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 A huge amount of data is generated every minute for social networking and 

content sharing via Social media sites that can be in a form of structured, 

unstructured or semi-structured data. One of the largest used social media 

sites is Twitter, where each and every day millions of data generated in the 

form of unstructured tweets. Tweets or opinions of the people can be used to 

extract sentiments of the people. Sentiment analysis is beneficial for 

organizations to improve their products and make required changes on 

demand to increase their profit. In this paper, three machine learning 

algorithms Support Vector Machine (SVM), Decision Trees (DT), and Naive 

Bayes (NB) for classifying sentiments of twitters data. The purpose of this 

research is to compare the outcomes of these algorithms to identify best 

machine learning method which gives most accurate and efficient results for 

classifying twitter data. Our experimental result shows that same 

preprocessing methods on a different dataset affect similarly the classifiers 

performance. After analyzing the results it is observed that SVM provides 

64.96%, 71.26% and 91.25% precision which is better than other two 

algorithms. Also, overall Recall and F-measure rate of SVM is greater than 

NB and DT for three datasets. However, it is important to further study 

current available preprocessing techniques that help us to improve results of 

various classifiers. 
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1. INTRODUCTION 

Twitter, the largest used social media site, has now become a very popular trend over the world  

for people who want to share an opinion about their social, political and economic interest. User opinion can 

be related to various aspects like gadgets, politics, products, services etc. that can directly convey the 

viewpoint of the user and helps in making predictions of a consumer market. Such kind of opinions or 

sentiments of huge people around the world is capable of performing analysis and future predictions. 

Usually, tweets contain incomplete, poorly structured, noisy, irregular expressions, ill-formed words and 

non-dictionary terms [1]. Also, messages or tweets are short and have 140 lengths of limitations.  

So it requires preprocessing done on our collected datasets to reduce noise in tweets by removing stop-words, 

removing URLs, replacing negations etc [2]. Sentiment dictionary contains all forms of a word with each 

word’s polarity strength that can save more time. 

Sentiment analysis (SA) is a process of detecting the contextual polarity of text in terms of positive, 

negative or neutral [3-4]. Organizations across the world widely adopted the ability to extract insights from 
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                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 9, No. 3, September 2020:  473 – 479 

474 

these sentiments of various social media sites. It helps organizations to make predictions of a certain product, 

reviews, and other decision-making processes that will ultimately increase the profit. So ultimately SA is 

beneficial for organizations and individuals to improve their profit as per user or market demand. SA also 

known as opinion mining, is a most popular trend in today’s world which is the process of identifying and 

categorizing opinions on the web, determines the writer attitude towards a particular topic or product [5].  

It tells about what author wants to communicate and defines his state of mind in terms of emotions, feelings, 

and subjectivities about an event or topic. It involved with Natural Language Processing (NLP) process 

which is the interaction between the computers and the human/natural language [6-8]. NLP technique 

facilitates easy pre-processing of text i.e. NLP cleans and normalizes text for sentiment analysis [8]. Analysis 

of sentiments can be based on single phrase or sentence, where the sentiment of the whole sentence is 

calculated. It contains following steps [9-10]: 

 Tweets posted on twitter are freely available through a set of APIs of twitter. At first, we collected a 

corpus of positive, negative, neutral and irrelevant tweets from twitter API. 

 Then pre-processing done by removing stop words, negations, URL, full stop, commas etc. to reduce 

noise from tweets and to prepare our data for sentiment classification. 

 Then, we apply machine learning algorithms to our dataset and compare their results. 

 Results help us to identify which machine learning algorithm is best suited for classification of SA. 

Applications of SA are broad and powerful that provide us easier and quicker social media 

monitoring like in: Consumer market for product reviews; Marketing to know consumer trends and attitude; 

Social media to find general user opinion about current topics; Movie to know whether released movie is 

liked or not, etc [11]. As users on social media sites are rapidly growing and producing a large amount of 

data every day, so there is a need to classify and analyze these messages to find out its polarity about some 

topic or event [12-13]. Emotions and opinions can be expressed in many ways. Classifying sentiments that 

have few relative classes such as “positive”, ”negative”, or ”neutral”, is the most complicated task.  

SA is a popular topic and lots of research has been going on from a long time. Many researchers  

used supervised learning algorithms also with various automatic classifiers for classification of the  

polarity of sentiments [14]. The problem is in assigning the strongest polarity of sentiments and in finding the 

best algorithm which provides most accurate results.  

In this paper we use three machine learning algorithms Support Vector Machine (SVM),  

Decision Tree (DT) [15] and Naïve Bayes Classifier (NB) sentiment classifier for classifying our data also 

helps in evaluating the performance of our training dataset. We focused on comparing outcomes of these 

algorithms to identify best machine learning method which gives most accurate and efficient results for 

classifying twitter data. 

 

 

2. RESEARCH METHOD 

This paper presents a model presented in Figure 1, which consists of three layers for analyzing 

sentiments. First Data Collection layer, used to collect tweets from twitter APIs; Second Data preprocessing 

layer with a selection of attributes which is used to reduce noise level from tweets, and last SA or Data 

Mining layer used to apply machine learning algorithm [2].  

 

 

 
 

Figure 1. General model of sentiment analysis 
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2.1.  Data collection  
At first, we obtain training data of twitter sentiments from 2- different twitter API.  

First, dataset taken from “Twitter Sentiment System for SemEval 2016”, (denoted by “SE-T”) contains 

approx 13541 tweets with 2-attributes namely: class and content [16]. Second dataset is taken  

from “Sanders Analytics twitter sentiment corpus” (denoted by TS), which contains 479 instances with  

class and text two attributes [17] as presented in Table 1. However, we also collect our own twitter data  

in Malay language, which is spoken in Malaysia, Singapore, Indonesia, and a few other countries  

and denoted as “OC”. This language is actually the fourth-most popular language on Twitter, accounting for 

8 percent of all Tweets are about airlines [18]. 

 

 

Table 1. Twitter data collection 
Dataset Total Tweets Positive Neutral Negative 

E-Twitter (SE-T)[16] 13541 5232 6242 2067 

Twitter Sanders (TS)[17] 479 163 - 316 

Own Collection (OC) 6459 3323 1190 1946 

 

 

2.2.  Featurization 

Features in machine learning is basically numerical attributes from which anyone can  

perform some mathematical operation such as matrix factorization, dot product etc. But there are various 

scenario when dataset does not contain numerical attribute for example- sentimental analysis of 

Twitter/Facebook user, Amazon customer review, IMDB/Netflix movie recommendation. In all the  

above cases dataset contain numerical value, string value, character value, categorical value, connection  

(one user connected to another user). Conversion of these types of feature into numerical feature is  

called futurization. 

 

2.2.1. Text processing setup 

For the purpose of getting accurate results by classifiers we have to make sure that these datasets 

processed efficiently by removing unrelated contents and thus related contents are accurately extracted.  

As most researchers consider that URL doesn’t have any information regarding sentiments, so by removing 

short URLs from tweet contents can be refined. People often use emotional words that contain repeated 

letters to express their sentiments which are very common trends like “coooool”. Also, numbers are not used 

for analyzing sentiments so tweet contents can be refined by removing them [1]. The polarity of the word 

will be changed when they are preceded by a negation or negation can change/reverse the meaning of words.  

By checking negations, Removing of URLs, emotions, numbers and Repeated Word; noise in tweets  

can be reduced. This filter provides us options to do configuration with our dataset which includes  

following steps [19-20]: 

 Stemming: It is used to remove suffix from the word according to some grammatical rules.  

Here we apply most popular Snowball Stemming library. 

 Stop Word Extractor: Some words that don’t have polarity so they don’t need to be further analyzed 

like: able, are, both, which, has, become, after etc. So after elimination of these words, our result will 

not be affected. We used Rainbow list for our experiment. 

 Tokenization: It is used to split a document into a word or terms and make a word vector. Here we used 

NGramTokenizer.  

 Feature Selection: This process decreases the number of attributes into a better subset which can 

increase accuracy also it brings a reduction in training time. It is done by using Filters and Wrappers. 

 

2.3.  Sentiment classifier 

To classify sentiments machine learning (ML) algorithms are used i.e. a branch of Artificial 

Intelligence (AI) concerned with the study of classification and pattern analysis, allows the computer to  

learn behaviors of empirical data taken from sensors or database [21]. ML algorithm allows us to  

automatically recognize complex patterns and make intelligent decisions based on data. In this paper, we 

used various machine learning algorithms such as Naive Bayes (NB), Support Vector Machine (SVM) [22],  

and Decision Tree (DT) [15]. 

 

2.3.1. Naïve bayes classifier 

It refers to counting the frequency of words that are related to the sentiments in the message.  

As Bayes theorem based on probabilistic classifier so it allows us to capture uncertainty about the model to 

determine the probability of the outcome. Explicit probabilities can be calculated by it for the tested dataset 
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and it helps to reduce noise robustly. It is numerical based approach with easy, fast and high  

accuracy features. 

 

2.3.2. Support vector machine (SVM) 

It yields more accurate results when it is used for classifying text. The basic idea behind it is to find 

the hyperplane (or vector w), which is responsible for separating one class document vector from the vector 

in other class [7]. It is successfully employed in text classification and various other sequence processing 

applications as it is a type of linear classifier.  

 

2.3.3. Decision tree (DT) 

It is a flowchart used to output labels for certain features, act as input values. It categories a  

document as by, starting from the tree root (labeled as features), followed downward by branches  

(labeled as features weight) and last reached a leaf node (labeled by categories). 

 

2.4.  Experimental setup 

We use Waikato Environment for Knowledge Analysis (WEKA) to implement data  

mining algorithms for preprocessing, classification, clustering, and analysis of results [23-24].  

This environment includes java libraries that implement algorithms and provide the best environment to 

researchers for classifying datasets. We apply “StringToWordVector” filter and done lots of preprocessing 

with our datasets [25-26]. Using n-gram tokenizer option and attribute selection method different number of 

attributes are created. With attributes selection method 50 attributes are taken for testing out of 1613 words 

from first dataset SE-T [16] and 105 attributes out of 2065 words are taken from second dataset TS [17].  

This method increases accuracy rate of our training dataset also it brings a reduction in execution time. 

Following Table 2 shows reduction in size of file after preprocessing: 

 

 

Table 2. Data collection criteria 
Dataset E-Twitter (SE-T) [15] Twitter Sanders (TS) [16] Own Collection (OC) 

Size of file before preprocessing 1.7 MB 93.7 KB 1.5 MB 

Size of file after preprocessing (feature selection) 181 KB 9.9 KB 150 KB 

 

 

To evaluate performance we apply 10-fold cross validation technique which splits the original set 

into training sample to train the model and a test set to evaluate results. For computing sentiments quickly of 

tweets without compromising accuracy, an approach known as “Information Retrieval Metrics” can be used 

to evaluate experimental results in terms of precision, recall, f-measure, and accuracy with the use of 

following formulas [9, 27]: 

 

Precision = TP/ (TP+ FP) (1) 

 

Recal = TP/ (TP+FP) (2) 

 

F-measure = 2* Precision* Recall/ (Precision+ Recall) (3) 

 

Accuracy = TP+TN/ (TP+ TN+ FP+ FN) (4) 

 

Here (TP= True Positive; TN= True Negative; FP=False Positive; FN= False Negative) 

 

 

3. RESULTS AND ANALYSIS 

We observed that our classification results improved in terms of time and accuracy using processed 

and small features data than simple datasets. For example in first SE-T dataset, time taken to build a model 

for NB algorithm takes 10.56 seconds, accuracy 53.73% and after processing time taken to test model on 

training data is reduced at 0.35 seconds only, accuracy improved by 57.46%. Table 3 demonstrates the 

accuracy of classifiers on three datasets after applying various preprocess methods. 
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Table 3. Accuracy criteria for datasets 
Evaluation Criteria Dataset SVM DT NB 

Correctly classified instances SE-T 8335 8118 7776 

TS 419 412 355 

OC 5334 5035 5324 

Incorrectly classified instances SE-T 5206 5423 5765 

TS 60 67 124 

OC 1125 1424 1135 

Accuracy (%) SE-T 61.55 59.95 57.42 

TS 87.47 86.01 74.11 

OC 82.58 77.95 82.43 

Error SE-T 0.38 0.40 0.42 

TS 0.13 0.14 0.26 

OC 0.17 0.22 0.18 

 

 

Following performance measures are reported in Table 4 by our experimental result using three 

dataset, after conducting 10-fold cross validation technique. 

 

 

Table 4. Performance measures of classifiers 
Classifier Dataset TP Rate FP Rate Precision Recall F-Measure Polarity 

SVM SE-T 0.352 0.036 0.859 0.352 0.500 positive 

TS 0.906 0.562 0.580 0.906 0.707 neutral 
OC 0.644 0.006 0.981 0.644 0.778 positive 

DT SE-T 0.34 0.048 0.821 0.349 0.489 positive 

TS 0.284 0.054 0.486 0.284 0.359 negative 

OC 0.994 0.399 0.828 0.994 0.904 negative 

NB SE-T 0.780 0.479 0.582 0.780 0.667 neutral 

TS 0.252 0.006 0.953 0.252 0.398 positive 

OC 0.437 0.186 0.597 0.437 0.505 positive 

 

 

The number of correctly classified instances and accuracy rate is greater for three datasets with 

SVM algorithm. In our experiment obtained accuracy using SVM algorithm is 61.55%, 87.47% and 82.58% 

respectively (with 50 feature SE-T, 105 feature TS datasets and 100 feature of OC datasets) which is greater 

than other two algorithms. Our experimental result shows that same preprocessing methods on a different 

dataset affect similarly the classifiers performance. After analyzing results of Table 4 it is observed that SVM 

provides 64.96%, 71.26% and 91.25% overall precision which is better than other two algorithms.  

Also, overall Recall and F-measure rate of SVM is greater than NB and DT for three datasets. Furthermore, 

time taken to build a model is greatly reduced by applying feature selection method. Time taken to build 

model in first SE-T datasets is 0.45, 29.43, 4.47 seconds respectively with NB, SVM, and DT algorithm;  

in second TS dataset, it is 0.01, 0.06, 0.01 seconds with NB, SVM and DT algorithms respectively. 

 

 

4. CONCLUSION  

In this paper, we discuss sentiment analysis which can tell us the thought of writers about the 

particular entity. These days, it becomes a routine task to find people sentiments about a real world entity 

from social media sites like Twitter, face book or blogs etc. To efficiently analyze this large amount of 

datasets it is essential to accurately classify it. In this paper, we have presented a methodology of text mining 

using Weka tool for classifying sentiments of twitter. We use three machine learning algorithms SVM, DT, 

and NB for classifying sentiments of twitters data. We conduct an experiment on three twitter’s datasets to 

verify the effectiveness of pre-processing. Our experimental results indicate that by removing unwanted 

words and selecting features in the preliminary phase of preprocessing, time to build model is reduced and 

also it provides more accurate results in applied algorithms. The result may be affected by the choice of 

features for training and choice of algorithm for sentiment classification. The performance of SVM, DT, and 

NB algorithms improve on datasets after removing unwanted words. Therefore, removing unwanted words is 

useful to improve the performance of sentiment classification. We discuss the comparative analysis of three 

algorithms and calculate overall performance measures in terms of precision, recall, and f-measure. Our 

experimental results indicate that SVM provides more accurate results than other algorithms. However, it is 

important to further study current available preprocessing techniques that help us to improve results of 

various classifiers. A method should be found to automatic incorporate feature selection at time of model 

building according to any language. 
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