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 The ever-increasing sale of vehicles and the steady increase in population 

density in metropolitan cities have raised many growing concerns, most 

importantly commute time, air and noise pollution levels. Traffic congestion 

can be alleviated by opting adaptive traffic light systems, instead of fixed-

time traffic signals. In this paper, a system is proposed which can detect, 

classify and count vehicles passing through any traffic junction using a single 

camera (as opposed to multi-sensor approaches). The detection and 

classification are done using SSD Neural Network object detection 

algorithm. The count of each class (2-wheelers, cars, trucks, buses etc.) is 

used to predict the signal green-time for the next cycle. The model self-

adjusts every cycle by utilizing weighted moving averages. This system 

works well because the change in the density of traffic on any given road is 

gradual, spanning multiple traffic stops throughout the day. 
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1. INTRODUCTION 

The traffic congestion problem, especially in urban areas, has been worsening over the last 20 years. 

Based on the survey by Economic Times [1], it has been observed that as of 2016, the number of vehicles in 

Bengaluru, India (66.65 lakhs) has risen to 6.7 times of what it was in 1996 (9.93 lakhs), and 2.4 times that of 

2006 (28.02 lakhs). Similar statistics are found in multiple other surveys on India as well [2-3]. The result of 

this rapid growth has many adverse effects, including deteriorating health conditions, average commute time 

of over three hours a day and poor air quality. This sharp growth and inadequate means to handle it have left 

many roads in a state of disrepair. These issues identify the shortcomings of traffic signals used on most 

roads today, in handling traffic. Most cities have fixed traffic light control systems in place which don’t 

accommodate the dynamic nature of traffic flow. 

The fixed-time traffic signals are inefficient, as the duration of time for which signal is open is 

usually insufficient for busy roads, and excessive for less busy ones (with fewer vehicles). The current 

system has left much to be desired. A variant of the fixed system is used sometimes. It involves assigning 

different green-times throughout the day to accommodate rush hours, but they were still “fixed”. A viable 

solution would be to check the change in traffic density frequently (say, every few minutes), determine which 

road is clogged and decide, in real-time, the time required to clear the traffic on every road. The problem this 

paper aims to solve is the extended waiting time at traffic intersections, it does so by proposing a novel 

algorithm to make the allotted green times adaptive with the traffic volume at that point in time. The goal is 

to create a system that implements the ideas put forth above. 
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The aim of this paper is to present a novel approach to the dynamic traffic signal system based on 

intuitive object detection techniques using Convolutional Neural Networks coupled with Single Shot 

Detectors and provide a predictive model to decide upon the green-time of the traffic signal, for the 

respective lanes. It can also rectify itself quickly with the ongoing trend of traffic, as fast as one cycle of the 

signal (one cycle involves all four roads getting green time once). The density of traffic in each lane is used 

to control traffic signals by predicting the amount of time the signal needs to open. Thus, the duration of 

"green signal" (signal is open) is dictated by the contribution of the said lane to the traffic build up. The 

model proposed here can potentially be deployed on a small, portable system like the Nvidia Jetson Kit. 

 

2. RELATED WORK 

Previous work in Intelligent Transportation Systems (ITS) have been very promising with a few 

caveats which can potentially cause problems in the implementation phase in certain locations. Our previous 

work [4] presents vehicle detection and counting using image processing techniques. This paper explores 

the deep learning techniques to achieve the same task. Majority of the work tackling this problem has been 

sensor oriented [5]. There have been propositions involving placing sensors on either side of the road, or in 

other places almost at the ground level to determine the number of vehicles moving or to generally estimate 

the density of vehicles and hence decide how much green-time to allocate. The most prominent of these are 

the loop detectors which are excellent in calculating traffic volume. Yet, they do not perform well in 

estimating the traffic density. In [6], the use of RFID sensors has been proposed to detect vehicles moving 

through some portion of the road. Any approach involving deploying sensors approximately at the ground 

level will be infeasible as not all places enable such deployment of sensors. The developing countries have 

roads which sometimes are indistinguishable from the footpath as shown in Figure 1. 

 

 

 
 

Figure 1. A Frequently commuted road in Bengaluru 

 

 

In [7], the proposed system makes use of Ultrasonic sensor and claims to place it "on top of the 

road" but the maximum range of the sensor is just 4 meters, which is not feasible. In [8], the system uses IR 

sensors and Arduino and plans to mount the sensors on either side of the road on the poles. Deploying 

sensors in such an environment is not possible and such approaches are not best suited to solve the issue. 

Recently, approaches have shifted to camera-based solutions. These methods attempt to find the vehicle 

density on each lane and consequently determine the traffic signal time. The early approaches dealt with blob 

extraction methods such as in [9]. Although they were more versatile than the sensor methods, their accuracy 

left a lot to be desired. In recent times, research based on detection, tracking and classification of vehicles 

from video images has become feasible. Thanks to breakthroughs in computer vision technology and 

incremental advancements in compute power. The results are found to be very promising as well. 

Convolutional Neural Networks (CNN) provide near human level accuracy in the field of object detection. 

In [10], a successful camera based counting method was implemented by the means of multi-object tracking. 

Each vehicle on the road is tracked until it goes out of frame. This hence gives an accurate count. However, 

this process is extremely computationally expensive since object tracking involves redundancy. This 

becomes a problem in systems that have constrained hardware resources. 

In [11], a deep neural network was used on videos with a regression approach to collectively count 

the number of vehicles to be counted, thus not allowing room for classification. In majority of the camera-

based approaches such as the ones discussed above, attempts are made to calculate the red time in a given 

traffic junction for a lane. This system is not feasible for a few reasons. From the view of the signal, vehicles 



IJ-AI  ISSN: 2252-8938  

 

Adaptive real time traffic prediction using deep neural networks (Parinith R Iyer) 

109 

far off in the road, waiting in the signal, will not be identified accurately. As the distance increases, the size 

of the objects captured by the camera is both small and not entirely visible (as parts may be cut off by 

cars in front), this, therefore, exposes the constraints of such models. Thus, this paper presents an innovative 

approach that has borrowed some elements from the aforementioned research to create a predictive and 

adaptive traffic control signal. In this approach, based on the number of vehicles passing through  

the junction, the green time for the particular lane is estimated for the next cycle. In this way, it is both  

self-correcting and a realistic implementation. 

The basic principle in any solution for this specific problem is clear, the number of vehicles is 

the most important parameter one should obtain to proceed further in any way and to ultimately allocate 

appropriate green-time. It is clear that using sensors is not feasible, so more straight-forward, human-like 

counting approaches came about. In [12], determining the density of objects in a crowded scene using the 

Hydra-CNN and the Counting-CNN is proposed which is revolutionary in terms of mass public place 

surveillance systems and jam-packed roads. This still falls short of ground truth numbers when the scene it 

evaluates is crowded beyond an upper-threshold or when the scene is very lightly packed below a lower 

threshold. Adding to this, the model does not provide real-time classification and counting of different 

classes of objects in the crowded scene. This will be important when processing a live feed from a mounted 

camera meant for surveillance purposes comes into picture. This paper discusses a few additional features 

adopted which might help the ITS sector in some ways: 

1. Vehicle detection and classification from a camera's video feed. 

2. A probabilistic system of predicting the green-time based on the obtained count of different classes of 

vehicles. 

3. Constantly adapting the green-light time based on the changing numbers of vehicles resulting in optimal 

time efficiency for a cycle. 

 

 

3. RESEARCH METHOD  

The entire procedure is divided into 3 steps. The primary step is the vehicle detection, in which 

classes of vehicles are detected in a video feed. This is then fed to the second step which involves counting 

the vehicles in a frame and subsequently counting the total number of vehicles in the video feed. The final 

step comprises of predicting the ‘green time’ of the next cycle. In short, the steps are listed as: 

a. Vehicle detection 

b. Counting of vehicles in a frame and hence from the video feed. 

c. Predicting the “green-time” of the next cycle. 

 

3.1.  Vehicle detection 

Vehicle detection is an instance of object detection in images and videos. Object detection has made 

great strides in the last 5 years since the advent of AlexNet [13] for image classification. Image classification 

is the task of assigning or identifying the class of an object in an image. Deep learning approaches, 

particularly Convolutional Neural Networks have produced near human-level accuracy in this field. Every 

CNN architecture has four parts – convolution, non-linearity, subsampling followed by classification. 

Object detection is the procedure of classifying objects in an image and localizing the extent of the object in 

the image by drawing bounding boxes around it. The first model, Region Based Convolutional Neural 

Networks (R-CNNs) [14] intuitively begin with the region search and then perform the classification. Since 

then several models have been developed that have greatly improved performance such as Fast R-CNN [15], 

Faster R-CNN [16], Region Based Fully Convolutional Neural Networks (R-FCN) [17]. These methods 

model object detection as a classification problem. These methods are very accurate but come at a big 

computational cost (low frame-rate), in other words, they are not fit to be used on embedded devices. 

Recent approaches combine these two tasks into one network. Instead of having a network produce 

region proposal, a set of pre-defined boxes are initialized to look for objects. This class of detectors is known 

as Single Shot Detectors. The algorithm this paper uses is the Single Shot MultiBox Detector (SSD), 

by Google [18]. SSD performs considerably better than its competitors, both in terms of speed as well as 

accuracy. The performance in terms of speed is measured on the Frames Per Second (FPS) it processes. 

For 300 × 300 input, SSD achieves 74.3% mAP on the VOC2007 dataset at 59 FPS on an NVidia Titan X. 

This is in comparison to Faster R-CNN at 7 FPS with mAP 73.2% and YOLO at 45 FPS with 

mAP 63.4% [16]. 

The SSD MultiBox method has 3 aspects: 

 Single Shot: The tasks of object localization and classification are done in a single forward pass of the 

network 

 MultiBox: The technique for bounding box regression  
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 Detector: The network is an object detector that classifies those detected objects 

The SSD architecture this paper employs, as shown in Figure 2, is the same as the one presented by [18], 

which bases itself on VGG architecture. This paper uses an already existing model that suited the needs and 

have utilized the Keras port of Single Shot MultiBox Detector, by Pierluigi Ferrari [19]. This is built on  

the Keras framework that runs Tensorflow in the back-end. 

 

 

 
 

Figure 2. The SSD network architecture [18] 

 

 

The SSD approach is based on a feed-forward convolutional network that produces a fixed-size 

collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by 

a non-maximum suppression step to produce the final detections. Each added layer can produce a set of 

predictions. MultiBox is a regression technique that starts with the priors as predictions and attempts to 

regress closer to the ground truth bounding boxes, based on two loss functions, the confidence loss, and 

location loss. Confidence loss measures how confident it is of finding an object while location loss 

determines how far away it is from the actual box. Based on this, non-maximum suppression is used, in 

which thresholding of confidence loss is done and boxes are discarded. 

For classification of vehicles on the road, the architecture is altered by subsampling the neurons in 

the network such that the number of classes included and trained is for cars, motorcycles, trucks, buses, 

person and background. Every object detected in the frame belongs to one of the 6 classes. Bounding boxes 

are drawn around them to indicate their position as well. This object detection is applied to the video of 

vehicles passing through the junction during the green-time. As long as the signal is green for a lane, the 

moving vehicles are detected by the model. This provides various advantages compared to detecting vehicles 

during red light, as it not only improves the accuracy of detection due to clear visibility of each vehicle in  

the frame, but also reduces computation needed since only one lane needs to be observed during single green 

time instead of observing the 3 lanes waiting in the red-signal. Show in Figure 3 Output of the SSD Object 

Detection Algorithm. 

 

 

 
 

Figure 3. Output of the SSD object detection algorithm [20] 

 

 

3.2.  Counting vehicles  

It would be very beneficial to count the number of vehicles while they are passing through  

the junction during green-light instead of considering a single image during red-light, therefore, it becomes 
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pivotal to come up with a way to count the number of vehicles of each class that passed through a scene 

while maintaining real-time speeds of object detection. Counting the number of objects in a still image is 

simple. It is commonplace now in every object detection algorithm but counting from a video feed is tricky 

because every frame is treated independently and might count duplicates. In the worst-case scenario, it might 

keep counting duplicates until the object is out of the frame. The following method is an attempt at 

alleviating this problem and obtaining an approximate ground truth count. 

The frequently used terms are: 

 OPT- Optimal Processing Time. 

 Fi – The ith frame in the video feed. 

 Ti – Time taken to process the ith frame. 

 Wi – The contribution of the ith frame.  

 VehiclesCounted – Structure holding the number of vehicles of each class counted in the latest cycle. 

 SideBySide – Structure describing the number of vehicles of each class capable of simultaneously 

crossing the intersection side by side. 

 TimeTaken – Structure holding the time taken for a vehicle of each class to cross the intersection. 

 TimeGiven – Structure holding the ratio of TimeTaken to SideBySide. 

 PrevPredict – The green time that was allocated for the present green cycle after feedback from  

the previous green cycle.  

 PresentApprox – The approximate time that had to be given to the present cycle, considering  

the vehicles that passed. 

 NextPredict – The prediction made for the next green cycle. 

 amin – The minimum acceleration of a vehicle while crossing the intersection. 

 amax – The maximim acceleration of a vehicle while crossing the intersection. 

Considering that an object detection algorithm isn’t always perfect and might detect non-existent 

objects in a scene, an intuitive approach is to consider that an object is actually present in the scene only if it 

persists through some number of frames. Also taking into account the unstable nature of hardware that 

performs object detection, every frame takes a different amount of time to process depending on conditions at 

that instant, the number of objects in the scene, etc. This might lead to cases where the object is present in  

the scene for the required amount of time but is present only in a few frames because only few have been 

captured and processed. Locking the frame rate won’t help either as processing time might end up higher 

than the defined time interval between frame capture. To solve this, there had to be some kind of a 

“contribution” parameter or "weight" to every frame that was processed based on which a decision can be 

made whether to take the vehicles in this frame seriously or not. Ideally, a frame is captured at intervals such 

that no vehicle is present in two consecutive frames and that all vehicles passing through a scene exist in 

exactly one frame. This interval is called “Optimal Processing Time” (OPT, the time it takes to process a 

frame and then fetch the next one from the camera). 

Obtaining OPT is itself a matter of concern as it is not strictly defined neither can it be measured 

accurately. This has much to do with large-scale data acquisition and data analysis procedures to figure out 

how much vehicles accelerate while crossing junctions and if it is related to traffic density itself, how this 

trend changes across different densities of traffic. The size of the junction also comes into play as the OPT 

increases as the size does. The size of the junction can be easily calculated based on how much the camera 

can see in the scene. The acceleration of vehicles is bound to be a data-science problem that needs huge 

amounts of observations. Show in Figure 4 Illustrating the definition of OPT. 
 

 

 
 

Figure 4. Illustrating the definition of OPT 
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Considering during OPT, n number of frames were captured and each frame Fi took time Ti to process. 

Therefore, 

 

𝑂𝑃𝑇 = ∑ 𝑇𝑖
𝑛
𝑖=1  (1) 

 

If a frame Fi takes longer to process, the immediate next frame Fi+1 might be missing out on capturing 

the vehicle in the scene. So, to compensate for this, Fi should have a higher contribution while considering 

the vehicles in it. Similarly, if Fi is processed too quickly, there might be more occurrences of the vehicle in 

the scene. This is compensated by giving a lower contribution to Fi. It is observed that the “weight” Wi of a 

frame Fi is directly proportional to the time Ti taken to process it.  

 

𝑊𝑖 ∝ 𝑇𝑖 (2) 

 

The initial assumption is that the vehicles appear in the scene only once during OPT, then the weight Wi of a 

given frame is defined by: 

 

𝑊𝑖 =
𝑇𝑖

𝑂𝑃𝑇 
 (3) 

 

This derivation shifts the requirement from “A vehicle should be present in a specified number of frames 

captured by the camera” to “A vehicle should be present in the camera's view for a specific interval of time”. 

This ties the calculations to a real-world value free from ambiguity, instead of tying it to the always-changing 

value of frame-rate. The “contribution” of a frame throughout OPT can be visualized as shown in Figure 5. 

 

 

 
 

Figure 5. Illustrating the contribution of each frame in a span of OPT 

 

 

This means, that if the vehicle did appear in the camera's view for as long as OPT and was 

eventually captured in all the frames that were taken across the time span of OPT, it will ultimately end up 

being counted as one vehicle, which is the desired outcome. Now, to decide whether a detected vehicle that is 

a legitimate one, the vehicles can be counted by considering the total number of vehicles of each class in a 

frame and multiplying them by Wi, i.e. weight of the frame. This is essentially the contribution of all vehicles 

in a frame to be accepted as a legitimate vehicle as time goes on. Continuing this until any desired time, it is 

possible to obtain an approximate count of the vehicles. For example, if ‘Carst’ is the number of cars passing 

through 

the scene in time t, and ‘Carsi’ is the number of cars in a frame Fi, and n frames are captured in time t,  

 

𝐶𝑎𝑟𝑠𝑡 =  ∑ (𝐶𝑎𝑟𝑠𝑖 ∗  𝑊𝑖)
𝑛
𝑖=1  (2) 

 

Similarly, it is possible to get the approximate counts of every vehicle class in time t. 

Considering the actual traffic junction, this time t, is the time given for the vehicles to pass (green-

time). Applying the above formula for the time period of the allocated green-time, the total number of 

vehicles of each class that pass through the junction is obtained. A point to keep in mind is that the camera 

must have the junction and nothing else in its view. If other roads, or the opposite lanes are captured by the 

camera, this might lead to discrepancies in obtaining the exact count of the vehicles. 

 

3.3.  Predicting green time 

The data obtained can be visualized as follows. 

VehiclesCounted { 

     Cars = 12.78; 

     2-wheelers = 19.54; 
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     Trucks = 3.16; 

     Buses = 1.62; 

     Bicycle = 5.31; 

} 

 

This shows the approximate number of vehicles of each class at an assumed time. An array defining 

the amount of time that every vehicle class needs to cross the junction will be maintained. This again depends 

on the size of the junction under consideration and the size of the road as multiple vehicles of the same or 

different class can cross the junction side by side as shown in Figure 6, and the average acceleration with 

which the vehicles start crossing the junction. 

 

 

 
 

Figure 6. Top View of vehicles crossing an intersection simultaneously 

 

 

Obtaining the average acceleration can be thought of as a classic data science problem involving 

large-scale data-acquisition and analysis, and the rest of the parameters will be specific to every junction. It 

will be a one-time entry of parameters and good to go unless the road width is changed or the junction is 

completely reconstructed. Assuming the road under consideration is wide enough to occupy the following 

number of vehicles of the same class side by side, 

 

SideBySide { 

     Cars = 3; 

     2-wheelers = 6; 

     Trucks = 2; 

     Buses = 2; 

     Bicycle = 7; 

} 

 

Maintaining another structure (arbitrary values for now) defining how much time a single vehicle of a class 

takes to cross an empty junction (in seconds), 

 

TimeTaken { 

     Cars = 4.67; 

     2-wheelers = 3.5; 

     Trucks = 6.83; 

     Buses = 6.29; 

     Bicycle = 5.16; 

} 

 

The structure TimeTaken is also a result of large-scale data gathering and data analysis procedures. Once all 

the above-mentioned data is available, the time to be given to each vehicle to clear the junction can be 

decided upon. 

The TimeGiven for each vehicle class will have to be: 

 

𝑇𝑖𝑚𝑒𝐺𝑖𝑣𝑒𝑛[𝐶𝑎𝑟𝑠] =  
𝑇𝑖𝑚𝑒𝑇𝑎𝑘𝑒𝑛[𝐶𝑎𝑟𝑠]

𝑆𝑖𝑑𝑒𝐵𝑦𝑆𝑖𝑑𝑒[𝐶𝑎𝑟𝑠]
 (5) 

 

This is to account for a realistic traffic flow scenario. In a road wide enough to hold 3 cars, 3 cars 

can cross the junction in the same time as it takes for a single car to cross a junction if they are all side by 

side. So, making this tweak is important while predicting the green-time for the next cycle. Consider a  

real-life scenario where some value of green-time for the present cycle (PrevPredict) is previously predicted. 

Now, during a time interval of length ‘PrevPredict’, the number of vehicles that did cross the junction are 

stored in ‘VehiclesCounted’. The prediction about PrevPredict might have been wrong, or the traffic flow 
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might be changing, either way, it’s important to know how much time should actually have been given to 

the number of vehicles that were just counted in the present cycle and stored in VehiclesCounted. This data 

will serve as the "ground-truth" value, like in all other self-correcting systems. This can end up being 

the feedback that’s needed. Therefore, PresentApprox is calculated as: 

 

𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑥 = ∑
( 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠𝐶𝑜𝑢𝑛𝑡𝑒𝑑[𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑙𝑎𝑠𝑠] 

∗  𝑇𝑖𝑚𝑒𝐺𝑖𝑣𝑒𝑛[𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑙𝑎𝑠𝑠] )
𝐵𝑖𝑐𝑦𝑐𝑙𝑒
𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝐶𝑙𝑎𝑠𝑠=𝐶𝑎𝑟𝑠  (6) 

 

The value of PresentApprox might be greater or lesser than PrevPredict, nonetheless, it is used as a feedback 

mechanism to improve our prediction's accuracy for the green-time to be given in the next cycle 

(NextPredict). Intuitively, NextPredict will have to take the following two values into consideration: 

1. The prediction made previously for the present cycle (PrevPredict) 

2. The time that had to be given to the number of vehicles that actually crossed the junction in the present 

cycle (PresentApprox) 

 

Using Weighted Moving Average, NextPredict can be calculated as: 

 

𝑁𝑒𝑥𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡 =  (𝛼 ∗ 𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝐴𝑝𝑝𝑟𝑜𝑥) + ((1 − 𝛼) ∗ 𝑃𝑟𝑒𝑣𝑃𝑟𝑒𝑑𝑖𝑐𝑡) (7) 

 

where  is the truth value given to our observations during the present cycle. The higher the value of , 

the faster the system rectifies itself but increasing  also dismisses the contribution of PrevPredict, 

so conventionally, the value of  is taken to be 0.5. After the value of NextPredict is calculated, the green-

time given in the next cycle will be the value of NextPredict and when the next cycle starts, the value of 

PrevPredict will be made equal to NextPredict, hence maintaining the contribution of our predictions 

throughout consecutive cycles. As the assumption is that the density of the traffic changes gradually spanning 

multiple cycles throughout the day, it can be visualized how this approach would always provide appropriate 

green-time predictions. Let’s consider a hypothetical time-varying data simulating the rise in traffic density 

up until a rush hour and then back down again. 

 

 

 
 

Figure 7. Variation of PrevPredict and PresentApprox illustrating accuracy and self-correcting nature 

 

 

A typical rise and fall in traffic density during rush hour would span around 50 cycles, but for the 

sake of testing, a hypothetical less gradual change has been considered. The graph in Figure 7 shows how the 

prediction corrects itself every cycle bit by bit and manages to keep up with the increasing number of 

vehicles during rush hour. It also evens out when the traffic density saturates and again reduces as the rush 

hour comes to an end. Hence, this approach of looking at traffic light automation would result in efficiently 

utilizing time and cut down a lot of waiting time at signals. This model can easily be scaled up to a 4-road 

intersection, and even though this model treats every road at an intersection independently, due to its self-

correcting nature, compounding effects of such systems used at consecutive traffic signals will also be 
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accounted for while predicting the next cycle’s green-time. In this way, choking of traffic across multiple 

traffic lights can also be alleviated. 

 

3.4.  Deciding Hyper-Parameter Values 

The SSD model has been trained on the MS-COCO (Common objects in context) dataset [21], and 

then the weights of the neural network have been subsampled to fit the 6 object classes (and deleting other 

classes in the last layer) that we’re interested in – Car, truck, person, bicycle, motorcycle, bus. The value of 

OPT, which is dependent on the vehicle’s acceleration and velocity profiles at traffic intersections was 

decided based on previous research in this area [22-24]. In [22], the acceleration of the 1st line of cars was 

observed over the distance of a zebra crossing, starting from when the vehicles were at rest. The values of 

accelerations recorded across different models of cars although varied, followed a normal distribution with a 

mean of around 1.85 ms-2. But this study also stated that the cars in the 3rd or 4th line had negligibly low 

acceleration values in the order of 0.5 ms-2 which makes sense if one imagines driving a car in such a position 

at a traffic signal. The velocity of vehicles, however, isn’t ever increasing and saturates and somewhat 

reaches a maximum while crossing the intersection. In [19], it is found that the average acceleration of any 

vehicle steadily decreases with the increase in the speed of the vehicle and assuming the velocity of vehicles 

doesn’t exceed 30 or 40 kph while crossing an intersection, it can be inferred from the research in [22-23] 

that the average acceleration change while crossing of different classes of vehicles are as follows. 

 Car = 1.85 – 0.5 ms-2 

 Truck, Bus = 1.0 – 0.29ms-2 

 Motorcycle = 0.94 – 0.47ms-2 

This acceleration is not strictly a function of time or distance at a traffic intersection. Instead, it depends on 

factors such as other vehicles on the road, possible interference from people walking, bad drivers, even 

animals on the roads at times. The closest one can get to define the acceleration profile is by an assumption 

that it is strictly a function of distance or time. Here, the assumption is that it is a function of distance is 

constantly decreasing and eventually saturates near zero. This kind of a function resembles an exponential 

decay function, so fitting the acceleration parameters that were just decided upon, 
 

𝑎(𝑥) =  𝑎max 𝑒−𝜆𝑥
 (8) 

 

Where (considering X is the length of the intersection under consideration), 
 

𝜆 =
𝑙𝑛(

𝑎max

𝑎min
)

𝑋
 (9) 

 

This acceleration curve corresponding to this equation and a 25-meter intersection for a car is 

shown in Figure 8. 
 

 

 
 

Figure 8. Acceleration profile of a car according to a(x) 

 

 

This makes sense for short distances such as an intersection where the velocity function is a result of 

integrating the acceleration function with distance ‘x’ 

 
1

2
(𝑣(𝑥))2 =  ∫ 𝑎(𝑥). 𝑑𝑥  (10) 
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The velocity function obtained is: 

 

𝑣(𝑥) = 𝐶 + √2𝑎max(1−𝑒−𝜆𝑥)

𝜆
 (11) 

 

Plotting v(x) against x, 

The graph shown in Figure 9 would make sense if one relates self-driving through an intersection and 

checking the velocity of the car as one crosses and at the very end of it. Although this graph doesn’t hold true 

for long distances, only short distances are relevant to this problem. Time t, can be obtained as a function of 

distance x by integrating as, 

 

𝑡(𝑥) =  ∫
1

𝑣(𝑥)
. 𝑑𝑥  (12) 

 

𝑡(𝑥) =  
𝑙𝑛(√1−𝑒𝜆𝑥+1)−𝑙𝑛(|√1−𝑒𝜆𝑥−1|)

√2𝑎max𝜆
 + 𝐶 (13) 

 

as t(x) is zero when x is zero, a definite equation for t(x) is obtained and by passing the length of  

the intersection ‘X’ into t(x), the time that a certain vehicle type takes to cross the intersection is obtained 

which is nothing but the OPT that is needed. This value can also be interpreted as the ‘TimeTaken’ for that 

specific class of vehicles from which ‘TimeGiven’ can also be derived. 

 

 

 
 

Figure 9. Velocity profile of a car according to v(x) 

 

 

4. RESULT AND ANALYSIS 

To apply the findings from our study outlined above, a traffic footage that is accessible to the public 

on YouTube was used [25]. The specific requirements for the camera’s position, angle, etc. are not met 

perfectly in any publicly available video footage so the video is cropped and modified to simulate a nearly 

feasible input to the algorithm. The base video [25] chosen was such that it offered a front-top view towards 

incoming vehicles which yields the best results for an object detection algorithm with least overlaps. 

The farthest point in the video is too far away for the object detection system to detect anything that small as 

shown in Figure 10, and there is another lane of traffic in the frame of the camera which will produce 

inaccurate results, the video was cropped to a specific part as shown in Figure 11. 
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Figure 10. Base video footage frame 

 
 

Figure 11. Cropped Video Footage 

 

 

With the cropped frame of capture, vehicles don’t start with zero velocity, neither with the minimum 

acceleration. Feasible assumptions had to be made about their speed when they enter the frame and the 

distance they travel in the video to accommodate for the imperfect input footage. Assuming an initial velocity 

and range of acceleration values, the value of the constant ‘C’ in the equation for v(x) and the values of amax 

and amin are set. The vehicles were assumed to have an initial velocity of 20kmph when they entered  

the frame with an acceleration varying from 1.65 to 1.85 ms-2, the distance covered in the frame was taken to 

be approximately 16 meters. Calculating OPT according to these approximate hyper-parameters,  

the following results were obtained when run on a consumer grade NVidia GTX 1060 graphics card. 

 

 

Table 1. Car count obtained from Nvidia GTX 1060 Graphics Card 
Trial number 1 2 3 4 5 

Ground Truth (no. of cars) 54 54 54 54 54 

Calculated 37.8 37.9 38.6 38.7 39.5 

 

 

These results demonstrate that the model achieved an accuracy score of 72% based on approximate hyper 

parameters. Superior results can be achieved while considering accurate parameters for the velocity and 

acceleration values of various vehicles. Given that the SSD gives an accuracy of 74%, a 72% obtained as a 

result of using SSD is a very accurate system. 

 

4.1.  Statistical inference 

Based on the results demonstrated, it can statistically be proven to infer the same. The paper claims 

to count 72% of all the cars crossing the junction in a confidence interval of 85% i.e. α=0.15. Performing 

a t-test to prove the claim, from the given data, t=0.97. For a confidence interval of 85%, t=1.19. Therefore, 

the hypothesis is comfortably accepted, and it is validated to claim that 72% of cars will be detected. 

 

4.2.  Limitation and scope 

This approach suffers from the limitations associated with the lack of large-scale traffic data about 

vehicle speed profiles at intersections. Further research in this field will immensely help models such as the 

one presented in this paper attain higher accuracy values and ultimately help solve the primary traffic 

congestion problem. It remains unclear whether this model with its specific camera placement requirements 

is implementable and feasible in a practical implementation. At this stage of understanding, the proposed 

model, if implemented successfully, provides accurate results for vehicle count and classification, given large 

enough varied data statistics on vehicle acceleration profiles at intersections. 

 

 

5. CONCLUSION  

A system for detecting, classifying and counting vehicles in traffic footage has been proposed. 

Previous research about the acceleration data on various vehicles has been used to build mathematical models 

to reasonably approximate the hyper-parameters that aid in the process of counting of vehicles from a video 

stream. A predictive model for calculating green time has also been proposed which is based on weighted 

moving average. Given that the accuracy of SSD Multibox detector is 74%, the accuracy of counting 

obtained to be 72% is nearly perfect. This approach will utilize no on-road resources like sensors or 

measuring equipment and overall needs a single camera to fulfill all the requirements which are to be 

expected of a traffic monitoring and a dynamically-controlled traffic light system. 
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5.1. Future Scope 
Although the above calculations have provided somewhat accurate results for the values of `OPT' 

and `TimeTaken', due to the limits of the object detection algorithm and the possibility of detection of false 

positives, specific guidelines must be followed for the placement and the orientation of the camera at an 

intersection. This specific kind of traffic footage isn't available to the public as of now. As this approach 

requires very specific camera placements at traffic junctions, future work would involve gathering the 

required kind of traffic footage with proper angles and coverage coupled with more research and data 

gathering in vehicle speed and acceleration profiles to test the accuracy of this model systematically for 

providing formal proof of the accuracy and reliability of this approach. 

 

 

ACKNOWLEDGEMENTS  

We acknowledge the support of NVIDIA Corporation for donating Jetson TX1 and Jetson TX2 kits 

used to carry out this project. 

 

 

REFERENCES 
[1] Economic Times, "Number of vehicles in Bengaluru rises by a mind-boggling 6099% in 40 years.," 

https://economictimes.indiatimes.com/news/politics-and-nation/number-of-vehicles-in-bengaluru-rises-by-a-mind-

boggling-6099-in-40-years/articleshow/57807459.cms, Bengaluru, 2017. 

[2] Q. I. Suneera Tandon, "Traffic jams in just four Indian cities cost $22 billion a year," 

https://qz.com/india/1255427/traffic-jams-in-delhi-mumbai-bengaluru-and-kolkata-alone-cost-india-22-billion-a-

year/, Delhi, 2018. 
[3] Dipak K Dash, Times Of India, "Traffic congestion costs four major Indian cities 1.5 lakh crore a year," 

https://timesofindia.indiatimes.com/india/traffic-congestion-costs-four-major-indian-cities-rs-1-5-lakh-crore-a-

year/articleshow/63918040.cms , Delhi, 2018. 
[4] R. N. Rithesh, R. Vignesh and M. R. Anala, "Autonomous Traffic Signal Control using Decision Tree," 

International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 3, pp. 1522-1529, June 2018. 
[5] J. Pang, "Review of microcontroller based intelligent traffic light control.," in 2015 12th International Conference 

& Expo on Emerging Technologies for a Smarter World (CEWIT), Melville, NY, 2015. 
[6] K. A. Khateeb and J. A. Johari, "Intelligent dynamic traffic light sequence using RFID," in International 

Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2008. 
[7] H. Chaudhuri and N. P. Raikar, "Traffic Control Management with help of State of Control Algorithm using 

Ultrasonic Sensors & GSM Technology," International Research Journal of Engineering and Technology (IRJET) , 

vol. 5, no. 4, April 2018. 
[8] S. Sahu, D. Paul and S.Senthilmurugan, "Density Based Traffic Signal Control Using Arduino And IR Sensors," 

IJNRD, vol. 3, no. 4, April 2018. 
[9] S. Shams-Ul-Haq, "AUTONOMOUS REAL TIME TRAFFIC MONITORING AND DATA ANALYSIS," in The 

2012 World Congress in Computer Science, Computer Engineering, and Applied Computing, Las Vegas, USA, 

2012. 
[10] F. A. Afif, F. M. Rachmadi, A. Wibowo, W. Jatmiko, P. Mursanto and M. A. Ma'sum, "Enhanced adaptive traffic 

signal control system using camera sensor and embedded system," in 2011 International Symposium on Micro-

NanoMechatronics and Human Science, Nagoya, Japan, 2011. 
[11] J. Chung and K. Sohn, "Image-Based Learning to Measure Traffic Density Using a Deep Convolutional Neural 

Network," IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 5,May 2018, pp. 1670 - 1675, 

2017. 
[12] D. Oñoro and R. J. López-Sastre, "Towards Perspective-Free Object Counting with Deep Learning," in Computer 

Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, 

Proceedings, Part VII, Amsterdam, Netherlands, 2016, pp. 615-629. 
[13] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural 

Networks," Advances in neural information processing systems, vol. 1, pp. 1097-1105, 2012. 
[14] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for accurate object detection and 

semantic segmentation," in IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 

2014. 
[15] R. Girshick, "Fast R-CNN," in IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015. 
[16] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 

Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137 - 1149, 2017. 
[17] J. Dai, Y. Li, K. He and J. Sun, R-FCN: Object Detection via Region-based Fully Convolutional Networks, NIPS, 

2016. 
[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, "SSD: Single Shot MultiBox 

Detector," in Computer Vision – ECCV 2016, 2016. 
[19] pierluigiferrari, "A Keras port of Single Shot MultiBox Detector," available at: 

https://github.com/pierluigiferrari/ssd_keras. 



IJ-AI  ISSN: 2252-8938  

 

Adaptive real time traffic prediction using deep neural networks (Parinith R Iyer) 

119 

[20] K. Majek, "SSD Mobilenet Object detection FullHD S8#001," available online at: 

https://www.youtube.com/watch?v=7p2XL8wApfo, 19 Feb 2018. 
[21] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick and P. 

Dollár, "Microsoft COCO: Common Objects in Context," in European conference on computer vision, Cham, 

Germany, 2014. 
[22] V. Bogdanović, N. Ruškić, Z. Papić and M. Simeunović, "The Research of Vehicle Acceleration at Signalized 

Intersections," Traffic & Transportation, vol. 25, no. 1, 2013. 
[23] P.S.Bokarea and A.K.Mauryab, "Acceleration-Deceleration Behaviour of Various Vehicle Types," Transportation 

Research Procedia, vol. 25, pp. 4733-4749, 2017. 
[24] G. Long, "Acceleration Characteristics of Starting Vehicles," Transportation Research Record Journal of the 

Transportation Research Board, vol. 1737, no. 8, pp. 58-70, 2000. 

[25] Cisco C, "2.1M Full HD 1080P CCTV Footage," available online at: https://youtu.be/WxgtahHmhiw. 
 

 

BIOGRAPHIES OF AUTHORS 

 

 

Mr. Parinith R Iyer is an Undergraduate student in his 3rd year studying in the CSE department 

at R V College of Engineering. He has publications in IEEE funded magazine in SJCE, Mysore. 

He has carried out 4 UG projects and 1 funded Industry Project while at R V College of 

Engineering. 

  

 

Mr. Shrutheesh Raman Iyer is an Undergraduate student in his 3rd year studying in the CSE 

department at R V College of Engineering. He heads the technical drone club Jatayu at RVCE. 

He has carried out 3 UG projects and 1 funded Industry Project while at R V College of 

Engineering. 

  

 

Mr. Raghavendran Ramesh is an Undergraduate student in his 3rd year studying in the CSE 

department at R V College of Engineering. He has publications in IEEE funded magazine in 

SJCE, Mysore. He has carried out 3 UG projects and 1 funded Industry Project while at R V 

College of Engineering. 

  

 

Dr. Anala M R is now an associate professor in the CSE department at R V College of 

Engineering. Her academic qualification includes: BE, MSc(IT), M.Tech, Ph.D. She was also 

awarded the Second Rank in M.Tech from VTU, Belgaum. She has guided over 30 UG and PG 

projects and 5 funded research projects. She has 25 publications in national and international 

journals and conferences. 

  

 

Dr. K N Subramanya is the Principal and Professor, Department of Industrial Engineering and 

Management at R.V. College of Engineering. His academic qualification includes: Ph.D. in 

Supply Chain Management from Coimbatore, MBA with HR specialization (5th Rank), M.Tech. 

in Industrial Management (IITM, Chennai) and B.E in Industrial and Production Engineering 

(Bangalore University). The professional expertise include Lean Manufacturing System, 

Operations Management, Intelligent Systems in Supply Chain and Logistics Management, 

e-Enterprise solutions, Simulation Modeling and Analysis, Systems Engineering, Operations 

Research, Probability & Statistics, Applied Ergonomics and Business Process Management. 

  
 


