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 In neural networks, the accuracies of its networks are mainly relying on two 
important factors which are the centers and the networks weight. The 
gradient descent algorithm is a widely used weight adjustment algorithm in 
most of neural networks training algorithm. However, the method is known 
for its weakness for easily trap in local minima. It suffers from a random 
weight generated for the networks during initial stage of training at input 
layer to hidden layer networks. The performance of radial basis function 
networks (RBFN) has been improved from different perspectives, including 
centroid initialization problem to weight correction stage over the years. 
Unfortunately, the solution does not provide a good trade-off between quality 
and efficiency of the weight produces by the algorithm. To solve this 
problem, an improved gradient descent algorithm for finding initial weight 
and improve the overall networks weight is proposed. This improved version 
algorithm is incorporated into RBFN training algorithm for updating weight. 
Hence, this paper presented an improved RBFN in term of algorithm for 
improving the weight adjustment in RBFN during training process. The 
proposed training algorithm, which uses improved gradient descent algorithm 
for weight adjustment for training RBFN, obtained significant improvement 
in predictions compared to the standard RBFN. The proposed training 
algorithm was implemented in MATLAB environment. The proposed 
improved network called IRBFN was tested against the standard RBFN in 
predictions. The experimental models were tested on four literatures 
nonlinear function and four real-world application problems, particularly in 
Air pollutant problem, Biochemical Oxygen Demand (BOD) problem, 
Phytoplankton problem, and forex pair EURUSD. The results are compared 
to IRBFN for root mean square error (RMSE) values with standard RBFN. 
The IRBFN yielded a promising result with an average improvement 
percentage more than 40 percent in RMSE. 
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1. INTRODUCTION 

The term Radial Basis Function networks (RBFN) is associated with radial basis function (RBF)  
in single-layered networks with structure as shown in Figure 1. Radial Basis Function (RBF) Networks 
derived from the theory of function approximation. It was originally used in exact interpolation in 
multidimensional space by Moody and Darken [1]. RBFN displayed its advantages over other types of neural 
networks with better approximation abilities, simple network design and faster learning algorithms. 
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Consequently, RBFN becomes a popular tools among researchers for many applications such as 
classification, pattern recognition and approximation model.  

Numerous researchers whom have been working to improves RBFN training algorithms, set 
alongside the standard techniques [2–8]. RBFN are useful in approximation problems, but it is time-
consuming to train the networks as it connect to a large numbers of training data, nonetheless generate high 
error due to possible invalid data or designation of weights in hidden layer. Although a standard RBFN has 
been proved by Sarimveis [2] to be faster in training with reasonable accuracy, it still produces substantial 
error. Such outcomes were caused by the standard RBFN that lack the ability to computes accurate weights 
for hidden layer that able to represent the level of importance for each hidden nodes. Through improving the 
weights calculation equation in standard RBFN during updating stage, we can fix the problem stated above.  

Noted that the more accurate the weights are assigns to each node, more accurate the information 
that feeds to the output layer of network, resulting in accurate results. In this paper, an improved RBFN that 
outperforms the standard RBFN in term of accuracies is presented. The proposed networks efficiency is 
demonstrated through the application of eight experimental models, with four nonlinear model from 
literatures, three real-world problems data obtained from Lim [9] and one real-world time-series data from 
XM metatrader 4 trading platform [10]. The advantages of the presented proposed networks are identified 
and the results are compared with standard RBFN and discussed. 
 
 

 
 

Figure 1. The architecture of RBFN 
 
 
2. RELATED WORKS 

Radial basis function networks (RBFN) are well-known for its ability to generalize and approximate 
a sample data without the requirement for the equation and coefficients, particularly when an unknown model 
describing an unknown complex relation with abundant training data. Due to their ability to generalize 
substantially, RBFN are usually selected for this purpose [11-23]. Furthermore, in this big data era, many 
domains such as image processing, text categorization, biometric, microarray, etc. had the size of datasets so 
large, that real-time system requires long time and memory storage to process them. 

Under the same group, the backpropagation neural networks also can generalize and approximate 
complex dataset. However, due to the architecture of backpropagation neural networks that works in forward 
and backward direction, delays in training time is unavoidable. Furthermore, in term of approximation, 
multiple literatures showed that the RBFN is more superior than backpropagation neural networks, in term of 
training speed and accuracy [24-28]. Two main criteria that determine the accuracy of an RBFN are the 
initial centre and the networks weights. In this paper, we focus mainly on networks weight adjustment. 
Throughout many literatures, we found that weight adjustment in RBFN play vital role in determine  
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its accuracy in approximation problem. Wang et al. [29] study the effectiveness of extreme learning machine 
by adjusting its networks weights, it is found that networks weight significantly inflicts in output accuracy. 
A year after Wang’s team finding, Hadi et al. [30] proof the weak robustness in multilayer perceptron and 
RBFN in estimating large dataset was due to the lack in weight correction algorithm in both the networks. 
The work related to weight correction is then supported by Godoy et al. [31] and Sodhi et al. [32] that proof 
when a better weight is assigned to the networks, the output yield significantly better in accuracy. Recently, 
Cao et al. [33] in their review work, stated that random weight approaches in RBFN causes the reduce  
the network accuracy in most approximation case studies.  

In finding solution to obtained better weights adjustment and gaining accurate approximation, 
Navarro et al. [34,35] demonstrated that the hybrid of evolutionary algorithm such as particle swarm 
optimization (PSO) with RBFN shows a good performance in classification problems and approximation 
problems. This work is extended by Leung et al. [36, 37] by introducing a novel PSO method or adjusting the 
RBFN networks weight.  Moreover, the following years, evolutionary algorithm turn popular and becoming 
the focus tools for weight adjustment in RBFN, where the combination of multiple evolutionary algorithm 
such as genetic algorithm and PSO with RBFN [38, 39]. Some researcher uses a modified version of genetic 
algorithm as networks weights controller for gaining better results [40-42] and most recent on using modified 
PSO in RBFN for weight adjustment by Mirjalili [11]. The used of evolutionary algorithm as a tool for 
network weights adjustment in RBFN training was indeed a good method if the networks training speed and 
computation cost are not main concerns.   

Alongside with used of evolutionary algorithm, there are also some research on using fuzzy 
inference rule as weight setting for RBFN which yield good results [43, 44]. However, the application of 
fuzzy inference in RBFN was only tested in classification problem, and the setting of the fuzzy rule is a 
challenging task for regular researchers that do not have fuzzy theory background.  In contrary, the used of 
statistical method in obtaining suitable weight for RBFN were reported in numerous literatures [45-48], that 
uses stochastic method, Grover searching algorithm, Hierarchy Markovian matrix and attributed class 
correlation method for that purposes.  Furthermore, it is also reported that the learning algorithm for networks 
training may perform worse with the increases of dataset [49]. Incorporating statistical method into RBFN is 
a complicated task, requires deep understanding in flow of algorithm and statistical theory to implement such 
approaches. Furthermore, the reported improvement on results in mentioned literatures are not significant 
enough for the complicated implementation process involved. Moreover, there are others studies using 
extreme learning machine as tool for weight adjustment shown by Tang and Huang [50] and, Dash  
and Dash [51]. Both studies used extreme learning machine for controlling the networks weights during 
training process. There are numerous others less known method used for RBFN weight adjustment are 
projection based learning method [52], linear interval regression weights method [53], self-organized RBFN 
based on mutual information and neurons activity [54], novel two-steps algorithms [55], self-constructing 
least-Wilcoxon method [56], and semi-analytic computation of Laurent series [57]. 

Finally, researcher also incorporating part of backpropagation neural networks algorithm that 
involved the weight updating stage into RBFN to enhance the performance of weight correction ability in the 
algorithm. In 2011, Philip et al. [58] used feed forward neural network to correct the weight for 
backpropagation neural networks during learning stage. In the same year, Malviya et al. [59] used 
backpropagation neural network and PSO as weight tuning tool for RBFN. Since then, many research focuses 
on gradient descent (GD) algorithm were proceeds with good results, as GD algorithm was the weight 
updating algorithm in backpropagation neural networks.  

In 2012, Mohseni et al. [60] introduced a mixed training algorithm using backpropagation neural 
networks and variable structure system to optimize weight updating in RBFN. Assaf et al. [61] then proposed 
a new training mode using unsupervised classification algorithm where the connections of weights are 
learned using GD algorithm. Then Xie et al. [62] further extended the uses of GD algorithm to second order 
GD algorithm in training RBFN where the weight is adjusted during training. Though the GD algorithm is a 
great approaches for finding weight, however, the GD algorithm also has weakness such as easily trap in 
local minima [63, 64].  

To overcome the weakness of GD algorithm, a few studies were done. Ganapathy et al. [65] 
demonstrated the efficiency of an improved steepest descent algorithm for determining weight of hidden 
layer to output layer network. Chang et al. [21] proposed the used of error feedback scheme in RBFN for 
weight correction which can avoid the local minima problem. Recently, Mohammadi et al. [16] applied a 
pseudo-inverse algorithm for calculating weight updating matrix even with large dataset that can fix the local 
minima problem. In the mentioned literatures, clearly most approaches involved complicated process  
to perform the computation and some approaches yield not significant improvement in accuracies. 
Furthermore, many approaches focus on applying separate part of methods or algorithm for weight 
adjustment instead of focusing on improving RBFN internal algorithm. In this paper, we focus on improving 
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the internal algorithm for weight correction stage and reduce complicated algorithm which in turn making 
RBFN algorithm precede faster computation  with low computation cost. This paper is organized with the 
following section describing the standard RBFN, follows by steps in improving the standard RBFN and used 
for simulating and predicting the eight experimental models. Then, in section 4 discussed the results of each 
models and compared with standard RBFN for accuracies. Finally, section 5 concludes the findings and 
discussed some future work that would help in improving the proposed improved RBFN. 
 
 
3. METHODOLOGY  
3.1.  Radial basis function network (RBFN) 

RBFN is an intelligent interpolation technique for modeling a linear or nonlinear multidimensional 
data. RBFN is often used for prediction problems. Its kernel has two parameters; the center and its radius. 
These two parameters can determined through unsupervised or supervised learning as proposed by Moody 
and Darken in 1989 [1]. RBFN is a type of feed-forward neural network. The network structure consists of 
three-layer network similar to multi-layer feed-forward network. In the network structure of RBFN as shown 
in Figure 1, the first layer is the input layer and is composed of signal source nodes. The second layer is a 
hidden layer, and the number of nodes of the layer is determined by the nature of the problem to be solved 
and the characteristics of the specific problem. The transfer function of the neurons in this layer is the radial 
basis function, which is a global function that responses as the forward network transformation function. 
The third layer is the output layer, which responds to the input layer. 

The main idea of the RBFN is to use the radial basis function as the "base" of the hidden layer unit 
to build the hidden layer. In the hidden layer, the input vector is transformed. Thus, low-dimensional input 
data can convert to a high-dimensional space. Such approach can transform a linearly inseparable problem in 
a low-dimensional space into a linearly separable in a high-dimensional space, thereby solving the related 
problem. RBFN training is simple and has fast learning convergence. It can approximate any nonlinear 
function. Therefore, the RBFN has a extensive applications in pattern recognition, image processing, 
predictions and nonlinear control. From the perspective of function approximation, RBFN are local 
approximations. If the number of neural units in the hidden layer reaches a certain level, the network can 
approximate any continuous function with arbitrary precision. In addition, due to RBFN adopts a linear 
mapping relationship between the output layer and the hidden layer; the network can avoid the complicated 
back-propagation operation as in back-propagation neural network. Therefore, in RBFN, the speed of 
operation and the accuracy of nonlinear fitting are improved. During the operation to solve a problem, the 
RBFN has the characteristics of the training samples corresponding to the radial basis function mapping, 
resulting in a large amount of network computation, and may cause problems in solving the networks 
weights. 
 
3.2.  RBFN model and learning algorithm 

The RBFN by default uses the Gaussian function as the kernel function of the hidden unit (1).  
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Where kr  is the output value of the k-th Gaussian unit of the hidden layer; C is the i-th input 

variable value of the center of the kernel of the k-th Gaussian unit; kσ  is the spread of the kernel of the k-th 
Gaussian unit. 

The supervised learning rule used to adjust the link weighting value between the hidden unit and the 
output unit, and the threshold value of the output unit. The difficulty with RBFN determines the number of 
hidden units and the center of the Gaussian function and the radius parameters. The two parameters, center 
and radius, can determined by supervised or unsupervised learning. The supervised learning of RBFN is 
similar to back-propagation, and the learning rules can derived by minimizing the sum of squares errors and 
the gradient descent method. Unsupervised learning uses the K-means algorithm to find the cluster center of 
the sample as the center of the Gaussian function of each hidden unit. Though RBFN has an extensive 
applications in pattern recognition, predictions, and control system, the algorithms still a disadvantage on an 
independent variables have the same position, so the contour of the kernel function is circular. However, each 
independent variable has different influence on the dependent variable, and the contour of the kernel function 
should be elliptical. 
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3.3.  RBFN implementation, advantages and limitation 
The implementation of the RBF neural network consists of two parts: the network structure part and 

the algorithm parameter part. The network structure is designed to determine the number of nodes in the 
hidden layer of the network. The part of the algorithm parameters is determined for the three important 
parameters of the data center of the radial basis function, the spread constant and the output layer weight. 
Since the number of hidden layer nodes is consistent with the number of samples, and the center of the radial 
basis function is the sample itself, only the spread constant and the output layer weight need to be determined 
when establishing the network. However, when building an RBFN, the learning algorithm needs to solve 
more problems, including the determination of the number of hidden layer nodes, the determination of the 
data center of the radial basis function, the spread constant, and the correction of the weights of the 
output layer. The establishment and training of the radial basis function neural network is composed of two 
stages. The first phase primarily determines the data center of the radial basis function in the hidden layer, 
typically used as the center's self-organizing selection method for unsupervised learning processes. The input 
samples are clustered to determine the center of the radial basis function of the hidden layer nodes. 

The RBFN has its adaptive ability and fault tolerance. Therefore, while dealing with the complex 
evaluation of nonlinearity, the factors that have no significant influence on the evaluation results can 
effectively eliminated. The RBFN is improved via the supervised learning rules are used to adjust the link 
weighting value between the hidden unit and the output unit, and the threshold of the output unit. 
The learning rule is derived by minimizing the sum of squared errors and the gradient descent method. 
 
3.4.  Improved RBFN (IRBFN) 

RBFN were reported has an extensive applications and its algorithms have many different variants 
[11, 19, 66, 67]. Yeh and Chen [68] proposed an improved RBFN with kernel shape parameters to derive its 
learning rules in supervised learning, which is superior to conventional RBFN. It is proved that after the 
kernel function is given the weight; the shape of the kernel function is elliptical, which is more reasonable 
than the shape of the circular kernel function which has the same position as all the independent variables of 
the conventional RBFN. Therefore, this proposed improved RBFN is reasonably has superior fitting degree 
than conventional RBFN. 

During the forward propagation of proposed network, which is also known as recall stage, 
the calculation of the hidden layer output vectors requires (2) and (3). 
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where ix  is the i-th input value; kh  is the output value of the k-th Gaussian unit of the hidden layer; knet  is 

the net value of the k-th Gaussian unit of the hidden layer; ikC  is the i-th input variable value of the center of 

the kernel of the k-th Gaussian unit; ikV  is the weighted value of the i-th input variable of the kernel of the k-

th Gaussian unit, representing the importance of the input variable; kσ  is the radius of the kernel of the k-th 
Gaussian unit. 

During the network training process, kσ may adjusted to 0, causing the denominator to be 0. 
In order to avoid this trouble, (3) is modified to the following formula. 

 

( )22 2 ,    1, 2,3,...,k k ik i ik
i

net Q V x C k N= − =∑  (4) 

 
where kQ  is the reciprocal of the radius of the kernel of the k-th Gaussian unit. 
In calculating the responded output vector, (5) is used. 
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where jnet
 is the net value of the j-th unit of the output layer; jy  is the output value of the j-th 

output unit; kjW  is the connection weight between the k-th unit of the hidden layer and the j-th unit of the 

output layer; jθ  is the threshold of the j-th unit of the output layer. 
Now for backward propagation, which is the learning stage, as this supervised learning aims to 

reduce the difference between the target output value of the network output unit and the responded output 
value, the quality of learning is generally expressed by the following cost function: 

 

( )21
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where jt  is the target output value of the j-th output unit of the training sample output layer; 

jy  is the responded output value of the j-th output unit of the training sample output layer. 
Since the cost function is a function of the responded output value, and the responded output value 

is a function of the network connection weight value and the parameters of the center and radius of the 
Gaussian unit, the cost function is a function that links the weight value and the Gaussian unit parameter. 
Therefore, adjusting the link weight value and the Gaussian unit parameter can change the size of the cost 
function. In order to minimize the cost function, the gradient descent method is used to adjust the network 
link weighting value and the Gaussian unit parameter. 

The following is divided into two parts to derive the correction formula.  
1. The weighted value of the link between the hidden layer and the output layer. 
2. The Parameters of the Gaussian unit in hidden layer. 

 
To find the weighted value of the link between the hidden layer and the output layer, the correction 

weight of the link weight between the network output layer and the hidden layer is the same as the inverse 
gradient descent algorithm, but it is still fully derived here. First, get the partial differential law: 
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Place (9)-(11) into (8), we obtained, 
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For Parameters of the hidden layer Gaussian unit, the central value correction of the kernel of the 

Gaussian unit can obtained by the partial differential law: 
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Due to (13),  
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Now, we substitute (21) and (22) into (16), we obtained, 
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Similarly, the mutual correction of the radius of the kernel of the Gaussian unit can obtain by a 

partial differential law: 
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By substituting (21) and (25) into (24), we obtained, 
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Similarly, the weight of the input variable weight (shape parameter) of the Gaussian unit can 

obtained by the partial differential law: 
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By substituting (21) and (28) into (27), we obtained, 
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The five (14) ,(15), (23), (26) and (29) are the learning rules of the improved RBF neural network. 
Clearly, from above derivation equations, there is one more shape parameter in the tunable 

parameter than the conventional RBFN. The supervised learning rules of all parameters are uniformly 
derived by using the principle of sum squares error minimization, including the center, radius, and shape 
parameters of the kernel function, the weighting value of the networks between the hidden unit and the output 
unit, and the threshold of the output unit. 

The RBFN is often used for prediction and classification problems, but it has the disadvantage that 
all independent variables have equal status, with the shape of the kernel function is circular and this influence 
outcome the networks. Since the weights of each input are different, so the shape of the kernel function 
should be elliptical. To overcome this shortcoming, an improved RBFN with kernel shape parameters is 
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proposed, and its learning rules are derived by supervised learning. This architecture is superior to traditional 
radial basis function networks. 

Clearly, from Figure 2 that based on the RBFN, the proposed IRBFN has the weight of V added 
between the input layer and the hidden layer to indicate the influence of different input layer units on the 
hidden layer unit, which later use for calculating the weights of hidden layer to output layer. 
 
 
 

 
Figure 2. The architecture of IRBFN 

 
 
4. RESULTS AND DISCUSSION 

The proposed IRBFN was tested using 4 nonlinear function from literatures, which are Santner et al. 
[69] function given in (30), Lim et al. [70] function in (31), Dette and Pepelyshev [71] function in (32), 
and Friedman [72] function in (33). For all these 4 functions, the training set for RBFN consists of 400 sets of 
random generated data points and test set comprises 400 sets of random generated data points, 
both in range of [0,1]. 
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IRBFN was also tested on 4 real-world datasets for its performance. The Biochemical Oxygen 

Demand (BOD) concentration dataset, phytoplankton growth rate and death rate dataset and air pollutant 
dataset were obtained from Aik and Zainuddin [73]. Another which is the dataset from forex for EURUSD 
pairs is collected from XM Metatrader 4 database [10]. The BOD dataset and phytoplankton dataset both 
consists of 100 sets of data and the test set comprises 100 sets of data. Meanwhile, for air pollutant dataset, 
the training set has 480 sets of data and the test set has 72 sets of data, which both were taken from hourly air 
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data. For EURUSD pairs, the training set consists of 519 sets of data taken from year 2016 to end 
of year 2017. The test set consists of 155 sets of data taken from early year 2018 to August 2018. 

The experiment was implemented by using the newrb function because it represents the general 
form of an RBF network. Furthermore, the proposed clustering method has been implemented by using 
MATLAB’s function. Gaussian basis function has been used for both networks with other parameters such as 
spread was set to default value, so the performance of the proposed network can evaluated effectively [8]. 
Performance of standard RBFN and IRBFN in this experiment has been measured by comparing the 
computation time taken for training with number of iteration taken for convergence and the Root Mean 
Squared Error (RMSE) to measure how well both networks approximates the chosen functions 
and it is given by. 

 

( )2
1

1 n

i i
i

RMSE O P
n =

= −∑
 

where n is the number of predicted responder; iO  is the target value for time-step i, and iP  is the predicted 
value of the model at time-step i. 

The number of centers for RBFN is fixed to 10 centers for all 8 datasets training. For air pollutant 
problem, the pollutant monitored includes carbon monoxide, nitric oxide, nitrogen dioxide, ozone, and oxides 
of nitrogen. For experimental purposes, hourly updated air quality data obtained from Aik and Zainuddin 
[73] has been used to predict the trend of interested pollutants for Nitric Oxide, Nitrogen Dioxide and Oxides 
of Nitrogen. While for Phytoplankton problem, growth rate and death rate have been used as the interested 
values. As for the BOD problem, the BOD concentration has been taken as the interested value. Finally, the 
forex EURUSD dataset consists of three variables is taken considered for training, which are the daily 
highest price, daily lowest price and open price, while the close price is used for prediction. 

 
 
Table 1. Performance of IRBFN and Standard RBFN prediction results for datasets 

Dataset 
Standard RBFN IRBFN 

Average of RMSE Standard Deviation of 
RMSE Average of RMSE Standard Deviation of 

RMSE 
Santner 0.160980 0.132510 0.095935 0.021740 

Lim 0.151190 0.053404 0.094039 0.011824 
Dette 1.938260 1.318204 0.952562 0.175806 

Friedman 1.333590 0.700492 0.162113 0.058887 
BOD 0.000252 3.87e-07 0.000247 4.29e-05 

Phytoplankton 0.004980 0.000933 0.004035 0.000800 
Air Pollutant 4.203630 2.860265 0.371875 0.109962 

EURUSD 0.031649 0.004812 0.028432 0.004942 
 
 
Table 2. Percentage of Improvement for IRBFN over Standard RBFN by RMSE 

Dataset Percentage of Improvement (%) 
Santner 40.41 

Lim 37.80 
Dette 50.85 

Friedman 87.84 
BOD 1.80 

Phytoplankton 18.98 
Air Pollutant 91.15 

EURUSD 10.16 
 
 
Results from Table 1 shows that IRBFN networks outperform standard RBFN in average RMSE and 

standard deviation of RMSE. All results of average RMSE in Table 1 are calculated using ten times run of 
each networks. From Table 1, IRBFN network surpasses the standard RBF in accuracy and network 
architecture by using training set which consists only 81.8%, 71.8%, 68.5%, and 65.8% of total dataset size 
for Santner dataset, Lim dataset, Dette dataset, and Friedman dataset, respectively. While IRBFN network 
training for real-world dataset involves the BOD dataset, Phytoplankton dataset, Air pollutant dataset and 
forex EURUSD dataset used only 81.8%, 71.8%, 68.5% and 66.8%, respectively. This means that, it is 
possible to suitable number of dataset such that, it will provide a network with reduced complexity, faster 
training time and improved accuracy. Table 2 shows the results of the percentage of improvement of RMSE 
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for IRBFN network in compared to standard RBFN. Results showed that IRBFN network outperform 
standard RBFN network in term of accuracy more than 80% for Friedman dataset and air pollutant dataset. 
Meanwhile, for Santner dataset, Lim dataset and Dette dataset each obtained improvement in range of 37% to 
51%. However, BOD dataset shows no significant improvement for IRBFN network over standard RBFN 
with percentage less than 2%. This is due to the high nonlinearity of BOD data, besides, the lack of additional 
input variable that control the changes in BOD can lead to weak prediction results.  

The results from real-world datasets for Phytoplankton dataset and forex EURUSD dataset showed 
improvement of 18.98% and 10.16%, respectively. Both of this datasets are highly nonlinear data. Possible 
existence of other environmental factor that not included in dataset possibly is the reason behind the low 
improvement percentage occurs for Phytoplankton dataset. Additionally, for forex EURUSD dataset, the low 
improvement percentage is due to many possible factors not included in the dataset that also drives the 
movement of this currency values. Factor that cannot be quantified, such as political influences or natural 
disaster, can affect the currency fluctuation. Hence, if such factors can quantify and includes in the dataset, 
improvement in percentage is expected.  From Table 1 and Table 2, we observed that IRBFN network 
provide such consistent results even that it uses less dataset and still able to perform such satisfying results. 
The results of prediction from IRBFN network are consistent as we observed from Table 1, the standard 
deviation of RMSE was much lower than standard RBFN. Figure 3 shows the error bar plot that displayed 
the comparison of errors for both the networks. Clearly, the standard RBFN has larger error in compared to 
IRBFN network for all datasets.  

 
 

 
 

Figure 3. Error bar plot for datasets using standard RBFN and DWKM-RBFN 
 
 

The IRBFN network and Standard RBFN performed well in the experiments for dataset with smaller 
range that lies in [0,1]. However, for larger range of dataset such as air pollutant dataset, the standard RBFN 
performed poorly in accuracy. Besides, the IRBFN network is superior in accuracies but a proper adjustment 
in the hidden layer weightage can enhance the networks accuracy to much higher level. The results in Table 1 
shows that even with less dataset used for training, if the right weights are assigned, can impact in prediction 
accuracy. The uses of huge number of dataset does not always guarantee the desirable prediction accuracies, 
but sufficient number of dataset that can represent the shape of the distribution for the dataset is enough for 
providing good prediction results. Furthermore, a large number of training dataset might contain invalid data 
that could jeopardize the desired accuracy, not mentioning the size of network it would create and the time 
taken for training. Hence, there is no denial on the ability of the IRBFN network and standard RBFN in 
prediction, but it comes with a hefty compensation for the accuracy if the proper value of hidden layer 
weights is not assigned. As the number of datasets for the network becomes lesser and it results much simpler 
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network architecture and possibly free of invalid dataset. Although both models provide satisfying results, the 
network structure and accuracy of the IRBFN network is superior compared to the standard RBFN network. 

 
 

5. CONCLUSION 
Four literatures nonlinear functions and four real-world problems have been simulated in this paper, 

where we applied for real-world problems on prediction of BOD problem, phytoplankton problem, air 
pollution problem and forex EURUSD price prediction problem. The performance of both networks has been 
compared to the case using the Root Mean Squared Error (RMSE) and standard deviation as the criteria for 
performance measurement and network prediction consistency. Results from all eight studies show that the 
IRBFN network is better than the standard RBFN in prediction accuracy and network architecture. Thus, it is 
possible to improve the accuracy of the proposed network by using clustering methods to choose the best 
value of number of center to be used for different type of dataset. As conclusion, the proposed IRBFN is far 
superior to the standard RBFN network as for network accuracy. Since self-organized selection of centers can 
performed by clustering algorithms for selecting significant centers, sufficient to represent the distribution of 
dataset for the hidden nodes has been used, it would be interesting if the networks to be tested with high 
noise training data with clustering algorithm such as K-means algorithm or fuzzy C-means algorithm as 
center selector to verify the efficiency of the IRBFN. 
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