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 Rainfall is important in predicting weather forecast particularly to the 

agriculture sector and also in environment which gives great contribution 
towards the economy of the nation. Thus, it is important for the hydrologists 
to forecast daily rainfall in order to help the other people in the agriculture 
sector to proceed with their harvesting schedules accordingly and to make 
sure the results of their crops would be satisfying. This study is set to forecast 
the daily rainfall future value using ARIMA model and Artificial Neural 
Network (ANN) model. Both method is evaluated by using Mean Absolute 
Error (MAE), Mean Forecast Error (MFE), Root Mean Squared Error 

(RMSE) and coefficient of determination (R ). The results showed that 

ANN model has outperformed results than ARIMA model. The results also 

showed ANN has under-forecast the daily rainfall data by 2.21% compare to 
ARIMA with over-forecast of -3.34%. From this study, it shows that the 
ANN (6,4,1) model produces better results of MAE (8.4208), MFE (2.2188), 

RMSE (34.6740) and R (0.9432) compared to ARIMA model. This has 

proved that ANN model has outperformed ARIMA model in predicting daily 
rainfall values. 
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1. INTRODUCTION 

Back in 2017, half of Pulau Pinang had submerged with floodwaters particularly in island as well  

as in mainland. It had caused a lot of damages and fatal in some areas. It is needed to find a suitable method 

that can predict long term prediction of rainfall. From finding a suitable method will be able to assist the 

authorities or certain parties to be well-prepared and make plans to prevent these water-related problems 
from happening. 

Other than that, rainfall forecasting is very important in agriculture fields which can also help in 

decision making and performing strategic planning. The ability to predict and forecast rainfall quantitatively 

can help crop planting decisions, reservoir water resource allocation, traffic control, the operation of sewer 

systems and confronting water-related problems such as flood and drought [1]. 

Previous researchers have shown an increased interest in model development of time series in  

using rainfall data. There were several attempts in forecasting rainfall data using various techniques and 

methods in which can produce a well development model. Forecasting method has become very popular 
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among researchers due to the development of the data collection tools, computation methods and computer 

software to perform the analysis. There are several methods can be used to perform the time series 

forecasting analysis which are Multiple Linear Regression, Genetic Algorithm, Support Vector Machine 

(SVM), and Fuzzy Logic [2-3]. 

Many researchers used ANN as the basic idea of model combination in forecasting rainfall models 

to capture different patterns of the data. The parallel distributed processing architecture of ANN has proved 

to be a very powerful computational tool which is now being used in several fields to model the dynamic 

processes successfully including the rainfall [4-5]. However, a major problem with this kind of application is 

that many researchers have tried to compare the performance of the ARIMA and ANN models, but their 

results were different from each other. 
An extensive comparative study between ARIMA and ANN model were carried out by many past 

researchers in order to investigate the most suitable models that can be used to forecast rainfall data.  

ANN is a non-linear model which have been widely used for resolving forecasting problem as  

identified by [6-11]. Previous researchers such as in [12-13] had performed a comparative analysis between 

ARIMA and ANN model to determine the appropriate models for rainfall forecasting. They conclude that 

ANN method was appropriate in forecasting rainfall which outperforms ARIMA methods. Similarly, [14] 

also found that ANN can outperforms the ARIMA models. They confirmed that ANN methods are capable in 

modelling the complex Rainfall-runoff relationship. 

Artificial Neural Networks were widely used in many different fields such as digital image [15],  

fault detection [16], gold price forecasting [17], healthcare [18] and many more. For an instance, [19] used 

ANN to forecast daily rainfall on Turkey to observe wavelet of the ANN model. As a result, a close 
estimation for daily rainfall peaks was observed. Similarly, a study conducted by [20] presented a successful 

integration of wavelet and ANN for monthly rainfall predictions in India. Furthermore, [21] used Back-

Propagation (BP) of ANN to model an hourly rainfall runoff. The results show that BP of ANN can perform 

satisfactorily and proved to be superior model which presented an acceptable ability to find the relationship 

between rainfall and runoff using only rainfall data and runoff data. 

Studies by [22-23] examined the forecasting models from different techniques to make a comparison 

in identifying the best model for prediction of rainfall. The author found out that ANN approach is better than 

any models as it can analyses a non-linear behaviour pattern of rainfall. Other than that, according to [24-25] 

who had carried out three rainfall forecasting models based on a monthly data basis where he used ARIMA, 

ANN and MLR techniques to analyses his research. The results that he obtained was the application of neural 

network model were more capable of forecasting an accurate result compared to the other two models. 

A study from [26] proposed a dynamic recurrent time-delay neural network for monthly  
rainfall forecast in Queensland, Australia. The network prototype models have a lower error when compared 

with the forecasts generated by the standard models used by the Australian Bureau of Meteorology. 

Moreover, they carried out three rainfall forecasting models that were developed based on ARIMA,  

ANN and multiple linear regression. The rainfall was estimated based on a monthly basis. They observe that 

the multilayer feed forward Back-Propagation (BP) neural network model forecast was better than the other 

two models. 

The aim of this study is to compare which method can provide more accurate forecasting results for 

daily rainfall data. The data are analyzed by using two methods which are ARIMA and ANN methods.  

The models obtained from each method will be evaluated and compared based on the forecasting 

performances measurement of Mean Absolute Error, Mean Forecast Error, Root Mean Square Error and 

coefficient of determination. The models that provides a high accuracy will be chosen as the best model to 
forecast daily rainfall. 

 

 

2. RESEARCH METHOD 

There are several methods that can be used to forecast rainfall data. In this study, two methods were 

applied to forecast rainfall data which are ARIMA model and ANN model. Firstly, the data need to 

undergoes data pre-processing before proceeding with any time series method. These techniques are involved 

with data normalization, data lagging and data splitting. 

Data normalization is one of methods used in data pre-processing to obtain the precision  

of the forecast of the model. The range of data used in this method were between [0,1]. The purpose to use 

this normalization range is because sigmoid (logistic) activation function was used in this study.  

Next, for data lagging is where it involves with layers of nodes which consist of input nodes, hidden layers 
and output nodes. In this research, the input variables are constructed through trial and error method. 

The data are need to be splitting into training and testing set. In data splitting, training set  

will have more allocation than testing set with a proportion of 90% versus 10%, 80% versus 20% or 70% 
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versus 30% [27]. Throughout this study, the data will be splitted into 80% and 20% which consists of 876 

training data and 220 testing data. Other than that, model assumptions are also being applied in the 

preliminary test to check the stationarity and normality of the data for forecasting purposes.  

 

2.1.  Study area 

For this analysis, daily rainfall data from station 5204048, Simpang Ampat, Pulau Pinang as a case 

study. The data was taken for 3 years which was from January 2016 until December 2018. The data consists 

of information on daily totals of rainfall (in mm), minimum, maximum and total rainfall per month as well as 
annual rainfall. The daily totals of rainfall were used as the variables for this research. After that, the data 

undergoes data normalizing, lagging and splitting process. Figure 1 shows the map of the study area.  

 

 

 
 

Figure 1. Map of the study area 

 

2.2.  ARIMA model 

ARIMA model who was introduced by Box & Jenkins is one of the most popular forecasting 

methods in research and practice. Generally, ARIMA model is referred to as an ARIMA   

model where p is the order of the AR component, d is the degree of the number of times the series  

has been differencing and q is the order of the MA component which are non-negative integers [28].  
These Box-Jenkins procedures were involved with model identification, parameter estimation and model 

diagnostic checking [29]. 

The first step in model identification are to determine the time series is stationary or not stationary. 

If the data is not stationary, a non-seasonal differencing can be applied to the data to make it stationary.  

After that, the models can be identified according to the guideline of the autocorrelations functions (ACF) 

plot and partial autocorrelations function (PACF) plot. The guideline for the model identification are  

shown in Table 1.  

 

 

Table 1. Guideline for ARIMA model identification 
ACF PACF Model 

Dies down Cuts off after lag p AR(p) 

Cuts off after lag q Dies down MA(q) 

Dies down Dies down ARMA(p,q) 

Cuts off after lag q Cuts off after lag p AR(p) or MA(q) 

 
 

Next, after the models have been identified, the estimation of the constant and coefficients of the 

equation must be obtained. For model estimation, we need to estimate the parameter for a tentative model 

( , , )p d q
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that has been selected. Parameters that are judged significantly different from zero are retained in the fitted 

model while parameters that are not significant are dropped from the model. 

Last but least, the adequacy of the model must be check in model diagnostic checking step.  

Box-Ljung test is used for testing the lack of fit of a time series model and residual of the time series are 

correlated or uncorrelated after fitting an ARIMA model to the data. The model with the smallest p-value of 

the estimated parameter value and the highest p-value of the Box-Ljung test was chosen. Other than that,  

the model is also being selected using the Akaike Information Criterion (AIC) criteria. The model with the 

smallest AIC value will be chosen which shows an adequate model.  

 

2.3.  ANN model 
ANN is one of the other methods that can be applied in time series analysis which is widely  

used by the researchers. There are several steps that are required in order to successfully forecast the neural 

networks model. The steps are network architecture, learning algorithm and the activation functions.  

Data normalization are often performed before executing with the ANN model in training process.  

The input data need to be normalized according to the activation function used. It can help to minimize the 

error of the model. 

In this study, MLP structure consists of three layers which are input layer, hidden layer and  

output layer. A total of 35 MLP network models were developed using daily rainfall data. For input nodes,  

it is determined according to data lagging technique. The application of using data lagging technique was to 

evaluate the forecasting performance of the model in details and the capability of the models. The generated 

lagging observations were obtained from trial and error of input variables. The training number of hidden 
layer nodes used in this modelling are from 2 to 10 which is based on previous researcher’s paper and also 

through trial and error. Furthermore, there is only one node used for output layer. 

In modelling of ANN model for daily rainfall data, the network that applied was MLP which 

contains input, hidden and output layer. The models were trained based on learning method which is the 

gradient descent back-propagation algorithm. This algorithm consists of two parameters which are learning 

rate (lr) and momentum coefficient (mc). The parameters were determine based on previous researcher’s 

paper and through trial and error method. The neural network model was trained with lr of 0.3, and mc 

parameters of 0.2 and number of training epochs was 1000. 

For the activation function, two activation function were needed to link the neurons. For this study, 

Sigmoid (logistic) activation function was used for the hidden layer. This activation function keeps the range 

for the hidden layers to be within 0 to 1. Next, linear activation function was used at the output layer as there 

is only one result that is generated at the output layer, so the used of linear function is acceptable. Both of the 
equation are as follows: 

 

 (1) 

 

 (2) 
 

where x is the input value. 

 

2.4.  Forecasting performance measurement 

The performances of the models are evaluated by calculating difference between the observed 

rainfall data and the model generated rainfall data. According to [30-32], there are several performance 

evaluation methods which could be used for hydrological forecasting model. For this study, the forecasting 

performance is evaluated by using Mean Absolute Error (MAE), Mean Forecast Error (MFE), Root Mean 

Square Error (RMSE) and coefficient of determination (R ). The forecasting model that provides  

the smallest value of MAE, MFE and RMSE were appointed as the best model for forecasting. In addition, 

for the value for R which are between 0 and 1 were chosen which shows how well the data can fit  
the model. The formula is shown below:  
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RMSE  (4) 

 

MFE  (5) 

 

R  (6) 

 

R  (7) 

 

where 𝑦𝑡  is the observed value at period t; 𝑦̂𝑡 is predicted value at period t; 𝑛 is the number of periods used in 

calculation; is the correlation coefficient; is the coefficient of determination;  is the number of pairs 

of data; is the observed value of rainfall data; is the predicted value of rainfall data.  

 

 

3. RESULTS AND DISCUSSION  

The daily rainfall data sets were successfully forecasted using both ARIMA and ANN models. 

ARIMA (3,1,1) have the significant p-value for each of the parameters which is less than the significant level 

of = 0.05. Moreover, the smallest AIC value and largest Box-Ljung test are being selected with the value 

of 11060.89 and 0.2313 as the best model to forecast daily rainfall in Simpang Ampat, Pulau Pinang in 

ARIMA method. 

Furthermore, ANN model is capable of predicting and efficiently as this method were involve in a 

nonlinear modelling of rainfall data. The ANN structure consists of seven input nodes, two to ten hidden 
layer nodes and one output nodes. A Feed Forward Back-Propagation Neural Network of ANN model was 

developed where the model was trained based on gradient descent back-propagation algorithm with sigmoid 

(logistic) activation function for hidden layer and linear activation function for output layer. ANN (6,4,1) 

model was trained and tested. 

Next, the forecasting accuracy was measured according to observed and predicted value  

of the models. ARIMA and ANN models were evaluated and compared to see which method provides the 

most appropriate forecasting tools to forecast daily rainfall data. There is a difference based on the results 

obtained from accuracy checking between ARIMA and ANN models. The measurement of the level of 

accuracy is based on MAE, MFE, RMSE and R criteria. 
From the analysis results, both of the models are capable as a forecasting tools to forecast daily 

rainfall data. The models that provides the smallest error of MAE, MFE, RMSE and the highest R  were 

appointed as the best forecasting models. Table 2 shows the comparison of the performance measure  

for ARIMA and ANN models. Based on the results, the performance measure for ANN model shows a  

better result compared to ARIMA model where ANN model outperforms ARIMA model. The error measure 

of the training and testing set for MAE in ARIMA model is 78.0877 and 102.7644 respectively.  

The error measure of ANN model has a lower value of error measure in both training and testing set of MAE 
at 25.6573 and 8.4208. 

While for MFE, if the value of MFE is larger than 0, it indicates the model is under-forecast. If it is 

less than 0, the model may lead to over-forecast. The MFE value for training and testing of ARIMA model 

were 2.9465 and -3.3436 which indicates that the model is under-forecast during training the model and tends 

to be over-forecast in testing set. This means that forecast for ARIMA model to be low in relation to the 

actual demand in training set. While for testing set, the forecast value is high in relation to actual demand. 

However, for ANN model, undergoes under-forecast in both training and testing set. The model tends to be 

under-forecast with an average absolute error of 13.1511 in training and 2.2188 in testing which the forecast 

has been in a low relation to the actual demand. 
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The two models were being compared based on RMSE value where it is used to computes  

the variations of the observed values and the predicted values. The smaller the value of RMSE, the better  

and accurate the results of the forecast would be. The RMSE value for ANN model are lower, while for 

ARIMA model is higher. This means that ANN model can provide more accurate results in forecasting  

daily rainfall data. 

The coefficient of determination, R can also be measured and compared. This measurement  
error helps to see whether it gives the fluctuations percentages of one variables that is predicted from  

other variables. The value of R  is between 0 and 1 where it denotes the strength of a linear  

association between x and y. In addition, it represents the percent of data that is closest to the line of best fit. 

The closer its value to 1, the better the fit or relationship between the variables. The results of ANN model 

for training and testing set shows the value of R  is between 0 and 1 that is high at 0.8227 and 0.9432.  
ANN model shows a better fit and positive relationship between the variables compared to ARIMA model. 

Hence, ANN model outperforms ARIMA model and proven to model and forecast daily rainfall data.  

Figure 2 displayed a graph of comparison of ARIMA model versus ANN model. 

 

 

Table 2. Comparison of the performance measure of selected ARIMA and ANN models 

Method 
Error Measure for Daily Rainfall Data in Training Set Error Measure for Daily Rainfall Data in Testing Set 

MAE MFE RMSE R  MAE MFE RMSE R  

ARIMA (3,1,1) 78.0877 2.9465 131.1353 0.1231 102.7644 -3.3436 138.9895 0.0144 

ANN (6,4,1) 25.6573 13.1511 57.2931 0.8227 8.4208 2.2188 34.6740 0.9432 

Notes: Bold is the smallest value. 

 

 

 
 

Figure 2. Comparison of ARIMA model vs ANN model 

 

 

4. CONCLUSION 

Based on the results obtained, the two models are compared and evaluated in order to find the best 

forecasting model to forecast rainfall data. The purpose of comparing these two models was to find the most 

suitable method to forecast daily rainfall data which contains the minimum accuracy measure.  

For this comparison, there are three types of error measure that was being used to evaluate the accuracy 
measure of the models which are MAE, MFE and RMSE. The smaller the error, the more accurate the 

forecasted results of the models would achieve. Moreover, the coefficient of determination, R were also 

being measured as to inspect the better fit or relationship between the variables. The model that has the 

lowest error and R closest value to 1 for better fit of the variables are selected as the best model. 

The ANN (6,4,1) shows the MFE value of 2.2188 that is smaller compared to ARIMA (3,1,1).  

It shows that ANN model is under-forecast which the forecasted results has been in a low relation to actual 

demand of 2.2188 mm in average for that day to rain. While, MFE for ARIMA (3,1,1) has the value of  
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-3.3436 mm in average which gives the meaning that the forecasted value for ARIMA model are too high to 

actual demand which tends to be over-forecast the results. Thus, ANN model was chosen as the best model 

that gives the lowest error on MAE, MFE and RMSE compared to ARIMA. In addition, a higher value of  

R which fitted the model to the variables much better. 
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