
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 9, No. 3, September 2020, pp. 507~519

ISSN: 2252-8938, DOI: 10.11591/ijai.v9.i3.pp507-519  507

Journal homepage: http://ijai.iaescore.com

Fault-type coverage based ant colony optimization algorithm

for attaining smaller test suite

Bharathi M1, Sangeetha V2
1Department of Computer Science, Periyar University College, Pennagaram, Tamilnadu, India

2Department of Computer Science, Periyar University College, Pappireddipatty, Tamilnadu, India

Article Info ABSTRACT

Article history:

Received Feb 3, 2020

Revised Apr 8, 2020

Accepted May 22, 2020

 In this paper, we proposed Fault-Type Coverage Based Ant Colony

Optimization (FTCBACO) technique for test suite optimization.

An algorithm starts with initialization of FTCBACO factors using test cases

in test suite. Then, assign separate ant to each test case called vertex. Each

ant chooses best vertices to attain food source called objective of the problem

by means of updating of pheromone trails and higher probability trails.

This procedure is repeated up to the ant reaches food source. In FTCBACO

algorithm, minimal number of test cases with less execution time chosen by

an ant to cover all faults type (objective) are taken as optimal solution.

We measured the performance of FTCBACO against Greedy approach and

Additional Greedy Approach in terms of fault type coverage, test suite size

and execution time. However, the heuristic Greedy approach and Additional

Greedy approach required more execution time and maximum test suite size

to provide the best resolution for test suite optimization problem.

Statistical investigations are performed to finalize the performance

significance of FTCBACO with other approaches that concludes FTCBACO

technique enriches the reduction rate of test suite and minimizes execution

time of reducing test cases efficiently.

Keywords:

Additional greedy approach

Ant colony optimization

Fault-type coverage

Greedy approach

Test suite optimization

This is an open access article under the CC BY-SA license.

Corresponding Author:

Bharathi M,

Department of Computer Science,

Periyar University College of Arts and Science,

Pennagaram, Dharmapuri, Tamilnadu, India.

Email: abinovharshiniset@gmail.com

1. INTRODUCTION

The Software revises numerous times during its development phase and later. Revision of software

application program is required when new attributes and functionalities are introduced [1]. After renovation,

software testing is essential to test the software application program to assure that the system is functioning

properly with recent modifications. Software testing is the most significant role of an effective software

product. Software testing is the procedure of executing the software program for discovering faults which

cause software failure. Combinatorial testing (CT) is an effective software testing technique used to identify

the faults during pair of feature combinations of Software Program Applications (SPA). Quality of software

program is achieved by means of right and proper test suite. CT is essential for effective test suite generation.

Main objective of software testing is to generate a group of tiniest test cases which comprises higher faults in

least time. Hence, quality of software program is measured in terms of software metrics like maximum faults

coverage, minimum test suite size and minimum computational time. Computation time of huge test suites is

supposed as a bottleneck while building huge software. Therefore test suite size optimization is essential to

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

508

reduce the computational cost. Test suite size optimization is classified into minimization of test suite size,

selection of test case, prioritization of test case [2]. Test suite size minimization is the method of choosing

test cases that fulfills specified constraints. Additionally, test suite optimization plays essential role to reduce

he testing cost of SPA without corrupting their quality factors. So, this investigation work aims test suite

optimization proficiently for increasing the ability of SPA.

We have recognized 2 various heuristic algorithms called Greedy Strategy based algorithm [3] and

Additional Greedy Strategy based algorithm [4] for conducting this research as baseline algorithms.

In Greedy approach [3], test cases are arranged in descending order based on their fault coverage ability and

begins with test cases that cover highest quantity of faults till either all the faults are covered or test adequacy

condition is encountered. Additional Greedy approach [4] differs from the greedy approach while choosing

test cases for addition in the minimized test suite. Initially, it selects the test case which includes the highest

amount of faults. Then it selects the test case which includes the highest number of still unobserved faults by

the minimized test suite. Same process repeated till all the faults are observed. But we observed that both

baseline algorithms are required more execution time to optimize the test suite.

To overcome the above cited issues in test suite optimization problem using Greedy and additional

greedy approach, Fault-Type Coverage Based Ant Colony Optimization (FTCBACO) algorithm Technique is

built. FTCBACO algorithm is designed based on maximum faults-type coverage analysis and produce an

efficient optimum resolution. The major contributions of FTCBACO technique is expressed as follows,

 To enhance the ability of test suite reduction for software testing.

 To increase the test suite reduction rate and to decrease the execution time for software testing

compared with Greedy and Additional Greedy approaches.

 To optimize test cases in test suite in terms of maximum faults type coverage and minimum

execution time.

We have presented 3 research questions for more clarification about the performance of proposed

FTCBACO algorithm.

 RQ1: Is there any dissimilarity in their capability of detecting faults of various heuristic approaches?

 RQ2: Does heuristic methods differ from each other in their ability of optimized test suite size?

 RQ3: How do variance present in execution time of various heuristic approaches?

The investigation work of this paper is outlined as follows. Section 2 reviews the related works.

In Section 3, we explain implementation process of FTCBACO for test suite optimization problem with an

illustrative example. Section 4 reports results analysis and discussions. In section 5, we conclude this paper.

2. RELATED WORKS

Chen and Lau [5] presented GRE methodology for minimization. This methodology is based on 3

methods-Essential method, 1-to-1 redundant method, Greedy method. In this methodology, initially

important test cases are nominated and inserted into set, after that 1-to-1 repeated test cases are eliminated

continually. Now greedy methodology is used on the pending test cases till all the necessities are fulfilled.

GRE assured to create optimal sets. Khalilian and Parsa [6] projected Bi-criteria test suite reduction with

cluster analysis of execution profiles. They merged distribution-based technique with coverage-based

technique to build full coverage reduced test suites. Coverage based techniques used for test case selection

which contains faults. Distribution based techniques used for clustering the test cases. These two techniques

combined to form a reduced set with full coverage. Finally they generated reduced test suites with a lesser

amount of fault identification capability. Tallam and Gupta [7] proposed inspired greedy algorithm for test

suite reduction which is based on the relation between test cases and testing requirements. For reduction,

test cases are assumed as objects and requirements as their attributes. Context table (test suite) was built

based on association among object and attributes. Aim of proposed algorithm is to reduce context table size.

For reducing objects and attributes, Object reduction rules and attribute reduction rules are utilized. Context

table size was reduced using object reductions, attribute reduction and owner reduction. The size of context

table was slightly reduced by eliminating duplicate objects. Finally size of context table was minimized.

Yoo and Harman [8] proposed using hybrid algorithm for Pareto efficient multi-objective test

suite minimization. They merged the greedy approach with the genetic algorithm to offer Pareto fronts with

high quality. Testing results prepared by their method were more proficient. Chen, Zhang and Xu [9]

recommended degraded ILP Approach for Test Suite Reduction. In this approach, lower bound of minimum

test suite was produced and was searched feasible solution nearby lower bound. If representative set size

matches with lower bound at that point representative set considered as finest result, if representative set size

is nearer to lower bound at that moment representative set judged as good result, and if representative set size

is distant from lower bound then Integer Linear Programming or any other expensive method was

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

509

required for improving representative set. They concluded DILP approach provided better results than

traditional approaches. Harris and Raju [10] have proposed a greedy approach for coverage-based test

suite reduction. They obtained reduced test suite size based on code coverage criteria. Then they compared its

performance results with bi-objective greedy techniques as well as HGS. Chen and Lau [11] offered divide-

and-conquer approach for test suite reduction. They focused on dividing approaches that are whole with

respect towards the least and optimal representative sets. Divide-and-conquer approach fundamentally split

the original problem into smaller sub problems, discover optimal results for the sub problems, and build a

result for the original problem from result of the sub problems. They obtained needed subset and repeated

subset relating to needed test cases and repeated test cases separately. Needed subset holds needed test case.

A repeated subset whose fulfilled requirements can be fulfilled by other test cases. Finally, representative set

comprised needed subset and rejected repeated subset. Galeebathullah and Indumathi [12] proposed a novel

approach for controlling a size of a test Suite. Greedy approach and set theory were used to produce

reduced sets. They have used intersection function to find the unsatisfied unique elements. Then the

intersection between one elements to other elements of branch coverage criteria was found using set theory

for the set of test cases. Initially, they have calculated intersection between the elements. If any intersection

elements take place then the test case is included into reduced test suite. This procedure was continued till

whole requirements are fulfilled. Finally reduced test suites have similar size compared to other approaches.

You and Lu [13] recommended Genetic Algorithm for the Time-Aware Regression Testing Reduction

Problem. Time criteria were added with the genetic algorithm. Main objective of recommended technique is

to reduce the computational time. At the end, all the redundant test cases were removed and also reduced

computational time. Chen et al. [14] have proposed test case prioritization technique using clustering

approach based on random sequence for object-oriented software. Khan and Nadeem [15] suggested Test

Filter for reduction of test cases. Based on statement coverage criteria, weights given to each test case. Total

existences of each test case denoted as weight. They nominated non-redundant test cases with respect to their

weights. Initially, test case with higher weight are selected. Then test cases with lower weight are selected till

all the necessities are fulfilled. Selected test cases are included into reduced test suite set.

Finally TestFilter technique offered reduction in test suite size and computational cost. Zhao and Luo [16]

proposed an algorithm for Reducing Test Suites based on Interface Parameters. In this algorithm, interface

parameters and bipartite graph were used to eliminate duplicate test cases. Based on relationship between

interface parameters this technique was worked. This approach reduced the size and redundancy of test suite.

However coverage size was same. Most important drawback of this procedure was a graph could not be

complete bipartite graph. Miller and Spooner [17] have applied numerical maximization methods to make

test data using floating point data. They have attained enormous reduction in computational cost and also

storage space. Harrold et al. [18] have recommended HGS algorithm. From the original test suite,

HGS algorithm determined reduced representative test suite. At the end, HGS algorithm provided the equal

original coverage and removed duplicate test cases. Rothermel and Harrold [19] suggested a safe,

efficient regression test selection technique. In this approach, they have used control flow graph.

This approach was obtained in generic nature. So, it was used to examine the software which were written in

various languages. Xu, Miao and Gao [20] proposed test suite reduction using weighted set covering

techniques. In this technique, weighted greedy algorithm was used for test suite reduction. Initially they have

determined that whether any test case fulfills all the requirements or not. If fulfilled, test case selected

otherwise frequently 1-to-1 redundant test cases were eliminate and test suite updated. They have selected

necessary test cases and included into reduced set. Priorities are given to test cases which have uncovered

requirements and sorted. Based on decreasing priority order, test cases have chosen till all the requirements

are fulfilled. Finally this technique produced optimized test suite size with minimum testing cost.

Harrold and Soffa [21] proposed an incremental approach to unit testing during maintenance.

In this approach, they have considered testing effort during software maintenance. Lin and Huang [22]

have proposed an analysis of test suite reduction with enhanced tie-breaking techniques. They Combined

HGS and GRE approaches to find higher reduced test suite size based on capability of faults detection.

Jeffrey and Gupta [23] have projected test suite reduction with selective redundancy. This proposed

technique was used to cut the fault identification cost by removing duplicate test cases. They have found

redundant test cases using branch coverage data. This technique provided slightly reduced test suite size with

better fault identification effective. Boussai et al. [24] have discussed various metaheuristic optimization

techniques. Dokeroglu et al. [25] argued new generation metaheuristic algorithms. Ilango et al. [26] have

presented Optimization using Artificial Bee Colony based clustering approach for big data. Vimal et al. [27]

proposed Energy enhancement using Multiobjective Ant colony optimization with Double Q learning

algorithm for IoT based cognitive radio networks.

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

510

3. FAULT-TYPE COVERAGE BASED ANT COLONY OPTIMIZATION (FTCBACO)

Fault-Type Coverage Based Ant Colony Optimization (FTCBACO) Technique is planned to solve

the issues in Greedy approach and Additional Greedy approach for test suite reduction problem.

FTCBACO designed based on metaheuristic Ant Colony Optimization (ACO) Algorithm for achieving test

suite reduction rate in high-level, minimization of execution time and maximum faults type coverage to

improve the efficiency of RT. Swarm intelligence (SI) techniques are used for resolving computational

problems. ACO is intended from SI techniques. The ACO algorithm is constructed using graphs for finding

an optimal path depending up on the ants behavior. With the help of Pheromone (chemical substances)

omitted by an ant, ant selects path from its colony to food source and return to colony. Foragers track the path

to reach food source by observing pheromone trail of other ants. As a result, an optimal path found from their

colony to food source. Based on the concept of ACO algorithm, FTCBACO algorithm designed to find

optimum test cases in a test suite in terms of maximization of test suite reduction with minimum execution

time for achieving all faults type. In FTCBACO algorithm, ant considers test case as vertex and probability

of test case as weight of an edge. Ant chooses a test case with higher probability value (edge) as best test case

to obtain all faults type as food source (objective). The real impact of each ant is to obtain all faults type

of a problem. The probability value of edges is calculated using the pheromone value of test case deposited

on path. Also FTCBACO algorithm is required three control parameters α, β and ρ to optimize the problem.

The values of α, β parameter defines the relationship between pheromone value and heuristic value.

The parameter ρ represents evaporation rate and its value must be defined the range between 0 and 1.

Optimal combination of α, β, ρ helps to evaluate the proposed FTCBACO algorithm effectively.

Combinatorial testing plays a key role to search a best combination of α, β, ρ values. The values of α, β, ρ are

determined based on the problem during implementation phase. The data flow diagram of Fault-Type

Coverage Based Ant Colony Optimization (FTCBACO) algorithm is presented in Figure 1.

Figure 1. Flowchart of fault-type coverage based ant colony optimization (FTCBACO) algorithm

Figure 1 demonstrates the overall process of proposed FTCBACO algorithm to solve test case

reduction for regression testing. Initialize FTCBACO algorithm with test case in a test suite and assign ant Ai

to test case TCi where i=1,..,n. Select ant Ai and its corresponding Test case TCi is stored in set MTS of Ai

and covered faults type into set FTCi. To check whether all faults type is covered by selected ant or not. If set

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

511

FTCj where j=1,2,…n of ant Ai contains all faults type then move to next ant. Otherwise update pheromone of

ant Ai using equation (2) or (3) based on constraints, probability of ant Ai using (4) and select next test

case with higher probability. The similar process will be repeated until all ants covered all faults type.

Now we obtained test case path with all faults type covered for all ants. Afterwards, we compared execution

time of all the ants and finest ant is elected with minimum execution time and smaller number of test case in

test case path.

3.1. Procedure of FTCBACO

The procedure of FTCBACO algorithm is presented down,

Algorithm 1: Fault-Type Coverage Based Ant Colony Optimization
Terms used: T-Test Suite , A1,A2,..,An - Set of Ants in T, TC1,TC2,…,TCn - Set of test cases in T, FT1,FT2,…,FTn - Set of faults type

covered by each test case in T, MTSi - Minimized Test Suite of Ant Ai, FTCi - Set of faults type covered by test cases in MTSi,

TFCi – Total faults type covered by MTSi, TFT – Total faults type in T, LTP-length of test case path, PT-Pheromone trail of each test

case, P-Probability of test case.
Input: Group of test cases (TC1,TC2,…,TCn) , faults type covered (FTC) by each test case, total faults type covered(TFC) of each test

case in a test suite T.

Output: Optimized test cases which covered all faults type in minimum execution time.
1. Begin

2. Derive set of faults type and total faults type covered by each test case in T.

3. Set TCx ← Ax where x=1,2,…n.
4. Initialize PTx ← 1.0, MTSx ← ф, FTCx ← ф, TFCx ← ф

5. Define objective function F(x)=TFT given to a problem
6. Initialize i ← 1,k← i

7. for each Ai in T do

8. Set MTSi ← TCk, FTCi ← {faults type covered by TCk},
 TFCi ← total faults type covered by TCk , LTP ← 1

9. Test case in MTSi marked as visited (*).

10. Initialize r ← i
11. If (TFCi == TFT) Then

12. Goto step 34

13. Else
14. While (TFCi!= TFT)

15. Initialize j ← 1

16. For each TCj in T do
17. If(r== j) then

18. update pheromone PTj using equation (1)

19. update probability Pj using equation (3)
20. Set j ← j + 1

21. Else

22. update pheromone PTj using equation (2)
23. update probability Pj using equation (3)

24. Set j ← j + 1

25. End if
26. End for

27. Find unvisited test case t with maximum P of T,

28. Set TFCi ←TFCi + number of new fault types covered by test case t

29. Set MTSi ← MTSi ∪ {t}

30. Set FTCi ← FTCi ∪ { fault types covered by test case t }

31. Set LTPi ← LTPi+1
32. End While

33. End if

34. Set i ← i + 1
35. Set k← i

36. End for

37. Select ant with minimum of execution time and minimum length test case path
38. Consider Test cases in selected test case path of an ant as optimium test cases in T.

39. End

3.2. Functions of FTCBACO

FTCBACO has two major functions for selecting next test case to achieve an objective function of

the problem.

 Update pheromone

 Upadate probability

3.2.1. Update pheromone

If the ant number is same as selected test case number then the pheromone of test case is

evaluated using (1). Otherwise evaluated using (2).

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

512

pheromone[i] = (1 − ρ) ∗ pheromone[i] + (
covered faults[i]

total faults
) (1)

pheromone[i] = (1 − ρ) ∗ pheromone[i] (2)

From (1) and (2), pheromone [i] represents amount of pheromone on test case and ρ represents

pheromone evaporation rate and
covered faults [i]

total faults
 represents amount of pheromone deposited.

3.2.2. Update probability
The probability of test case is updated using equation (3) and the test case of highest probability is

selected as next test case visited by the ant.

probability[i] =
[
covered faults[i]

total faults
]
α

∗ [pheromone[i]]β

∑ [[
covered faults[i]

total faults
]
α

∗ [pheromone[i]]β]n
i=1

 (3)

3.3. Demonstrative with example

An example is demonstrated to exhibit the functioning of FTCBACO algorithm in regard to existing

Greedy approach and Additional Greedy approach. In this example, we considered a sample input fault

matrix with 8 test cases (rows) and 10 faults type (column) are shown in Table 1. Fault matrix can be

encoded using binary values either 0 or 1, where 1 represents a fault type FTi covered by its associated test

case TCi and 0 represents that a fault type is not covered. Hence, number of faults type covered by associated

test case can be determined using sample input fault matrix. Then, the ranges of control parameters α, β are

assumed between 0 and 10 and ρ between 0 and 1. Now mixture of parameters α, β, ρ yielded 179

combinations and we proceeded the algorithm 10 times for every combinations. Finally we identified optimal

combination of parameters value are α=2, β=1, ρ=0.4 for improving performance of the algorithm.

Then the proposed FTCBACO algorithm is executed along with the existing Greedy and Additional greedy

approach based on the sample input fault matrix illustrated in Table 1.

Table 1. Sample input fault matrix
Test case

(TCi)

Faults type (FTi) Total faults type
covered

Faults type
FT1 FT2 FT3 FT4 FT5 FT6 FT7 FT8 FT9 FT10

TC1 0 1 0 1 0 0 1 0 1 0 4 2,4,7,9

TC2 1 0 1 0 0 0 0 0 0 0 2 1,3

TC3 1 0 0 0 1 0 1 1 0 0 4 1,5,7,8

TC4 0 1 0 1 0 0 0 0 1 0 3 2,4,9

TC5 0 0 1 0 0 1 0 0 0 1 3 3,6,10

TC6 1 0 0 0 0 0 1 0 0 0 2 1,7
TC7 0 0 1 0 0 1 0 1 0 0 3 3,6,8

TC8 0 1 0 0 0 0 0 0 0 1 2 2,10

3.4. Process of test case path selection
Table 2 represents initial pheromone distribution of each test case and its probability. Tables 3 to 10

proves step by step implementation of proposed FTCBACO algorithm with sample inputs, process of test

case path selection of each ant and optimized test path of a test case in a test suite. Outcome shows the ability

of FTCBACO algorithm technique. Amongst 8 input test cases, the recommended FTCBACO algorithm

suggested only 3 test cases to attain the objective of a problem. Table 2 Shows Initial pheromone distribution

and probability of sample input test suite. Table 3 shows outcomes of ant 1. In Table 3, the set MTS refers

minimized test suite which holds resultant test case, FTC refers covered faults type which holds faults type

covered by test case in MTS, TFC refers Total number of faults type covered by test case in MTS. Likewise

all the ants processed.

Step-by-step execution outcomes of each existing algorithm as presented in Table 4 and

also proposed FTCBACO technique as exhibited in Table 5. In both Tables 4 and 5, MTS denotes

minimized test suite which is generated by selection of best suitable test case for each algorithm

and FTC denotes the amount of faults type involved by nominated test cases in the minimized test

suite MTS.

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

513

Table 2. Initial pheromone distribution and probability of each test case

Testcase (TCi) Pheromone[i] ∑ pheromone[i]

n

i=1

 probability[i] =
pheromone[i]

∑ pheromone[i]n
i=1

TC1 1 8 0.125

TC2 1 8 0.125

TC3 1 8 0.125

TC4 1 8 0.125

TC5 1 8 0.125

TC6 1 8 0.125

TC7 1 8 0.125

TC8 1 8 0.125

Table 3. Outcomes of ant 1
Ant 1

TCi Pheromone[i] EV = [
coveredfaults[i]

total faults
]

∝

 [pheromone[i]] β EV*[pheromone[i]] β Probability[i]

Iteration 1

Initially Set MTS ={1} FTC ={2,4,7,9} TFC= 4

TC1 1.0 0.16 1.0 0.16 0.3265(AV)

TC2 0.6 0.04 0.6 0.04 0.049

TC3 0.6 0.16 0.6 0.16 0.1959(*)

TC4 0.6 0.09 0.6 0.09 0.1102

TC5 0.6 0.09 0.6 0.09 0.1102

TC6 0.6 0.04 0.6 0.04 0.049

TC7 0.6 0.09 0.6 0.09 0.1102

TC8 0.6 0.04 0.6 0.04 0.049

TC1 already visited marked as AV. So select next higher probability marked as (*). MTS={1,3} FTC={1,2,4,5,7,8,9} TFC = 7

Iteration 2

TC1 0.6 0.16 0.6 0.096 0.1132(AV)

TC2 0.36 0.04 0.36 0.0144 0.017

TC3 0.76 0.16 0.76 0.1216 0.1434(AV)

TC4 0.36 0.09 0.36 0.0324 0.0382

TC5 0.36 0.09 0.36 0.0324 0.0382

TC6 0.36 0.04 0.36 0.0144 0.017

TC7 0.36 0.09 0.36 0.0324 0.0382(*)

TC8 0.36 0.04 0.36 0.0144 0.017

MTS ={1,3,7} FTC ={1,2,3,4,5,6,7,8,9} TFC = 9

Iteration 3

TC1 0.36 0.16 0.36 0.0576 0.0529(AV)

TC2 0.216 0.04 0.216 0.0086 0.0079

TC3 0.456 0.16 0.456 0.073 0.067(AV)

TC4 0.216 0.09 0.216 0.0194 0.0178

TC5 0.216 0.09 0.216 0.0194 0.0178(*)

TC6 0.216 0.04 0.216 0.0086 0.0079

TC7 0.516 0.09 0.516 0.0464 0.0426(AV)

TC8 0.216 0.04 0.216 0.0086 0.0079

MTS ={1,3,7,5} CFT={1,2,3,4,5,6,7,8,9,10} FTC = 10 Ant 1 reached 10 faults type. So Ant 1 complete its process.

Table 4. Step by step execution of existing techniques using sample input fault matrix described in Table 1
Step no. Greedy Approach Additional Greedy Approach

1
MTS = {tc1}

FTC = {ft2, ft4,ft7,ft9}

MTS = {tc1}

FTC = {ft2, ft4, ft7, ft9}

2
MTS = { tc1 ,tc3}

FTC = {ft1, ft2,ft4, ft5,ft7,ft8,ft9}

MTS = {tc1, tc3}

FTC = {ft1, ft2, ft4, ft5, ft7, ft8, ft9}

3
MTS = { tc1, tc3, tc4}

FTC = {ft1, ft2, ft4, ft5, ft7, ft8, ft9}

MTS = {tc1, tc3, tc5}

FTC = {ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered

Needed Execution time is 0.021(ms)

4

MTS = { tc1, tc3, tc4, tc5}
FTC = { ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered
Needed Execution time is 0.038 (ms)

Not applicable

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

514

Table 5. Step by step execution of proposed FTCBACO technique using sample input fault matrix

described in Table 1

Ant no. Iteration FTCBACO
Total faults type

covered by ant

Minimized

test suite size

Execution

time(ms)

1

1
MTS = {tc1}

FTC = {ft2, ft4, ft7, ft9}

10 4 0.14

2
MTS = {tc1,tc3}

FTC = {ft1,ft2, ft4, ft5, ft7, ft8, ft9}

3
MTS = {tc1,tc3,tc7}

FTC = {ft1,ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9 }

4

MTS = {tc1, tc3, tc7, tc5}

FTC= { ft1,ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10 }

All faults type covered

2

1
MTS = {tc2}

FTC = {ft1, ft3}

10 4 0.016

2
MTS = {tc2, tc1}

FTC = { ft1, ft2, ft3, ft4,ft7, ft9}

3
MTS = {tc2, tc1,tc3}
FTC={ ft1, ft2, ft3, ft4, ft5, ft7, ft8, ft9}

4

MTS = {tc2, tc1, tc3, tc5}

FTC={ ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered

3

1
MTS = {tc3}

FTC = {ft1, ft5, ft7, ft8 }

10 3 0.016
2

MTS = {tc3, tc1}
FTC = {ft1, ft2, ft4, ft5, ft7, ft8, ft9}

3

MTS = {tc3, tc1, tc5}

FTC = { ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}
All faults type covered

4

1
MTS = {tc4}

FTC = {ft2, ft4, ft9}

10 4 0.031

2
MTS = {tc4, tc1}
FTC = {ft2, ft4, ft7, ft9}

3
MTS = {tc4 tc1, tc3}
FTC = {ft1, ft2, ft4, ft5, ft7, ft8, ft9}

4
MTS = {tc4, tc1, tc3, tc5}
FTC = { ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered

5

1
MTS = {tc5}
FTC = {ft3, ft6, ft10}

10 3 0.015
2

MTS = {tc5, tc1}

FTC = {ft2, ft3, ft4, ft6, ft7, ft9, ft10}

3

MTS = {tc5, tc1, tc3}

FTC={ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered

6

1
MTS = {tc6}

FTC = {ft1, ft7}

10 4 0.016

2
MTS = {tc6, tc1}

FTC = {ft1, ft2, ft4, ft7, ft9}

3
MTS = {tc6, tc1, tc3}

FTC = { ft1, ft2, ft4, ft5, ft7, ft8, ft9}

4
MTS = {tc6, tc1, tc3, tc5}
FTC = { ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}

All faults type covered

7

1
MTS = {tc7}
FTC = {ft3, ft6, ft8}

10 4 0.031

2
MTS = {tc7, tc1}

FTC = {ft2, ft3, ft4, ft6, ft7, ft8, ft9}

3
MTS = {tc7, tc1, tc3}
FTC = {ft1, ft2, ft3, ft4,ft5, ft6, ft7, ft8, ft9}

4

MTS = {tc7, tc1, tc3, tc5}

FTC = { ft1, ft2, ft3, ft4,ft5, ft6, ft7, ft8, ft9, ft10}
All faults type covered

8

1
MTS = { tc8}

FTC = {ft2, ft10}

10 4 0.016

2
MTS = {tc8, tc1}

FTC = {ft2, ft4, ft7, ft9, ft10}

3
MTS = {tc8, tc1, tc3}
FTC = {ft1, ft2, ft4, ft5, ft7, ft8, ft9, ft10}

4

MTS = {tc8, tc1, tc3, tc5}

FTC = { ft1, ft2, ft3, ft4, ft5, ft6, ft7, ft8, ft9, ft10}
All faults type covered

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

515

Table 4 shows that an existing Greedy approach needed 4 test cases and 0.038(ms) computational

time to cover all faults type and Additional greedy approach offered 3 test cases and 0.021(ms) to report all

faults type. But only 3 test cases and 0.015(ms) computational time are essential to cover all faults type

through proposed FTCBACO as shown in Table 5 and therefore FTCBACO is better than both existing

techniques. After the execution of both existing and proposed algorithms with test fault matrix, the function

factors are acquired in terms of number of faults type covered, execution time, minimized test suite size as

shown in Table 6. In both existing techniques, execution time considered as time taken for finding minimized

test suite. But in Proposed algorithm, each ant obtained execution time for finding minimized test suite size.

Among the execution time of all the ants, FTCBACO considered execution time for the best ant which has

generated minimum test suite size with minimum execution time. And also Table 6 shows percentage of test

suite reduction rate. Test suite reduction rate is computed using (4).

Test suite reduction rate(%) =
Total test suite size−optimal test suite size

Total test suite size
 ∗ 100 (4)

The results of Table 6 proved that proposed FTCBACO algorithm required minimum execution

time to produce maximum test suite reduction rate. Hence we conclude that proposed FTCBACO algorithm

outperforms both existing techniques in terms of execution time needed for finding reduced test suite and

percentage of test suite reduction rate.

Table 6. Execution results of three approaches on fault matrix test

Algorithm
Total faults

type assumed

Total fault

types covered

Preferred
test suite

size

Minimized
Test suite

size

Minimized test suite
Test suite
reduction

rate (%)

Execution

time (ms)

Greedy

Approach
10 10 8 4 MTS = { tc1, tc3, tc4, tc5} 50 0.038

Additional

Greedy
10 10 8 3 MTS = {tc1, tc3, tc5} 62.5 0.021

FTCBACO 10 10 8 3 MTS = {tc5,tc1,tc3} 62.5 0.015

4. EVALUATION OF RESULTS AND DISCUSSION

Numerous experiments have been conducted for determining the efficiency of the proposed

FTCBACO algorithm. In order to analyze the performance of function factors, both proposed and existing

algorithms have implemented in Java Language by means of similar experimental environment.

Fault metrics of various 10 subject programs (benchmark dataset) have retrieved from Software-artifact

Infrastructure Repository (SIR) as shown in Table 7 and used for conducting experiments. Table 7 shows

subject name, total number of mutated faults presented, number of faults type covered and test suite size of

each subjects. Also unique subject id have been assigned to each subject program version. In the experiment,

we used 2 independent variables and 3 dependent variables. Selection of algorithms (Greedy, Additional

greedy and FTCBACO) and 10 subject programs (flex v1, flex v2, grep v1, grep v3, grep v4, gzip v1,

gpiz v2, make v1, make v4, sed v2) are considered as 2 independent variables. Various combination of

independent variables have been used for conducting the computational model.Three dependent variables

(faults type coverage, optimized test suite size and execution time) are identified from the mixture of every

independent Fault type variable. Total number of test cases in the minimized test suite should be considered

as optimum test suite size. Proposed FTCBACO algorithm and Existing techniques have designed based on

stochastic nature. Hence, each selected algorithm have executed 10 times respectively for each subject

program to gather the outcomes in the similar environment. Table 8 shows the mean values of function

factors for every algorithm in regard to the subject programs as shown in Table 7.

Table 7. Selected subject programs and its associated attributes
Subject_id Subject name Total mutated faults Total faults type covered Test suite size

SC1 flex v1 19 16 42
SC2 flex v2 20 14 42

SC3 grep v1 18 3 199

SC4 grep v3 18 7 199
SC5 grep v4 12 3 199

SC6 gzip v1 16 6 214

SC7 gzip v2 7 3 214

SC8 make v1 19 19 250

SC9 make v4 5 5 250

SC10 sed v2 5 5 360

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

516

Table 8 Mean values of function factors

Algorithm
Function factors

Fault coverage Optimized test suite size Execution time (ms)

Greedy 10 26.93 0.1117
Additional Greedy 10 16.65 0.1315

FTCBACO 10 12.23 0.0848

From the outcomes stated in Table 8, we state that the proposed FTCBACO algorithm required

minimum mean value of execution time (0.0848 ms) and optimized test suite size (12.23). So, we conclude

that performance of proposed FTCBACO is better than both existing techniques.

4.1. Statistical investigations

Statistical investigations have conducted to obtain an accurate conclusion regarding the

efficiency of the proposed FTCBACO. Therefore 3 research questions and their related hypothesis have built

and shown in Table 9. H0 denotes assumption of null hypothesis whereas Ha indicates assumption of

alternative hypothesis.

Table 9. Assumption of hypothesis related with research problems

RQ1
H0: There is no significant variance among algorithms in the capability of fault type coverage

Ha : There is significant variance among algorithms in the capability of fault type coverage

RQ2
H0: There is no significant variance among algorithms in order to find optimized test suite size
Ha : There is significant variance among algorithms in order to find optimized test suite size

RQ3
H0: There is no significant variance among algorithms in the execution time to find optimized test suite

Ha: There is significant variance among algorithms in the execution time to find optimized test suite

Solution to RQ1:

Table 10 presents the mean values of faults type coverage for every algorithm with respect to

subject programs. An outcome shows that each algorithm has presented uniform result on fault type coverage

relating to subject programs. From the data shown in Table 10, we can state that all selected algorithm is able

to achieve 100% faults type coverage. So, each algorithm has equal mean value of faults type coverage in

regard to subject programs. Therefore, we agreed H0 and finally come to the statement that there is no

significant variance in the fault type coverage capability of each algorithm.

Table 10. Mean values of fault type coverage

Algorithm
Subject code

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Greedy 16 14 3 7 3 6 3 19 5 5

Additional Greedy 16 14 3 7 3 6 3 19 5 5

FTCBACO 16 14 3 7 3 6 3 19 5 5

Solution to RQ2:

Proposed FTCBACO algorithm and Existing techniques have designed based on stochastic nature.

Hence, each algorithm executed 10 times (total run =10) respectively for each subject program and collected

the optimized test suite size of each run for every algorithm. Mean value of optimized test suite size for every

algorithm is calculated in regard to subjects programs and are shown in Table 11. From the results illustrated

in Table 11, we proved that proposed FTCBACO algorithm required minimum mean value of test suite size

to cover all the faults type compared with other algorithms techniques. And from the results reported in Table

12, we concluded that proposed FTCBACO algorithm provided maximum test suite reduction rate compared

to other techniques. It is evident from the results of Table 11 and 12 we identified that there is a significant

variance among the algorithms in terms of optimized test suite size.

Figure 2 shows the performance analysis of mean values of optimum test suite size against various

subject programs using three methods specifically existing Greedy approach, Additional Greedy approach

and proposed FTCBACO Technique. As in Figure 2, the proposed FTCBACO Technique offers minimum

mean value of optimum test suite size for software testing as compared to an existing Greedy and Additional

Greedy approaches. So, the test suite reduction rate using proposed FTCBACO Technique is also higher.

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

517

Therefore, we discard null hypothesis H0 and agree Ha that there is a significant variance among the

algorithms to find the optimum test suite size.

Table 11. Mean values of optimized test suite size

Algorithm
Subject code

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Greedy 16.8 16.5 23.8 26 30.2 28.2 28.2 30.0 31.0 38.6
Additional Greedy 7.9 6.8 13.1 15.9 11.4 14.7 16.2 24 26.1 30.4

FTCBACO 4.8 5.1 9.9 11.9 9.7 11.6 13.1 18 18.1 20.1

Table 12. Percentage of test suite reduction rate

Algorithm
Subject code

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Greedy 60 60.71 88.04 86.93 84.82 86.82 86.82 87.88 87.60 89.28

Additional Greedy 81.19 83.81 93.42 92.01 94.27 93.13 92.43 90.00 89.56 91.56

FTCBACO 88.50 87.85 95.00 94.00 95.12 94.58 93.87 92.80 92.76 94.42

Figure 2 . Efficiency of mean values of optimum test Suite size against subject programs

Solution to RQ3:

Each algorithm executed 10 times (total run =10) respectively for each subject program and

collected the execution time of each run for every algorithm. Mean value of execution time for every

algorithm is calculated in regard to subjects programs. Table 13 shows the mean values of execution time for

every algorithm. From the results shown in Table 13, we proved that proposed FTCBACO algorithm

required minimum mean value of execution time to find optimized test suite size for covering all the faults

type compared with other algorithms techniques. It is evident from the results of Table 13 we identified that

there is a significant variance among the algorithms in terms of execution time to find optimized test suite.

Figure 3 shows the performance analysis of mean values of execution time against various subject

programs using three methods specifically existing Greedy approach, Additional Greedy approach and

proposed FTCBACO Technique. As shown in Figure 3, the proposed FTCBACO Technique offers minimum

mean value of execution time as compared to an existing Greedy and Additional Greedy approaches. Hence,

we discard null hypothesis H0 and agree Ha that there is a significant variance among the algorithms in terms

of execution time to find the optimum test suite.

0

5

10

15

20

25

30

35

40

45

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Subject code

o
p

ti
m

iz
ed

 t
es

t
su

it
e

si
ze

Greedy Additional Greedy FTCBACO

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 9, No. 3, September 2020: 507 – 519

518

Table 13. Mean values of execution time

Algorithm
Subject code

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Greedy 0.086 0.081 0.093 0.089 0.096 0.114 0.101 0.116 0.109 0.232
Additional Greedy 0.078 0.077 0.086 0.091 0.099 0.134 0.178 0.107 0.201 0.264

FTCBACO 0.037 0.042 0.057 0.073 0.068 0.098 0.099 0.095 0.100 0.179

Figure 3. Efficiency of mean values of execution time against subject programs

5. CONCLUSION

Ant Colony Optimization algorithm is an extraordinary technique to find the best test cases in

a test suite. In this investigation work, proposed FTCBACO algorithm is designed, implemented using JAVA

language in an efficient manner and also the results of proposed algorithm is compared with an existing

Greedy approach and Additional Greedy approach. In existing technique, additional execution time needed to

optimize the test suite and also it produced least test suite reduction rate. But, Proposed FTCBACO

Algorithm optimizes the test suite highly. From the comparative result analysis of existing and proposed

techniques, we stated that there is no difference among algorithms under study with respect to fault type

coverage capability. But proposed algorithm required minimum execution time to produce maximum test

suite reduction rate. In future, my research work would consider this kind of experimentations with

complicated programs on huger test suite sizes and complex fault intensities.

REFERENCES
[1] A. C. Kumari, K. Srinivas and M. P. Gupta, "Multi-objective test suite minimisation using Quantum-inspired

Multi-objective Differential Evolution Algorithm," 2012 IEEE International Conference on Computational

Intelligence and Computing Research, Coimbatore, 2012, pp. 1-7, doi: 10.1109/ICCIC.2012.6510272.

[2] Yoo S, Harman M, “Using hybrid algorithm for pareto efficient multi-objective test suite minimization”, Journal of

Systems and Software, Vol.83, No.4, pp.689-701, 2010.

[3] Li, Zheng, Mark Harman and Robert Mark Hierons,” Search Algorithms for Regression Test Case Prioritization”,

IEEE Transactions on Software Engineering, Vol.33, No.4, pp. 225-237, 2007.

[4] W. E. Wong, J. R. Horgan, S. London and H. Agrawal, "A study of effective regression testing in practice,"

Proceeding The Eighth International Symposium on Software Reliability Engineering, USA, 1997, pp.264-274.

[5] T.Y. Chen, M.F. Lau, “A new heuristic for test suite reduction”, Information and Software Technology, Vol.40,

No.5-6, 1998, pp: 347-354.

[6] Khalilian A., Parsa S., “Bi-criteria Test Suite Reduction by Cluster Analysis of Execution Profiles”, In: Szmuc T.,

Szpyrka M., Zendulka J. (eds) Advances in Software Engineering Techniques. CEE-SET 2009. Lecture Notes in

Computer Science, Vol 7054, pp. 243-256, 2012.

[7] Sriraman Tallam, Neelam Gupta, “A Concept Analysis Inspired Greedy Algorithm for Test Suite minimization”,

ACM SIGSOFT Software Engineering Notes, Vol.31, No.1, pp. 35-42, 2006.

[8] Yoo S, Harman M, “Using hybrid algorithm for pareto efficient multi-objective test suite minimization”, Journal of

Systems and Software, Vol.83, No.4, pp.689-701, 2010.

0

0,05

0,1

0,15

0,2

0,25

0,3

SC1 SC2 SC3 SC4 SC5 SC6 SC7 SC8 SC9 SC10

Subject code

m
e

an
 v

al
u

e
s

o
f

e
xe

cu
ti

o
n

 t
im

e

Greedy Additional Greedy FTCBACO

Int J Artif Intell ISSN: 2252-8938 

Fault-type coverage based ant colony optimization algorithm for… (M.Bharathi)

519

[9] Zhenyu Chen, Xiaofang Zhang, Baowen Xu, “A degraded ILP approach for test suite reduction”, Proceedings of

the Twentieth International Conference on Software Engineering & Knowledge Engineering (SEKE'2008), San

Francisco, CA, USA, July 1-3, pp. 494-499, 2008.

[10] P. Harris and N. Raju, “A greedy approach for coverage-based Test Suite reduction”, The International Arab

Journal of Information Technology, Vol. 12, No.1, pp. 17-23.

[11] T.Y. Chen, M.F. Lau, “On the divide-and-conquer approach towards test suite reduction”, Information Sciences—

Informatics and Computer Science, Intelligent Systems, Applications: An International Journal, Vol. 152, No.1, pp.

89-119, 2003.

[12] B.Galeebathullah, C.P.Indumath, “A Novel Approach for Controlling a Size of a Test Suite with Simple Technique,

International Journal on Computer Science and Engineering, Vol. 02, No. 03, pp. 614-618, 2010.

[13] L. You and Y. Lu, “A genetic algorithm for the time-aware regression testing reduction problem," 2012 8th

International Conference on Natural Computation, Chongqing, pp. 596-599, 2012.

[14] Chen J, Zhu L, Chen TY et al , “Test case prioritization for object-oriented software: an adaptive random sequence

approach based on clustering”, Journal of Systems and Software, Vol.135, pp:107-125, 2018.

[15] S. Khan, A. Nadeem and A. Awais, “TestFilter: A Statement-Coverage Based Test Case Reduction Technique,”

2006 IEEE International Multitopic Conference, Islamabad, pp. 275-280, 2006.

[16] L. Zhao and W. Luo, "An Algorithm for Reducing Test Suite Based on Interface Parameters," 2010 International

Conference on Computational Intelligence and Software Engineering, Wuhan, pp. 1-4, 2010.

[17] W. Miller and D. L. Spooner, "Automatic Generation of Floating-Point Test Data," in IEEE Transactions on

Software Engineering, Vol. SE-2, No. 3, 1976, pp. 223-226, doi: 10.1109/TSE.1976.233818.

[18] Harrold MJ, Gupta R, Soffa ML,”A methodology for controlling the size of a test suite”, ACM Transactions on

Software Engineering and Methodology (TOSEM), Vol.2, No.3, pp. 270-285, 1993.

[19] Rothermel G, Harrold MJ,” A safe, efficient regression test selection technique”, ACM Transactions on Software

Engineering and Methodology (TOSEM), Vol.6, No.2, pp.173-210, 1997.

[20] S. Xu, H. Miao and H. Gao, "Test Suite Reduction Using Weighted Set Covering Techniques," 2012 13th ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing, Kyoto, pp. 307-312, 2012, doi: 10.1109/SNPD.2012.87.

[21] M. J. Harrold and M. L. Souffa, “An incremental approach to unit testing during maintenance,” Proceedings.

Conference on Software Maintenance. Scottsdale, AZ, USA, pp. 362-367, 1988.

[22] Jun-Wei Lin, Chin-Yu Huang, “Analysis of test suite reduction with enhanced tie-breaking techniques”,

Information and Software Technology, Vol.51, No.4, pp.679-690, 2009.

[23] D. Jeffrey and Neelam Gupta, "Test suite reduction with selective redundancy," 21st IEEE International

Conference on Software Maintenance (ICSM'05), Budapest, Hungary, 2005, pp. 549-558.

[24] BoussaïD, I., Lepagnot, J., & Siarry, P., “A survey on optimization metaheuristics”, Information sciences, Vol. 237,

pp. 82-117, 2013.

[25] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey on new generation metaheuristic algorithms,”

Computers & Industrial Engineering, Vol. 137, p. 106040, 2019.

[26] Ilango, S.S., Vimal, S., Kaliappan, M. et al., “Optimization using Artificial Bee Colony based clustering approach

for big data”, Cluster Computing, pp. 1-9, 2018.

[27] S Vimal, M Khari, RG Crespo, L.Kalaivani, Nilanjan Dey ,M. Kaliappan, “Energy enhancement using

Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks”,

Computer Communications, Vol 154, No.15, pp. 481-490, 2020.

