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 This paper discussed the prediction of oscillatory stability condition of the 

power system using a particle swarm optimization (PSO) technique. 

Indicators namely synchronizing (Ks) and damping (Kd) torque coefficients 

is appointed to justify the angle stability condition in a multi-machine 

system. PSO is proposed and implemented to accelerate the determination of 

angle stability. The proposed algorithm has been confirmed to be more 

accurate with lower computation time compared with evolutionary 

programming (EP) technique. This result also supported with other indicators 

such as eigenvalues determination, damping ratio and least squares method. 

As a result, proposed technique is achievable to determine the oscillatory 

stability problems. 
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1. INTRODUCTION 

With the increase of energy consumption in this age, a study on the stability of the power system 

becomes a necessity, especially the oscillatory stability analysis of power systems. This analysis is used to 

predict electromagnetic swing at low frequencies as a result of undisturbed rotor swing. References [1-10] 

pointed out that the stability of the oscillation in the power system is an important issue. As the power system 

operation changes over time, the stability of the small signal in this power system should be tracked online. 

Selected stability indicators are calculated from the data provided over time to track the system. 

These indicators are updated until a constant value is obtained. In this study, damping torque coefficient Kd 

and synchronizing torque coefficient Ks are used as stability indicators. Both Ks and Kd values must be 

positive so that the system can be classified as stable [8-10]. 

The least squares (LS) method is a technique commonly used to find the Ks and Kd values, 

as reported in [8-10]. However, data update requirements are a major weakness of the LS method. 

In addition, this technique also requires a long computation time. Due to these problems, the LS method 

requires monitoring throughout the duration of the swing. Computational intelligence methods are generally 

used to solve problems in power system stability. Optimisation methods include artificial neural 

network (ANN) [11-13], Genetic Algorithm (GA) [14-16], evolutionary programming (EP) [17-21] and 

Artificial Immune Systems (AIS) [22-24]. ANN is the processing systems that inspired by biological neural 

networks that make up the animal brains. Such systems can learn to perform tasks by considering the 
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examples given. On the other hand, GA is a search technique in which the application is based on  

the combination of natural selection and genetic mechanisms. Major characteristic in GA is the crossover and 

mutation operations which able it to produces high quality solution. The set back of GA is it took too long 

time to converge. Meanwhile, EP and AIS are heuristic population-based search methods that used random 

variation, mutation and selection. Something that distinguishes them is AIS also highlighted a process 

called cloning. This paper discussed a new heuristic approach named Particle Swarm Optimization (PSO) 

technique [25-29]. PSO is influenced by the behaviours of schools of fish and flocks of birds. 

It shows performance beyond EP, AIS and GA methods in searching the optimal solution with faster 

computation time. 

This paper proposes an efficient technique for estimating synchronizing and damping torque 

coefficients in solving oscillatory stability problems. Using this technique, Ks and Kd values are estimated 

based on information by three generator responses, namely, the changes in rotor speed (Δω(t)), the changes in 

rotor angle (Δδ(t)) and the changes in electromechanical torque (ΔTe(t)). The goal is to minimize the error of 

the estimated coefficients. The IEEE 30-Bus system has been chosen to test the online estimation technique 

for Ks and Kd. This paper discussed the oscillatory stability prediction in a multi-machine system using PSO. 

A mathematical model for IEEE 30-Bus system for the angle stability assessment is developed. PSO is 

chosen to optimize the objective function, with J as well as Ks and Kd as the control variables. Once the J 

value has been maximized, Ks and Kd are analyzed, which verify the stability condition of the system.  

The performance of PSO is then compared with EP and LS. Results obtained from the experiment are then 

verified with the minimum damping ratio (ξmin) [30-32] and eigenvalues (λ). 

 

 

2. IMPLEMENTATION OF ANGLE STABILITY ANALYSIS 

The IEEE 30-Bus system model is selected to demonstrate the potential of the proposed technique in 

angle stability assessment for a multi-machine system. Six generators, namely, Generators 1, 2, 5, 8, 11 and 

13 are connected to the buses named Buses 1, 2, 5, 8, 11 and 13, respectively. Reference [9] shows  

the parameters of the system.  

 

2.1.  Philips-heffron model for multi-machine system 

The proposed Phillips-Heffron model for the multi machine system is developed and 

shown in Figure 1. The model is developed on the basis of the single machine of the 

Philips–Heffron model [10]. Kd is the damping torque coefficient, H is the inertia constant, TA and KA are the 

time constant and circuit constant of the exciter, respectively. ω0 is equal to 2πf0. K1~K6 and T3 are constants 

that consist of the function related to the operating real and reactive loading, impedance, electrical torque, 

and the excitation levels in the generator. 
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Figure 1. Phillips-heffron model for multi-machine system 

 

 

2.2.  Mathematical modelling of philips-heffron model 

Mathematical modelling can be derived for the proposed Phillips–Heffron model for the multi 

machine system shown in Figure 1 and is presented in the following mathematical equations: 

 

𝛥𝜔𝑖 𝛥𝑡⁄ = (𝛥𝑇𝑚𝑖 − 𝛥𝑇𝑒𝑖 − 𝐾𝐷𝑖𝛥𝜔𝑖) 2𝐻𝑖⁄ , 𝑖 = 1, … , 𝑚 (1) 
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𝛥𝛿𝑖 𝛥𝑡⁄ = 𝜔0𝛥𝜔𝑖 , 𝑖 = 1, … , 𝑚 (2) 

 

𝛥𝐸𝑞𝑖 𝛥𝑡⁄ = (
𝐾4,𝑖𝑖𝛥𝛿𝑖 − ∑ 𝐾4,𝑖𝑗𝛥𝛿𝑗𝑗≠𝑖 − 𝐶3,𝑖𝑖𝛥𝐸𝑞𝑖

′

+ ∑ 𝐶3,𝑖𝑗𝛥𝐸𝑞𝑗
′

𝑗≠𝑖 + 𝛥𝑣𝑓𝑖
) 𝛥𝑇𝑑0𝑖

′⁄ , 𝑖 = 1, … , 𝑚,  𝑗 = 1, … , 𝑚,  𝑖 ≠ 𝑗

 (3) 

 

𝛥𝑣𝑓𝑖 𝛥𝑡⁄ = (
−𝐾5,𝑖𝑖𝛥𝛿𝑖 + ∑ 𝐾5,𝑖𝑗𝛥𝛿𝑗𝑗≠𝑖

−𝐾6,𝑖𝑖𝛥𝐸𝑞𝑖
′ + ∑ 𝐾6,𝑖𝑗𝛥𝐸𝑞𝑗

′
𝑗≠𝑖

) 𝑇𝐴𝑖⁄ − 𝛥𝑣𝑓𝑖 Δ𝑇𝐴𝑖⁄ , 𝑖 = 1, … , 𝑚,  𝑗 = 1, … , 𝑚,  𝑖 ≠ 𝑗

 (4) 

 

Δ𝑇𝑒𝑖 = (
𝐾1,𝑖𝑖Δ𝛿𝑖 − ∑ 𝐾1,𝑖𝑗𝛥𝛿𝑗𝑗≠𝑖

+𝐾1,𝑖𝑖𝛥𝐸𝑞𝑖
′ −  ∑ 𝐾2,𝑖𝑗𝛥𝐸𝑞𝑗

′
𝑗≠𝑖

) , 𝑖 = 1, … , 𝑚,  𝑗 = 1, … , 𝑚,  𝑖 ≠ 𝑗  (5) 

 

Reference [3] showed the details on (1-5). Can be rewritten into matrix form as follows: 

 

𝑋̇𝑖 = 𝐴𝑖 ⋅ 𝑋𝑖 + 𝐵𝑖 ⋅ 𝑈𝑖 , 𝑖 = 1, … , 𝑚 (6) 

 

𝑋𝑖 = [Δω𝑖 Δ𝛿𝑖 Δ𝐸𝑞𝑖 Δv𝑓𝑖]𝑇 , 𝑖 = 1, … , 𝑚  (7) 

 

𝑈𝑖 = [𝛥𝑇𝑒𝑖], 𝑖 = 1, … , 𝑚  (8) 

 

Ui and Xi are the input and state signal vectors for i generators, respectively. Ai is the system 

parameters’ function with i generators. Bi is the disturbance matrix. 

 

2.3.  Synchronizing and damping torque coefficients 

The correlation between the change in estimated electromagnetic torque deviation (ΔTesi(t)) and  

the changes in rotor angle (Δδi(t)) and rotor speed (Δωi(t)) for the ith generator can be expressed as follows: 

 

𝛥𝑇𝑒𝑠𝑖(𝑡) = 𝐾𝑠𝑖𝛥𝛿𝑖(𝑡) + 𝐾𝑑𝑖𝛥𝜔𝑖(𝑡), 𝑖 = 1, … , 𝑚  (9) 

 

where Ksi and Kdi are Ks and Kd for the ith generator, respectively, and m is the number of generators.  

The justification of the stability of a linear system can be performed via the estimation of Ks and Kd.  

The positive values of Ks and Kd will validate the system as stable. If the system has positive KS and negative 

Kd, then it is defined to be in the oscillatory instability condition. However, if Ks and Kd indicate negative and 

positive values, respectively, then the system is considered to be in the non-oscillatory instability condition. 

In general, the system is unstable if either one of the torque coefficients is negative. 

The stability evaluation of a linear system can be predicted with reference to the Ks and Kd values. 

A stable system is guaranteed if the Ks and Kd values are positive. If the linear system has positive Ks and 

negative Kd, then the system is defined to be in the oscillatory instability condition. The effect of  

the oscillatory instability condition can be detected from the increment of the amplitude oscillations of  

the rotor. Non-oscillatory instability occurs if Ks and Kd show negative and positive values, respectively. 

This condition can be verified from the steady increment of rotor angle responses. Detail illustration of 

stable, oscillatory unstable and non-oscillatory unstable conditions can be found in [1]. 

 

2.4.  Eigenvalues and damping ratio 

The scalar parameter of eigenvalues, λ can be derived as follows [1]: 

 

(𝐴 − 𝜆𝛪)𝜑 = 0 (10) 

 

Here, the n solutions of λ (=λ1, λ2, …, λn ) are the eigenvalues of A. The ith eigenvalue can be  

stated as follows: 

 

𝜆𝑖 = 𝜎𝑖 ± 𝑗𝜔𝑖 (11) 

 

where σi and ωi are the real and the imaginary part of the ith eigenvalue, respectively. If all value of λ have 

negative real parts, the linear system is considered stable. The damping ratio (ξi) for the ith eigenvalue is 

defined as the following: 
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𝜉𝑖 = − 𝜎𝑖 √𝜎𝑖
2 + 𝜔𝑖

2⁄   (12) 

 

The linear system is certainly in stable condition if all damping ratio have positive value. For simplification 

purposes, only the minimum value of the damping ratio, (ξmin) for the linear system is selected to verify  

the result [30-32]. 

 

2.5.  LS method 

LS technique is often used to obtain the minimum value for the sum of the square of the differences 

between ΔTe(t) and ΔTes(t). The error is defined as [8-10]:  

 

𝐸(𝑡) = 𝛥𝑇𝑒(𝑡) − 𝛥𝑇𝑒𝑠(𝑡) (13) 

 

Here, ΔTe(t) and ΔTes(t) are the real and estimated electrical torque, respectively.  

The period of ttotal must be chosen to estimate the correct value for Ks and Kd. The different values of 

ttotal will result in an inaccurate value for Ks and Kd. References [8] stated that the suitable value for ttotal that 

makes Ks and Kd constant during the oscillation period is the value of the entire oscillation period. In matrix 

notation, the problem can be described as follows: 

 

𝛥𝑇𝑒(𝑡) = 𝛥𝑇𝑒𝑠(𝑡) + 𝐸(𝑡) = 𝐶𝑥 + 𝐸(𝑡)  (14) 

 

𝐶 = [𝛥𝛿(𝑡) 𝛥𝜔(𝑡)]   (15)  

 

𝑥 = [𝐾𝑠 𝐾𝑑]𝑇  (16) 

 

Here ΔTe(t) and ΔTes(t) are the real and estimated electrical torque, respectively. E(t) is the differences (error) 

between ΔTe(t) and ΔTes(t). Detail calculations can be found in [10]. Although the calculated values are 

accurate, the application of the LS method requires a full oscillation period and takes a long time [8]. 

Therefore, a new indicator is necessary. 

 

 

3. OPTIMIZATION TECHNIQUES 

Nowadays, artificial intelligence technology (AI) has been widely used in solving power 

system problems. Evolutionary computation (EC) is one of the AI techniques that promotes logical 

representation approaches. EC is a group of global optimization algorithms that has metaheuristic 

optimization properties. Inspired by biological evolution, among the techniques covered in EC are EP, GA, 

AIS and PSO. EP and PSO are selected as optimization techniques in the present study. 

 

3.1.  PSO 

The PSO algorithm is started with initialization, followed by the update of velocity and position, 

fitness calculation, the best position update and convergence test. Detailed explanations of PSO algorithm 

process are as followed. 

 

3.1.1. Initialization 

In the initialization process of PSO, the value of synchronizing and damping torque coefficient, Ks 

and Kd are generated randomly. In the PSO perspective, Ks and Kd are called particles and their values are 

called position (or x). For every position that is created, xi, there is a velocity, vi. In the initialization process, 

the velocity is also randomly created in the range [0, 1]. The random positions are then used to calculate  

the fitness, J. In this initialization process, the ith fitness, Ji is set as individual best fitness Ji,p for ith particle. 

For the Ks and Kd estimation process, one constraint is identified: the calculated J must be larger than 0.5. 

Initialization process is repeated until total number of initial particles, n is achieved. From these N set of 

particles, the maximum fitness of all particles, Jmax is set as the global best fitness, Jg. The position for every 

Ji,p, Jmax and Jg is set respectively as the individual best position pi, position with maximum fitness pmax and 

global best position pg. 

a. Velocity and position update 

After set of particles are selected in initialization level, all n particles are through a process of 

updating the velocity and position, for every particle. The update process of vi and xi for the ith particle at jth 

iteration is in line with the following equations: 
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 𝑣𝑖(𝑗) = 𝜔𝑣𝑖(𝑗 − 1) + 𝑐1{𝑝𝑖(𝑗 − 1) − 𝑥𝑖(𝑗 − 1)} + 𝑐2{𝑔(𝑗 − 1) − 𝑥𝑖(𝑗 − 1)} (17) 

 

𝑥𝑖(𝑗) = 𝑣𝑖(𝑗) + 𝑥𝑖(𝑗 − 1)  (18) 

 

Here, c1 and c2 are acceleration coefficients and ω is the inertia weight. 

b. Fitness calculation 

Using the new value of vi and xi, the new fitness, Ji are calculated for every new n particles. After 

new fitness is calculated, new value of Jmax and the minimum fitness of all particles, Jmin are selected. 

c. Best position update 

With the new set of position, velocity and fitness for n particles, the update process of individual 

best position, pi and the global best position, pg will be performed if the following conditions are met: 

 If Ji is bigger than Ji,p, select Ji as Ji,p, and select xi as pi. If Ji is smaller than or equal with Ji,p, the value 

of Ji,p and pi are not changed. 

 If Jmax is bigger than Jg, select Jmax as Jg, and select pmax as pg. Else, if Jmax is smaller than or equal with 

Jg, the value of Jg and pg are not changed. 

d. Convergence test 

Convergence test is attended to regulate the stopping criteria of the optimization process. The search 

process will be terminated if the process has reached the maximum iteration number or the difference 

between the value of Jmax and Jmin is very close to 0. The flow chart which represents the PSO algorithm is 

illustrated in Figure 2(a). 

 

 

 
(a) PSO 

 
(b) EP 

 

Figure 2. Algorithm flowchart 

 

 

3.2.  EP 

The Evolutionary Programming (EP) is inspired by the theory of evolution based on natural 

selection. Metaphorically, the breeding of a species will produce offspring with some small variations due to 

mutations. With the competition between offspring and parents in finding the suitability of the environment, 

more suitable members will be chosen next generation. This new generation will reproduce, and this process 

repeats until the suitability between the species and the environment is reached. The overall process of EP 

algorithm is illustrated in Figure 2(b). Detailed explanations of EP algorithm process can be found in [10].  
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3.3.  Objective functions 

In the current study, the objective function formulated is based on the differences of  

the electromagnetic and estimated electromagnetic torques of the ith generator, ΔTei(t) and ΔTesi(t), 

respectively, as depicted in (21). This difference or error is estimated for the calculation of Ks and Kd for 

every generator in the system. The PSO optimization technique is used to minimize the error with Ks and Kd 

being the control variables [10]. 

 

𝐽𝑖 = 𝑖𝑛𝑣 (1 + 𝑎𝑏𝑠 ((𝛥𝑇𝑒𝑖(𝑡) − 𝛥𝑇𝑒𝑠𝑖(𝑡))/𝛥𝑇𝑒𝑖(𝑡))) , 𝑖 = 1, … , 𝑚 (19) 

 

where m is the number of generators. Hence, the objective function can be defined as follows: 

 
Maximize (Ji) 

 

From the optimized J value, a decision can be made to identify the angle stability on the basis of  

the Ks and Kd values. 

 
3.4.  Algorithm for angle stability assessment 

The calculation process of Ksi and Kdi for the ith generator is conducted repeatedly to estimate 

successfully the maximum value of Ji. The following process is implemented: 

a. Calculate ΔTesi(t) using Δδi(t), Δωi(t), and the estimated torque coefficients using (9). 

b. Evaluate Ji using (19). 

c. If Ji is smaller than 1.00, then vary the values of Ksi and Kdi and repeat steps a and b with newly 

generated Δδi(t) and Δωi(t) sample data until Ji reaches 1.00 or all sample data are used. 

Table 1 tabulates the parameters used in EP and PSO optimization process.  

 

 
Table 1. Parameters of EP and PSO 

Techniques EP PSO 

Parameters β = 0.09 c1 = c2 = 0.9 

 

 
4. RESULTS AND DISCUSSION 

The achievement of the PSO technique in estimating Ks and Kd are conducted via the IEEE 

30-bus system. Generator data for this system can be found in [7].Three samples of data of rotor angle Δδ(t), 

electrical torque ΔTe(t) and rotor speed Δω(t) for all six generators are produced in a MATLAB/Simulink 

environment. Two different values of reactive load at Bus 2 are used to simulate various stability cases.  

The values of the reactive load at Bus 2 are chosen in such a way that two scenarios can be emulated, 

namely, stable and critically unstable conditions as tabulated in Table 2. The three responses, namely angle, 

speed and torque deviations for Case 1 are shown in Figure 3(a), 3(b) and 3(c), respectively. In this case, the 

high damping rate for all responses justifies the system as in stable condition. Overall, all responses are fully 

damped 33 s after the simulation started. 

 

 
Table 2. Two different loading conditions 

Case 1 (stable condition) 2 (critically unstable condition) 

Reactive load at Bus 2 35 Mvar 210 Mvar 
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(a) Angle deviation 

 
(b) Speed deviation 

 

 
(c) Torque deviation 

 

Figure 3. Responses for stable condition for all generators in case 1 

 

 

Table 3 tabulates the comparison of Ks, Kd, J and number of iterations optimized for six different 

generators from EP, PSO and LS method for Case 1. All the three techniques manage to predict the stability 

conditions correctly indicated by the positive values of torque coefficients Ks and Kd for all the 

six generators. In this case, PSO method succeeds to calculate fitness value of 1.000 for all generators. On the 

other hand, EP calculated the highest fitness value of 0.8805 for generator G5. From the iteration perspective, 

PSO and EP are close to each other i.e. between 14~18 iterations. Table 4 shows the comparisons of fitness J 

and iteration result for Case 1. From eigenvalues λ perspective, all values are negative, meanwhile the 

minimum damping ratio ξmin give positive value. This confirms that case 1 is a stable case.  

 

 

Table 3. Comparisons of EP, PSO and LS method for case 1 

 

 

Table 4. The results of λ and ξmin for case 1 
ξmin λ 

0.0071 

-25.3277±j82.5561, -25.1949±j67.3925, -25.1835±j66.2373, -

25.1689±j64.4594,  

-25.1727±j65.1107, -25.1770±j64.7891, -0.0321, -0.2579, -0.1240±j14.6853,  

-0.1257±j15.4743, -0.1142±j16.0849, -0.1424±j17.1449, -0.1409±j16.6304. 

 

Gen. Tech. KS Kd J No. Iter. Gen. Tech. KS Kd J No. Iter. 

 

G1 

 

EP 4.5152 6.7687 0.8204 17  

G4 

 

EP 0.3305 0.6409 0.8077 15 

PSO 3.8295 7.7154 1.000 14 PSO 0.6419 0.8375 1.0000 18 

LS 3.4122 7.1221 - - LS 0.5012 0.0819 - - 
 

G2 

 

EP 0.0402 0.2196 0.8218 15  

G5 

 

EP 1.7562 6.0567 0.8885 14 

PSO 0.1063 0.2285 1.0000 14 PSO 1.4818 9.1044 1.0000 14 

LS 0.0903 0.0131 - - LS 1.1976 7.4533 - - 
 

G3 

 

EP 9.1289 11.3642 0.8113 18 

G6 

EP 4.3506 3.7928 0.8315 16 

PSO 7.6795 9.5289 1.0000 15 PSO 3.7917 8.6296 1.0000 16 

LS 6.2812 10.3265 - - LS 4.0129 7.7373 - - 
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Case 2 is unstable case which supported by the oscillation increment of angle, speed and torque 

deviation for all six generators, shown in Figure 4(a), 4(b) and 4(c), respectively. Case 2 seems to damp in 

the first place, but after the simulation achieved in 15 seconds, the oscillation of the responses increasing 

dramatically until the simulation end. If analyzing the angle, speed or torque responses in short time i.e.  

10-15 s, this case can be considered as a stable case. Unfortunately, if analyzing these three responses in 50 s 

and above, the oscillations seems increasing gradually and obviously the damping will not stop. Based on 

these results, Case 2.2B is considered as unstable case.  
 

 

  
(a) Angle deviation 

 

(b) Speed deviation 

 
(c) Torque deviation 

 

Figure 4. Responses for stable condition for all generators in case 2 
 

 

The value of Ks, Kd, J and number of iterations for Case 2 are shown in Table 5. EP and PSO 

methods managed to calculate the instability conditions for Case 2 indicated by the negative results of Kd for 

all the six generators. On the other hand, LS failed to deliver correct results as this method calculated positive 

values for both Ks and Kd for generators G1 and G5. Based on this result, all the three optimization methods 

are highly recommended to assess the stability condition compare to LS technique. Results showed that PSO 

scored perfect 1.000 in fitness value at the end of the simulation process for all the six generators. EP never 

achieved value of 0.9 for this case. In terms of iteration number, PSO become the fastest method, followed by 

EP. From these results it can be said that PSO is the most capable technique in optimizing the highest quality 

of fitness in the calculation process with admissible computation time. 

 

 

Table 5. Comparisons of EP, PSO and LS method for case 2 

 

Gen. Tech. KS Kd J No. Iter. Gen. Tech. KS Kd J No. Iter. 

 
G1 

 

EP 0.5182 -0.7726 0.7960 17  
G4 

 

EP -1.1044 -2.3948 0.8631 20 
PSO 0.6769 -0.5762 1.0000 15 PSO -0.9400 -1.7141 1.0000 15 

LS 0.0730 0.3147 - - LS -0.9340 -1.0216 - - 

 
G2 

 

EP 2.1324 -1.9547 0.8245 19  
G5 

 

EP 2.1978 -0.5515 0.8583 20 
PSO 2.5784 -1.9975 0.9985 15 PSO 2.5632 -0.7174 1.0000 16 

LS 2.6721 -1.8122 - - LS 2.6123 0.0022 - - 

 
G3 

 

EP -1.7429 -2.0883 0.7886 20 
G6 

EP -1.1044 -2.3947 0.8163 19 
PSO -1.5087 -2.1320 0.9970 15 PSO -0.9400 -1.7141 1.0000 15 

LS -1.0877 -1.9331 - - LS -0.9218 -2.0166 - - 



                ISSN: 2252-8938 

IJ-AI Vol. 8, No. 4, December 2019:  342 – 351 

350 

Table 6. The results of λ and ξmin for case 2 
ξmin λ 

-0.0013 

-25.3894±j81.5538, -25.2323±j67.3359, -25.2296±j66.5607, -25.2493±j64.4474, 

-25.2044±j65.5412, -25.1783±j65.0325, -0.0014, -0.2568, 0.0184±j14.6126, 
-0.1184±j15.5915, -0.1250±j17.0943, -0.0364±j16.9197, -0.1278±j16.4524. 

 

 

 

5. CONCLUSION  

This study has discussed the effectiveness of PSO technique in the oscillatory stability prediction in 

a multi-machine system. In this study, the IEEE 30-Bus test system has been selected. Although both EP and 

PSO are capable to predict correctly the stability condition of all cases, PSO is more convincing compared to 

EP. Optimization via PSO produces higher accuracy for all cases compared with EP. From the iteration point 

of view, PSO and EP are almost the same.  
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