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ABSTRACT

Answer selection is an important task in community Question Answering (cQA).
In recent years, attention-based neural networks have been extensively studied in
various natural language processing problems, including question answering.
This paper explores match-LSTM for answer selection in cQA. A lexical gap in cQA
is more challenging as questions and answers typical contain multiple sentences,
irrelevant information, and noisy expressions. In our investigation, word-by-word
attention in the original model does not work well on social question-answer pairs.
We propose integrating supervised attention into match-LSTM. Specifically, we
leverage lexical semantic from external to guide the learning of attention weights for
question-answer pairs. The proposed model learns more meaningful attention that
allows performing better than the basic model. Our performance is among the top on
SemEval datasets.
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1. INTRODUCTION
Answer selection of Community Question Answering (cQA) is one of the most problems in Natural

Language Processing and attracts much interest by researchers and industry recently. There are many web
forums such as Stack Overflow (https://stackoverflow.com/) and Qatar Living (https://www.qatarliving.com/
forum), which is obtaining popularity and flexibility to provide to a user [1]. A user can post a question and
likely to receive many answers from others. It is difficult for a user to become aware of correct answers in a few
restrictions. Moreover, it is time-consuming for a user to check over them all. For these reasons, it is necessary
to build a tool automatically identifying the right answers.

The answer selection problem is defined as follows: Given a question and set of candidate answers,
we need to identify which candidates are correct. It is an essential problem in question answering and has
drawn much attention from the community [2, 3] Lexical gap, i.e. the mismatch between vocabularies used in
questions and answers, is one of the main challenges in answer selection. The problem becomes more
complicated in cQA as questions and answers typically contain multiple sentences and extraneous information

Journal homepage: http://ijai.iaescore.com



204 r ISSN: 2252-8938

irrelevant to the main question, with substantial noise such as greetings, emoji, and sentiment. These charac-
teristics can be seen in Figure 1. There are redundant, noise, and the average of questions and answers are long
as shown in Table 1.

Example 1:

Subject: Nationalities banned in Qatar

Question: Hello! Can you help me, is there anyone knows the list of nationalities who

are banned and cannot apply employment visa in Qatar?

Answer (good): Pakistanis are facing severe problems. There is no ban on Visa but it is

very hard, near impossible to get.

Answer (bad): Hi are you suspecting your nationality .:)

Example 2:

Subject: Seafood:

Question: All this talking about crab and fishing trip made me hungry! :o) What kind of

seafood place would you recommend in Doha? What do you enjoy eating there? (fish,

shrimps, crabs,...?) How much does it cost to treat yourself in there? And (of course I'd

ask!) which places are best to avoid and why?

Answer (good): i went to these places in Doha, like Best Fish or Golden Fish- and they

were really horrible. oh well, i guess we only have Sheraton and Intercont :o) If you're

looking for a problem, you're probably gonna find one.

Answer (bad): Dont know about any particular restaurant that is really good here. But let

me know if you find any GOd, I am hungry again....

Figure 1. Two examples of a question and its answers in SemEval dataset

A huge of research methods in recent years have focused on end-to-end approaches based on deep
neural networks and attention mechanism without depending on feature engineering or external knowledge
bases for the purpose to handlethese problems [4]. Attention mechanism has shown great success in various
NLP tasks [5] such as machine translation, natural language inference, reading comprehension, and question
answering [6]. Furthermore, attention calculation makes the redundant and noisy segments provided with less
importance, followed by emphasizing the representation of significant segments. Thus, the attention-based
deep learning model is suitable for processing text in CQA.

In this paper, we study word-by-word attention in matching questions and answers on social forums.
We explore match-LSTM [7] and propose integrating supervised attention into this model. Match-LSTM works
well in natural language inference by matching important words between premise and hypothesis sentences.
However, our initial investigation shows that the model fails to learn meaningful attention in cQA context as
shown in Figure 2, where both questions and answers are long and noisy. The experiments show that supervised
attention helps to learn meaningful matching that allows to better select correct answers. Our proposed model
achieves performance on a par with top results on SemEval datasets.

(a) (b)

Figure 2. An example of word alignment learned by match-LSTM. Content words are weakly aligned, while
much of attention is paid to stopwords, (a) A pair of question and its good answer, (b) A pair of question and

its bad answer
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2. RELATED WORK
Previous work in answer selection bases on handcrafted features such as semantic role annotations [8],

parse trees [9], tree kernels [10]. Then, researchers started using deep neural networks for answer selection,
for example, Yu et al [11] propose a convolutional bigram model to classify a candidate answer as correct
or incorrect. Tan et al [4] used an attentive BiLSTM component that performs importance weighting before
pooling based on the relatedness of segments in the candidate answer to the question.

In neural machine translation, word-by-word attention tries to learn soft alignment, which mimics
the task of word alignment between source and target sentences [6]. Rocktaschel et al [12] proposed using
two LSTMs to read premise and hypothesis sentences and learn word-by-word alignment to help predict their
textual entailment. Following this direction, match-LSTM was proposed to add a so-called mLSTM to better
capture word alignment and directly use the last hidden state of this LSTM for prediction [7]. Furthermore,
their model was extended to tackle machine comprehension by combining with pointer networks.

Supervision has been shown to improve attention quality in some natural language tasks such as
machine translation, sentiment analysis, and event detection [13, 14]. Mi at el [13] argued that unsupervised
soft alignment in seq2seq model [6] suffers from the lack of context after current word in the target sentence.
They proposed using supervised word alignment to guide the learning of attention weights that, in turn, helps
to generate more accurate translation. Zou at el [15] used a sentiment lexicon to guide their model to attend to
sentiment words. Similarly, neural models were asked to pay attention to argument information when detecting
event triggers. Top systems in the SemEval cQA campaign utilize classifiers with rich features, from depen-
dency tree to text similarity, and other task-specific features. Recently, [2] proposed an CNN with question
subject-body attention.

3. OUR MODEL
Figure 3 shows our model based on match-LSTM with supervised attention tailored for question

answering in social forums.
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Figure 3. Our model were extended from Match-LSTM, (a) Match-LSTM (provided by the author [7]),
(b) Our model

3.1. LSTM model
LSTM [16] is a particular model of recurrent neural network (RNN). It process sequence data

capturing semantic information to neural gates that adaptively read or discard information to/from internal
memory states. Specifically, X = (x1, x2, ..., xN ) is used to denote input sequence, where xk ∈ Rl.
At position k, hidden state hk is generated as follows:

ik = σ(Wixk + Vihk−1 + bi),

fk = σ(Wfxk + Vfhk−1 + bf ),

ok = σ(Woxk + Vohk−1 + bo),

ck = fk � ck−1 + ik � tanh(Wcxk + Vchk−1 + bc),

hk = ok � tanh(ck),

(1)

Supervised attention for answer selection... (Thi-Thanh Ha)
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where i, f, o are input, forget and output gates, respectively, σ is the sigmoid function, � is the
elementwise multiplication of two vectors and all W ∈ Rd×l, V ∈ Rd×d, b ∈ Rd are weight matrices and
vectors to be learned from the model.

3.2. match-LSTM
match-LSTM(Fig 3a) [7] was originally proposed for sentence-level natural language inference.

Its application to cQA answer selection is straightforward. We denote a question and an answer as Xq =
(xq1, x

q
2, ..., x

q
N ) and Xt = (xt1, xt

2, ..., xtM ), respectively; where each xi is an embedding vector of correspond-
ing word. Our goal is to predict a binary label y (In SemEval datasets, positive corresponds to good while
negative corresponds to potentially useful and bad).

The attention vector ak is generated as follows:

ekj = we. tanh(Wqhq
j + Wtht

k + Wmhm
k−1) (2)

αkj =
exp(ekj)∑
j′ exp(ekj′ )

(3)

ak =

M∑
j=1

αkjhq
j , (4)

where αkj is attention weight of kth word in the answer and jth word in the question; hq
j and ht

k are hidden
states of two LSTMs representing question and answer, respectively; hm

k−1 is the hidden state of mLSTM of (k−
1)th word. The central idea lies in mLSTM, which takes the concatenation of ak, attention-weighted version
of the question, and hk

t , hidden state of kth word itself as input. mLSTM could learn to forget unimportant
matching and remember important ones. The last hidden state of mLSTM is used for prediction.

3.3. Our extension
The first, we used biLSTM to learn character-level word vectors and concatenated it with pre-trained

word embeddings in the input layer. Character embeddings were proved to be useful for both formal and
informal texts without preprocessing data. Because there are quantities of informal language usage in CQA
systems such as abbreviations, typos, emoticons, and grammatical mistakes, using character embeddings helps
to attenuate the OOV problem. It is especially useful for the small dataset which has a large number of OOV
words as SemEval dataset. To represent questions and answers, we also use two LSTMs to capture both forward
and backward sequential contexts.

The second, instead of using only the last hidden state for prediction, we used the concatenation of
max pooling and average pooling of all hidden states of mLSTM to capture local information better.
The loss function is regularized binary cross-entropy:

Lmodel = −
1

S

∑
(y log ŷ + (1− y)log(1− ŷ)) + γ

2S
||W||22, (5)

where S is the number of question-answer pairs and γ is a regularized parameter. The last, supervised attention
was integrated into the extended model to learn meaningful matching between answer and question (detailed
in below section 3.4.)

3.4. Supervised attention
We denote gkj as intuitive attention weight between kth word of the answer and jth word of the

question, where
∑

j gkj = 1. The difference between intuitive attention weights and learned attention weights
(3) is computed as squared element difference:

Lsupervised =
1

S

∑
(
∑
k,j

(gkj − αkj)
2) (6)

Our goal is to minimize the loss in (5) and (6) simultaneously:

L = Lmodel + λLsupervised, (7)

where λ is a regularized coefficient to control the effect of attention difference.
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Intuitively, we want i) words semantically close to each other would be matched by our model, and
ii) answer words are aligned to important question words. We realize the first intuition by cosine similarity
between word vectors learned by fasttext on texts of an unannotated dataset from all English cQA tasks of
SemEval 2016 and 2017. Secondly, we utilize tfidf weighting for question words to emphasize important
contents.

gkj = tfidf(wq
j )cosine(w

t
k,w

q
j), (8)

where wt
k and wq

j are word vectors learned by fasttext; to calculate tfidf weighting, each document is a question
or answer on hold of the unannotated dataset. Similarly to matchLSTM, we insert a special token<eos>, which
allows unimportant words in answer to align with it. Finally, gkj is normalized by a softmax function.

4. EXPERIMENTS AND RESULTS
4.1. Dataset and evaluation metrics

We used SemEval dataset to evaluate our method. It is based on data from Qatar Living forum [1] and
was divided three datasets: Training, Development, Testing. Table 1 demonstrates statistics of the dataset on
pairs of question and answer. Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) were used
as evaluation metrics with evaluation scripts provided by SemEval organizers.

Table 1. Static of number pairs of question and answer in CQA datasets
Semeval 2016 Semeval 2017

Train 36,198 39,468
Dev 2,440 3,270
Test 3,270 2,930
Average length of body 49.4 45.8
Average length of answer 38.8 38.0
Size of Vocabulary 6,1271 6,3758

Table 2. Performance of our models on SemEval 2016 and 2017 datasets

Models
SemEval 2017 SemEval 2016
MAP MRR MAP MRR

(A) QA-LSTM 86.68 91.01 74.36 83.4
(B) QA-LSTM-CNN 87.17 92.59 74.97 83.56
(C) QA-LSTM-attention 87.39 91.50 75.87 82.88
(D) Enhanced LSTM 87.23 93.04 76.46 83.51
(E) match-LSTM 86.51 92.12 77.70 83.76
(F) Enhanced match-LSTM 87.76 92.28 78.10 84.21
(G) Enhanced match-LSTM + sup. att. 88.38 93.13 78.62 84.56
(H) QCN 88.51 - - -
(I) KELP 88.43 92.82 79.19 86.42
(J) ECNU 86.72 91.45 77.28 84.09

4.2. Hyperparameters
We used Glove pretrained word embeddings with 300 dimensions in input layer. Out-of-vocabulary

words were initialized randomly. The dimension of two LSTMs for character representation was set to 50.
The dimension of other word-level LSTMs was 400. Word vectors for calculating similarity were learned by
fasttext with a dimension of 100. We used Adam optimizer with initial learning rate 0.0001 and learning rate
decays β1 = 0.9, β2 = 0.999; L2 and supervised attention regularized coefficients λ and γ are both set to
0.0001. The batch size was set to 64. To avoid overfitting, we applied a drop-out of 30% units in all hidden
layers and early stopping on dev set. The models were implemented with Tensorflow and all experiments were
conducted on GPU Nvidia Tesla p100 16Gb. We used the accuracy on the validation set to decide on the best
hyper-parameter settings for testing.

4.3. Results and discussions
In this section, we show detailed experimental results on SemEval datasets. Table 2 is divided into

three parts as flows: From Row (A) to (D) is a group of LSTM models used in question answering, Row (E) to
(F) indicates the developing from match-LSTM to our proposed model and Rows(H-J) lists the results of state
of the art models on SemEval datasets. We evaluated our model with some approached as followed:
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(a) QCN [2] models attention between question subject and body and utilizes CNN for question and answer
representation.

(b) KELP [17] uses syntactic kernel with text similarity and other task-specific features to learn a feature-rich
classifier.

(c) ECNU [18] is an ensemble of feature-based classifiers and CNN.
(d) QA-LSTM, QA-LSTM-CNN, QA-LSTM attention [4]: These models were projected matching answers

to questions accommodating their complicated semantic relations. In which, QA-LSTM-CNN is the
hybrid model between Convolutional and LSTM. After that, attention mechanism was put forward into
QA-LSTM to construct better answer representations according to the input question. Each output vector
of LSTM on the answer side at time step t was updated by the question representation and attention
parameters.

(e) Enhance-LSTM [19]: This model is proposed for natural language inference by considering recursive
architectures in both local inference modeling and inference composition.

The models from row A to G in Table 2 were implemented in Tensorflow, and the results of SOTA
models in rows (H,I,J) were reported from original papers. From Table 2, It can be seen that the performance of
Enhanced match-LSTM is also better than typical LSTM models. Moreover, when supervised attention is put
into this model, the performance increases steadily as well on both SemevalCQA2016 and SemevalCQA2017.
This suggested that supervised attention can learn semantic of question and answer better than previous LSTM
models. Specifically, supervised attention not only learns more meaningful word alignment (as discussed later
in Section 4.4.), but also supports the main task of answer selection. For example, the MRR score of our model
surpass the winer KELP team in Semeval 2017 with 93.13% and the MAP performance is on par with top
results on SemEval 2016 and 2017.

4.4. Attention visualization
Figure 4 and Figure 5 visualize word-by-word attention between answer (Y-axis) and question (X-

axis) to explain our model. These splots present the alignment weights αkj between answer and question,
where a darker color correlates with a larger value of αkj . Overall, Our model interpret word relationship
better than basic match-LSTM as depicted in Figure 2.

In Figure 4, content words in the answer (e.g. ‘Pakistanis’, ‘ban’, and ‘get’) and question (e.g. ‘na-
tionalities’, ‘banned’, and ‘apply’) are correctly aligned. While ‘ban’ and ‘banned’ basically have the same
root form, we anticipate that text similarity is especially helpful for other alignments like ‘Pakistanis’ and ‘na-
tionalities’, or ‘get’ and ‘apply’. Last but not least, as we look more deeply into Figure 4a, stopwords and
punct are still aligned. Whereas in Figure 4b, thanks to tfidf weighting, stopwords and punct in the answer are
leaned towards the final <eos> token of question, as indicating by multiple blue cells in the last column. We
could also observe that stopwords and punct in the question are no longer highlighted. Therefore, the greetings,
questions that do not mean to be asked are not attended.

The same goes for a pair of question and bad answer in Figure 5. Some words in answer (’your
nationality. :)’) are aligned the most highlightly with ’nationalities’ in the question as shown in Figure 5a. It is
evident that our model can learn essential parts of the question and answer better than the original model.

(a) (b)

Figure 4. A pair between question and good answer example of attention learned by our model with
supervision, (a) Supervised attention with similarity, (b) Supervised attention with similarity and tfidf
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(a) (b)

Figure 5. A pair between question and bad answer example of attention learned by our model with
supervision, (a) Supervised attention with similarity, (b) Supervised attention with similarity and tfidf

5. CONCLUSIONS AND FUTURE WORKS
In this paper, we propose to extend match-LSTM with supervised attention. We empirically demon-

strate that our solution is useful in cQA answer selection. In the future, we are going to investigate cQA in
popular forums such as Yahoo Answers and Stack Overflow and then use Transformer model [20] instead of
LSTM model. Such forums also provide useful meta-data and related tasks such as expert findings. In another
direction, we are going to study siamese architecture and CNN with phrase-level representation.
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