝑖𝑠𝑡𝐶𝑙𝑗 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑(𝑐𝑙𝑖) 

put {𝑐𝑙𝑖,𝜁𝑖
𝑃, 𝐿𝑖𝑠𝑡𝐶𝑙𝑗} in the result queue  

 

Algorithm MR- FNROF: Fast outlier detection algorithm based on fuzzy neighborhood rough and a pipeline 

parallelism between master and slave module. 

 

clustID =0 

for each cell 𝑐𝑙𝑖 in grid database 

{ 

if(𝑐𝑙𝑖is not labeled) 

 { 

If(𝜁𝑖
𝑃 ≤ 𝛽) 

 { 
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𝑁𝐸𝐺 = 𝑁𝐸𝐺 ∪ 𝑐𝑙𝑖 

 Label (𝑐𝑙𝑖) =noise 

 } else if (𝜁𝑖
𝑃 ≤ 𝛼)  

 { 

𝑁𝐸𝐺 = 𝑁𝐸𝐺 ∪ 𝑐𝑙𝑖 

 Label (𝑐𝑙𝑖) =boundary 

 } else { 

 

 While (there are pending results) 

 { 

 Master in (neighbor𝑐𝑙𝑖) out candidate𝑐𝑙𝑐 

 Parallel: Slave in (candidate𝑐𝑙𝑐) out (neighbor𝑐𝑙𝑖) 

 }  

clustID =clustID + 1 

} 

 

Example of computation (At a single node P): 

Map phase: 

Cell i: 𝑐𝑙𝑖 

20 40 10 

70 90 100 

80 99 102 

ℑ𝑖
𝑃=(90/20)*log(90/20)+(90/40)*log(90/40)+(90/10)*log(90/10)+(90/70)*log(90/70)+(90/100)*log(90/100)+

(90/80)*log(90/80)+(90/99)*log(90/99)+(90/102)*log(90/102) 

ℑ𝑖
𝑃=28.53 

Cell k: 𝑐𝑙𝑘 after moving the grid 

24 44 14 

73 94 105 

84 103 107 

ℑ𝑘
𝑃=(94/24)*log(94/24)+(94/44)*log(94/44) 

+(94/14)*log(94/14)+(94/73)*log(94/73)+(94/105)*log(94/105)+(94/84)*log(94/84)+(94/103)*log(94/103)+

(94/107)*log(94/107)  

ℑ𝑘
𝑃==19.90 

ℑ𝑚𝑎𝑥
𝑃 80 

ℑ𝑚𝑖𝑛
𝑃  

0.36
P

i  𝜁𝑘
𝑃 = 0.25 

 

Shuffle and Reduce phase: 

Given a cut point 𝛼0 = 0.3 

𝜁𝑐𝑙𝑖−𝑐𝑙𝑘

𝑃 = 𝜁𝑐𝑙𝑖

𝑃 = 0.36 > 𝛼0 

𝜁𝑐𝑙𝑘−𝑐𝑙𝑖

𝑃 = 𝜁𝑐𝑙𝑘

𝑃 = 0.25 < 𝛼0 

𝜁𝑐𝑙𝑖∩𝑐𝑙𝑘

𝑃 =
1

2
∗ (𝜁𝑐𝑙𝑖

𝑃 + 𝜁𝑐𝑙𝑘

𝑃 ) 

𝜁𝑐𝑙𝑖∩𝑐𝑙𝑘

𝑃 =
1

2
∗ (0.36 + 0.25) = 0.305 > 𝛼0 

 

Lower approximation: 

(𝑐𝑙𝑖 ∩ 𝑐𝑙𝑘) ⊆ 𝑋 

(𝑐𝑙𝑖 − 𝑐𝑙𝑘) ⊆ 𝑋 

𝑋 = 𝑋 + (𝑐𝑙𝑖 − 𝑐𝑙𝑘) + (𝑐𝑙𝑖 ∩ 𝑐𝑙𝑘) 

 

Upper approximation: 

(𝑐𝑙𝑘 ∪ 𝑐𝑙𝑖) ⊆ 𝑋 

𝑋 = 𝑋 + (𝑐𝑙𝑘 ∪ 𝑐𝑙𝑖) 
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3. EXPERIMENTS AND RESULTS 

The algorithm proposed is tested with synthetic and real data collected from NOAA center. 

The implementation of this work was realized in R using RStudio. Datasets NOAA: [15] The National Climatic 

Data Center – NOAA: collects a wide range of data; including sensor streams with temporal information, sensor 

spatial information, temperature, etc. 

 

3.1.  Improvement in search time efficiency 

The purpose of the experiment was to compare the performance between the algorithm proposed MR- 

FNROF and the original LOF algorithm in terms of matching detected outliers and execution time. Comparing 

the performance of the tow methods, it shows that our method have a very fast processing time with acceptable 

trade-off errors as show in Table 1. 

 

 

Table 1. Time taken and matching detected outliers according to the number of objects in the dataset for both 

MR-FNROF and LOF method 
Number of objects Time taken (seconds) Number of outliers detected 

MR-FNROF Method (9 nodes) LOF method MR-FNROF Method (9 nodes) LOF method 

2023 0.29 5.37 203 123 
4845 0.34 11.3 302 284 

19768 1.9 50.2 713 688 

938419 8.49 523.4 2023 1987 

 

 

3.2.  Performance of MR-FNROF according to number of workers nodes 

The second experiment shows that reduction of the risk of a Type I & II error is performed by 

increasing the number of workers nodes as shown in Figure 7. With high number of workers nodes, we are 

getting more outlier detected in upper approximation rough set (less of type II errors). 

 

 

  

 
 

Figure 7. Anomaly detection using successively 3, 5 and 7 workers nodes given  

(alpha, beta)-cuts = (20%, 50%) 
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4. CONCLUSION 

The aim of this paper is to propose a new algorithm of outlier detection that reduces the computation 

time required by using granular computing method and fuzzy rough set thoery. The algorithm MR- FNROF 

divides the universes into a smaller number of granules, and calculates the factor of outlierness for each granule. 

To examine the effectiveness of the proposed method, several experiments incorporating different parameters 

were conducted. The proposed method MR- FNROF, demonstrated a significant computation time reduction. 

Moreover, it can also be effectively used for real-time outlier detection. 
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