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 Long term load forecasting data is important for grid expansion and power 

system operation. Besides, it also important to ensure the generation capacity 

meet electricity demand at all times. In this paper, Least-Square Support 

Vector Machine (LSSVM) is used to predict the long-term load demand.  

Four inputs are considered which are peak load demand, ambient 

temperature, humidity and wind speed. Total load demand is set as the output 

of prediction in LSSVM. In order to improve the accuracy of the LSSVM, 

Grey Wolf Optimizer (GWO) is hybridized to obtain the optimal parameters 

of LSSVM namely GWO-LSSVM. Mean Absolute Percentage Error 

(MAPE) is used as the quantify measurement of the prediction model.  

The objective of the optimization is to minimize the value of MAPE.  

The performance of GWO-LSSVM is compared with other methods such as 

LSSVM and Ant Lion Optimizer – Least-Square Support Vector Machine 

(ALO-LSSVM). From the results obtained, it can be concluded that  

GWO-LSSVM provide lower MAPE value which is 0.13% as compared to 

other methods. 
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1. INTRODUCTION 

Planning in power systems is a projection of how the system should evolve over a specific  

time-frame. It has become more difficult to plan power systems in developing countries. Planning must be 

completed despite numerous vulnerabilities such as future load designs, population growth and economic 

growth representing developing countries, technical, economic and environmental constraints [1].  

Load forecasting plays an important role in planning power systems to ensure uninterrupted and economical 

power generation and distribution to consumers. Precise electrical load forecasting is a major issue in the 

planning and management of electricity generating utilities. 

The load forecast can be divided into three classifications. Short-term load forecasting (STLF) 

covers an hour to a week time [2]. Short term load forecasting contributes to the decision-making process, 

including unit commitment and process for improving security [3]. The accurate load forecasting helps 

enhancing the unit commitment scheduling and thus can save large amount of cost per year [4].  

Medium load forecasting (MTLF) covers a week-to-year period. It is essential for fuel supply  

and maintenance operations to be planned [5]. Long-term load forecast (LTLF) forecast for more  

than one year [6]. Long term load forecasting facilitates the decision-making of an electrical utility including 

https://creativecommons.org/licenses/by-sa/4.0/
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the purchase and generation of electricity, load switching and infrastructure development. The importance of 

load prediction turns out to be more noteworthy in high-growth developing countries. Understanding and 

forecasting of load characteristics was complex due to its dependence on a wide range of factors influencing 

the weather, geographical diversity, sunrise/sunset time, seasonal diversity, etc. [7]. Despite the increase in 

electricity demand annually, the pattern of the load profile may also change [8-9]. 

Analysis of long-term load forecasting has received little attention. Reference [10] presented a long 

term load forecast using Fuzzy Logic model. Fuzzy logic model was developed based on the weather 

parameters which are temperature and humidity. Two years historical load data were utilized to predict a 

year-ahead load demand. The value of Mean Average Percentage Error (MAPE) obtained was 6.9%.  

The technique is then improved in [11] using Fuzzy-Neuro. Fuzzy-Neuro is the combination of Fuzzy Logic 

and Artificial Neural Network (ANN). In Fuzzy-Neuro, the output of the fuzzy logic system are fed to ANN. 

Fuzzy logic systems used for making decision based on the rules, meanwhile, ANN is used for training and 

testing process. The characteristic of ANN are high learning capabilities, adaptability and generalization.  

By using Fuzzy-Neuro, MAPE has improved to 1.22%. 

Recently, various Artificial Intelligent (AI) techniques can be implemented for forecasting.  

One of them is ANN. Research in ANN has received considerable attention. ANN has many advantages as 

compared to the conventional computational systems such as computation speed and robustness.  

The most profound and important characteristic of ANN is the ability to memorize which involves a large 

number of processors operating in parallel. Each processors consists of own knowledge and can access the 

data in its local memory. The ability of ANN to generalize on unseen data and learn from noisy data make it 

a very powerful machine learning algorithm [12]. Apart from ANN, there is another intelligent system that 

has been given attention recently namely Support Vector Machine (SVM). The advantages of SVM including 

fast convergence rate, good generalization capability and automatic determination of hidden neurons [13].  

The regression problem in SVM is formulated based on convex quadratic programming problem where it use 

linear regressor [14]. In linear regressor, the regressor will maps the inputs into a higher dimensional feature 

space to minimize the cost function. The major shortcoming of SVM is the computational burden for 

optimization programming constrained. This weakness has been overcomed in Least-Square Support Vector 

Machines (LSSVM), which substitute a quadratic programming with linear equations [15-18].  

The accuracy of the prediction of LSSVM depends on the hyperparameters value setting. Therefore, Grey 

Wolf Optimizer - Least Square Support Vector Machine(GWO-LSSVM) is proposed to solve long-term load 

forecasting problem. GWO is integrated with LSSVM for determining the optimal hyperparameters. GWO is 

inspired by hierarchy system and hunting mechanism of grey wolves in nature. GWO has been effectively 

implemented for solving various power system problems [19-23].  

 

 

2. RESEARCH METHOD 

In order to predict total load demand, a total of 1035 sets of data are collected in the area of Dayton, 

Ohio, US from January 2016 until May 2018. For training, 668 data sets are used and the remaining 367 data 

sets are used for testing. Moreover, the temperature, wind speed and humidity are the inputs, while the total 

output power is the output of the model. Figure 1 presents overall data used in this paper. It can be observed 

that the total load demand fluctuated. Therefore, an accurate prediction technique is required to ensure 

the electricity generated capacity meet electricity demand at all times. In this paper, GWO-LSSVM is 

developed to predict the total load demand in long-term duration. The efficacy of the proposed algorithm is 

evaluated through comparison with other techniques such as LSSVM and Ant Lion Optimizer- Least-Square 

Support Vector Machine (ALO-LSSVM). 

 

 

 
 

Figure 1. Total load demand data 

https://www.sciencedirect.com/topics/engineering/fuzzy-logic-system
https://www.sciencedirect.com/topics/engineering/fuzzy-logic-system
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2.1.  Prediction measurement 

Mean Absolute Percentage Error (MAPE) and coefficient of determination (R2) were used for the 

evaluation purposes as shown in (1) and (2). Both of them act as indicators which assess the performance of 

suggested technique. MAPE is a measure of prediction precision of a forecasting technique in measurements. 

It usually uses percentage to shows the accuracy. For MAPE, the lower the value, the better the performance. 

In the simulation, MAPE is utilized as objective function of GWO-LSSVM. The coefficient of determination, 

R2 is a part of the output variable variance that can be predicted from the input variable. It gives a measure of 

how similar the outcomes are replicated by the model, in view of the extent of total variation of results 

clarified by the model. However, for R2, the closer the value to 1, the better it will be. 

 

𝑀𝐴𝑃𝐸 = ∑
|𝐹𝑡−𝐴𝑡|

|𝐹𝑡|

𝑛
𝑡=1 × 100% (1) 

 

𝑅2 = 1 −
∑(𝐴𝑡−𝐹𝑡)

2

∑(𝐴𝑡−�̅�𝑡)
2 (2) 

 

Where t=1, 2, …., t 

At = Actual values 

Ft = Predicted values/Forecasting values 

 

2.2.  Development of GWO-LSSVM 

GWO is a metaheurictic-based technique stimulated by the hunting behavior and leadership 

hierarchy of grey wolves as depicted in Figure 2. Alpha (α) is the leader of the wolves. It is responsible to 

make a settlement which are relates to hunting, when and where to sleep, and etc [24]. Beta (β) is the second 

level which is the assistant of α in making decision. β is likewise the best applicant to replace α when α 

getting old or die. The lowest in grey wolves’ system hierarchy is called Omega (ω). It acts as a scapegoat. ω 

can fulfill the entire whole grey wolves group. The third level in grey wolves’ system hierarchy is Delta (δ) 

which must report to α and β, however they lead the ω. δ responsibility is scouting to secure and  

ensure the security of the group of wolves. The system hierarchy of grey wolves is an assigned characteristic  

used in GWO. Another amazing characteristic of wolves is the group hunting strategy. The fittest solution  

is considered as the α. Meanwhile, the second and third best solutions are considered as β and  

delta δ respectively. The rest of the individual solutions are considered as ω. During hunting, the wolves tend 

to encircle their prey. The encircling behaviour is represented as (3). 

 

�⃗⃗� = |𝐶 . 𝑋𝑝
⃗⃗ ⃗⃗  −  𝑋 (𝑡)  

𝑋 (𝑡 + 1) =  𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) −  𝐴 . �⃗⃗�  (3) 

𝐴 = 2�⃗� . 𝑟1⃗⃗⃗  − 𝑎   

𝐶 = 2. 𝑟2⃗⃗  ⃗  

 

Where t is the ongoing iteration 

𝐴  and 𝐶  are coefficient vectors 

𝑋𝑝
⃗⃗ ⃗⃗   is the position vector of the prey 

 

𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  is the position of the search agent. The best three solutions; 𝑋𝛼, 𝑋𝛽, and 𝑋𝛿  are saved 

including the latest positions of ω according to the current best position. 𝑋𝛼 is the best position of α, 𝑋𝛽 is the 

best position of β, and 𝑋𝛿  is the best position of δ. The final position X(t+1), is defined by the positions of α, 

β, and δ in the search space as shown in (4). 

𝑋  is the position of the grey wolf 

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ . 𝑋𝛼
⃗⃗ ⃗⃗  − 𝑋 |  

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ . 𝑋𝛿
⃗⃗ ⃗⃗  − 𝑋 |  

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴1
⃗⃗⃗⃗ . (𝐷𝛼

⃗⃗⃗⃗  ⃗) (4) 

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴2
⃗⃗ ⃗⃗ . (𝐷𝛽

⃗⃗ ⃗⃗  )  

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴3
⃗⃗ ⃗⃗ . (𝐷𝛿

⃗⃗ ⃗⃗  )  

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
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Where �⃗⃗�  is the coefficient vector 

 

In LSSVM, there are two tuning parameters that associated with RBF kernel, σ2 and  

regularization parameter, γ. These parameters affect the LSSVM estimation model's accuracy.  

These parameters are optimized using GWO-LSSVM to minimize MAPE. The flowchart of GWO-LSSVM 

is presented in Figure 3.  

 

 

 
 

Figure 2. The system hierarchy of grey wolves 

 
 

Figure 3. Flowchart of GWO-LSSVM 

 

 

During initialization, two parameters which are gamma and sigma were randomly generated within 

lower bound and upper bound. The parameters set for GWO-LSSVM algorithm are tabulated in Table 1.  

The number of search agents is set to 10. If the number of search agents is high, it will consume more time. 

However, small number of search agents may not give the best prediction. 

 

 

Table 1. Parameters of GWO 
Parameter Value 

Number of search agents 10 

Maximum iteration 30 

Upper bound 1000000 

Lower bound 0.1 

 

 

The position of grey wolf is then updated according to (4). α, β, and δ wolves determine the  

possible position of the prey. This process continue until the convergence goal is met and 𝑋𝛼 is taken as the 

best solution. In this algorithm, MAPE is set as the fitness function. MAPE value is obtained by calling the 

LSSVM algorithm. The position of search agents are updated according to α, β, and δ in search space as 

shown in (4). The process is repeated until the solution converged. The solution will converge if the different 

between maximum and minimum fitness reach 1x10-7. In this paper, the results of GWO-LSSVM is also 

compared to ALO-LSSVM in terms of accuracy and convergence speed. In ALO-LSSVM, ALO is utilized to 

determine the optimal parameters of gamma and sigma. The algorithm represents the hunting behavior of 

antlions in nature. There are five main steps of the algorithm including random walk of ants, constructing 

traps, entrapment of ants in traps built by antlions, catching ants, and re-setup the traps [25]. The number of 

serach agents, maximum iterations, lower and upper bound are set similar with GWO-LSSVM. 

 

 

3. RESULTS AND DISCUSSION 

Figure 4 presents the results of GWO-LSSVM for training data. The red line is defined as the 

estimation or predicted output, while the blue dots represented as the actual output. The optimal gamma and 

sigma value are 106784.335 and 0.85381 respectively. The comparison between predicted and actual data for 
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training and testing process using GWO-LSSVM are shown in Figure 5 and Figure 6 respectively. It can be 

observed that the predicted results almost similar with actual data for both training and testing process.  

 

 

 
 

Figure 4. Results of GWO-LSSVM 

 

 

 
 

Figure 5. Comparison of training data and estimation output for GWO-LSSVM 

 

 

 
 

Figure 6. Comparison of testing data and predicted output for GWO-LSSVM 
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Comparison between GWO-LSSVM, ALO-LSSVM and LSSVM is tabulated in Table 2.  

By running GWO-LSSVM, the values of optimal parameters of γ and σ2 are 106784.335 and  

0.85381 respectively. As the maximum number of iterations reaches 30, MAPE and R2 are compared.  

By using LSSVM to model the total output power, the values of MAPE was 0.2570%. However, by using 

ALO-LSSVM, it helps in reducing the MAPE values to 0.1860%. For GWO-LSSVM, the MAPE is much 

better than the other two methods which is 0.1265%. For the coefficient of determination, R2, LSSVM gives 

the value of 0.9989. However, the optimal values of parameters γ and σ2 by using hybrid techniques  

GWO-LSSVM and ALO-LSSVM, the R2 increased to 0.9998 and 0.9991 respectively. Thus, it can be 

concluded that GWO-LSSVM provide more accurate prediction for long-term load forecasting  

as compared to other techniques. The comparison of iterative convergence between GWO-LSSVM and 

ALO-LSSVM is presented in Figure 7. GWO-LSSVM converged at 7th iteration while ALO-LSSVM 

converged at 12th iteration. It can be concluded that GWO-LSSVM has a precise prediction and the speed of 

optimization is faster. 

 

 

Table 2. Comparison between LSSVM, GWO-LSSVM and ALO-LSSVM 
 GWO-LSSVM ALO-LSSVM LS-SVM 

Gamma (γ) 106784.335 1079286.5453 6192635.8696  
Sigma (σ2 ) 0.85381 181.7487 31156.7869 

MAPE 0.1265 0.1860 0.2570 

R2 0.9998 0.9991 0.9989 

 

 

 
 

Figure 7. Convergence graph for GWO-LSSVM and ALO-LSSVM 

 

 

4. CONCLUSION  

A hybrid prediction technique namely Grey Wolf Optimizer – Least Square Support Vector 

Machine (GWO-LSSVM) had been develop to forecast long-term load demand, with the objective function 

to minimize the error. LSSVM is one of the good techniques to solve nonlinear problems. However,  

the accuracy of the prediction depends on the selection of the RBF parameters. GWO has been utilized to 

optimized the value of these parameters. GWO mimics the hierarchy of leadership and hunting mechanism of 

grey wolf in nature. Four inputs were considered for the prediction; peak load demand, temperature, humidity 

and wind speed. After conducting the simulation for LSSVM, GWO-LSSVM and ALO-LSSVM, it can be 

concluded that GWO-LSSVM has better prediction accuracy and higher optimization speed to predict the 

long-term load forecasting as it. 
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