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 Alcohol consumption is known to associate with several diseases, injuries, 

and social problems. The long-term, excessive alcohol exposure can lead  

to liver cirrhosis and pancreatitis. After repating alcohol exposure,  

alcohol dependence would develop an individually behavioral, cognitive,  

and physiological phenomenon. Previous studies indicated that although the 

left hemisphere was selectively employed for processing linguistic 

information irrespectively of acoustic cues or subtype of phonological unit, 

the right hemisphere was employed for prosody-specific cues.  

These previous studies provided the impetus for future investigations of tone 

perception and temporal integration differences in tonal brain speaker who 

had long-term, excessive alcohol exposure such as Thai in the present study. 

The present study used both an auditory mismatch negativity (MMN) 

component of event-related potentials (ERPs) recording and the standardized 

Low-resolution Electromagnetic Tomography (sLORETA) techniques to 

measure the degree of cortical activation and to localize the brain area 

contributing to the scalp recorded auditory MMN component during the 

passive oddball paradigm. Ten healthy right-handed adults participated in 

this study. The findings showed that both [kha:] - mid tone perception and 

[khá:] - high tone perception elicited a strong MMN between 215-284 ms 

with reference to the standard-stimulus ERPs. Source localization was 

obtained in the middle temporal gyrus of the right hemisphere for both  

[kha:] - mid tone perception and [khá:] - high tone perception. Automatic 

detection of tone perception in alcoholic tonal brain is a useful index of 

language universal auditory memory traces. 
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1. INTRODUCTION 

Alcohol consumption is associated with several diseases, injuries, and social problems.  

It is a significant cause of cancer of the mouth, esophagus, and larynx. The long-term, excessive alcohol 
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exposure can lead to liver cirrhosis and pancreatitis. Moreover, gastritis, diabetes, and hypertension,  

and depression seem to be provoked even by occasional and short-term alcohol exposure [1-2].  

Several previous studies demonstrated that gut dysbiosis, an imbalance of the intestinal microbiome,  

cause several diseases including diabetes mellitus, allergy, obesity, and inflammatory bowel  

diseases, respectively [3-7]. In addition, gut microbiome could affect the brain functions and emotional 

behavior involved in the development of psychiatric disorders [7-9]. According to previous clinical studies, 

gut microbiome significantly shapes the bidirectional communication between the brain and the 

gastroentestional tract which is known as the microbiota-gut-brain axis while both acute and chronic  

alcohol consumption could alter the microbial composition, bacterial overgrowth, and disturbed the  

mucosal barrier [10-14]. There are several evidences supporting that probiotics favorably affect brain 

function in healthy individuals. This is because the gut microbiome in alcohol-dependent individuals could 

help defray alcohol’s effect on brain function in the central nervous system wich are related to  

alcohol-associated behaviors [11-13]. Additionally, several previous studies reveled that probiotic 

supplementation could improve anxiety and depressive symptoms considered to induce an inclination toward 

drinking in alcoholic patients [14]. Despite the lack of any current disorders in the individual user, hazardous 

drinking patterns significantly impact public health. Hazardous alcohol use implies alcohol ingestion that 

elevates the risk of detrimental outcomes for the user or others [15]. After repeating alcohol exposure, 

alcohol dependence would develop an individually behavioral, cognitive, and physiological phenomenon 

[16]. Therefore, harmful alcohol drinking is known as a pattern of alcohol consumption that affects 

individual physical and mental health [15]. 

While it seems indisputable that language is sub-served by left-hemisphere and right-hemisphere are 

lateralized for speech, language, or something else, hypotheses proposed to account for functional 

hemispheric asymmetries could generally be classified as either cue dependent i.e., basic neural mechanism 

underlied processing of complex auditory stimuli regardless of linguistic relevance [17], or task dependent, 

i.e., specialized neural mechanisms exist that were activated only by speech [18]. In earlier studies,  

Chinese (i.e., tonal speaker) and English (i.e., non-tonal speaker) listeners did not show the same  

left-hemisphere lateralization as Thai listeners, tonal speakers, when making perceptual judgments of  

Thai tones [19-21]. In addition, Chinese and English listeners were asked to make perceptual judgments of 

Chinese tones, consonants, and vowels. The results showed that Chinese listeners showed left-hemisphere 

lateralization for both segmental and suprasegmental phonological units [21]. These earlier studies suggest 

that functional circuits engage in early, pre-attentive speech perception of either segmental or suprasegmental 

units in tone languages [19-21]. Listeners normally tune in to the relevant stream of speech and filter out 

irrelevant speech input while engaging in a conversation. So, there is still controversial issue whether the 

human brain contains neural circuits uniquely engaging in the pre-attentive stage of speech processing [22]. 

Human central auditory system has a remarkable ability to establish memory traces for invariant features of 

acoustic sounds in the environment such as human speech sound and music, in order to correct the 

interpretation of these natural acoustic sounds heard [23].  

Event-related potentials (ERPs)  recordings is known as tool in investigating the neuronal activities 

of auditory function in the human brain.  The ERPs recordings thus allow scientist to investigate the neural 

processes which are involved in the attentional mechanisms [17-18, 24].  ERPs components thus reflect the 

conscious detection of a physical, semantic, or syntactic deviation from the expected sounds [ 23] .  
The auditory system has a remarkable ability to establish memory traces for invariant features of acoustic 

sounds in the environment such as human speech sound to correct the interpretation of these natural acoustic 

sounds heard [ 23] .  Theoretically, mismatch negativity ( MMN)  component of ERPs can be elicited in the 

auditory cortex when incoming sounds are detected as deviating from a neural representation of acoustic 

regularities generating in the auditory cortex occurring between 100 to 250 ms [22-23, 25-27] and thus long 

been regarded as specific to the auditory modality [ 28-29] .  MMN implies the existence of an auditory 

sensory memory that stores a neural representation of a standard against which any incoming auditory  

input is compared [30-31]. Some ERPs studies at a phonetic level demonstrated that the MMN was enhanced 

in Finnish (i.e., non-tonal speaker) subjects by their first-language (Finnish) phoneme prototype rather than a 

non-prototype (Estonian; non-tonal sapeaker) [1] and that the MMN for a vowel contrast in Finnish was not 

generated in native Hungarian (i.e., non-tonal speaker) subjects with no knowledge of Finnish [24],  

implying that the MMN reflects language-specific memory traces formed by early and extensive exposure to 

a first language [22,24]. Regarding to a previous study revealing that although the left-hemisphere was 

selectively employed for processing linguistic information irrespectively of acoustic cues or subtype of 

phonological unit, the right-hemisphere was employed for prosody-specific cues [18, 21]. These previous 

studies provide the impetus for future investigations of tone perception and temporal integration differences 

in tonal brain speaker who have long-term, excessive alcohol exposure such as Thai in the present study.  

The present study used both an auditory MMN component of ERPs recording and the standardized  



Int J Artif Intell ISSN: 2252-8938  

 

Source localization of tone perception in alcoholic brain indexed by… (Vachrintr Sirisapsombat) 

563 

Low-resolution Electromagnetic Tomography (sLORETA) techniques to measure the degree of cortical 

activation and to localize the brain area contributing to the scalp recorded auditory MMN component during 

the passive oddball paradigm in the alcoholic tonal brain speaker. 

 

 

2. RESEARCH METHOD 

2.1.  Subjects 

Ten right-handed alcoholic drinkers, aged 23-39 years old (mean 31.18±1.07), with normal hearing 

and no known neurological disorders volunteered for participation. All subjects were categorized by alcohol 

use disorders identification test (AUDIT) and included in the study based on the AUDIT score at 8 or above, 

considered high-risk alcoholics. They were asked to fill out the demographic and food frequency 

questionnaire. Exclusion criteria consisted of abnormal signs, symptoms and laboratory investigations of 

cirrhosis (ascites, jaundice, hematemesis, coagulopathy, and hypoalbuminemia), neurological and psychiatric 

disorders, any immunodeficiency and autoimmune disorder, regular use of drugs other than alcohol, taking 

antibiotics, others dietary supplements and herbs during this trial, history of adverse effects towards synbiotic 

supplements. The approval of the institutional committee on human research and written consent from each 

subject were obtained before starting the experiment. 

 

2.2.  Stimuli 

Stimuli consisted of two pairs of non-speech sound (Hum) of monosyllabic, Thai words.  

Stimuli were digitally generated and edited to have equal peak energy level in decibels SPL with  

the remaining data within each of the stimuli scaled accordingly using the Cool Edit Pro v. 2.0  

(Syntrillium Software Corporation). The sound pressure levels of stimuli were then measured at the output of 

the earphones (E-A-RTONE 3A, 50Ω) in dBA using a Brüel and Kjaer 2230 sound-level meter.  

Pairs were designed to have similar long vowel duration (i.e., [a:]). Two different stimuli were synthetically 

generated: Stimuli 1: [kha:] - mid tone; Stimuli 2: [khá:] - high tone. Five native tonal Thai speakers listened 

to these synthesized sounds and evaluated them all as non-speech sounds or Hum speech. The standard 

(S)/deviant (D) pairs (e.g., [kha:] (S) - [khá:] (D) or [khá:] (S) - [kha:] (D)) for each trial were  

randomized across subjects. The stimuli were binaurally delivered using ePrime software version 3.0 

(Psychology Software Tools, Inc., Pittsburgh, PA, USA) via headphones (HP Gaming Headset H300,  

HP Inc., Palo Alto, CA, USA) at 85 dB. The inter-stimulus interval (ISI) was 1.25 second (offset-onset).  

The deviant (D) stimuli appeared randomly among the standard (S) at 10% probability in the  

oddball paradigm. Each experiment included 125 trial (10% D). Electroencephalographic (EEG) signal 

recording was time-locked to the onset of a sound. Subjects were instructed not to pay attention to the stimuli 

presented via headphones, but rather to concentrate on other activities. 

 

2.3.  Alcohol use disorders identification test (AUDIT) 

Alcohol use disorders identification test (AUDIT) was used as a tool for screening individuals with 

an excessive drinking habit, screen alcohol consumption levels, to determine the decreasing or stopping 

drinking, alcohol dependency and addiction-treatment efficacy. Fleming et al. reported that AUDIT  

was the best screening method for the entire range of alcohol troubles than other questionnaires, including the 

CAGE and the MAS [32]. The ten questions of AUDIT were classified into three domains consisted  

of recent alcohol use, alcohol dependence symptoms, and alcohol-related problems, respectively.  

Each response has a score ranging from 0 to 4, as well as the total score sum up a range from 0 - 40.  

A cut-off value of 8 points provided sensitivities for indicators of hazardous drinking, harmful alcohol use, 

and possible alcohol dependence at least 90 percent, while specificities across countries and criteria averaged 

around 80 percent. Hence, in this study, we considered high-risk alcohol drinking subjects with a score 

higher than or equal to 8 [15, 33]. 

 

2.4.  Electroencephalographic recording 

For EEG/ERP recording, the standard 21 locations of the 10-20 system, EEG, eegoTM  

(ANT Neuro, Netherlands), was recorded via an elastic electrocap (Electrocap International) from 20 active 

electrodes (Fp1, Fpz, Fp2, F7, F3, Fz, F4, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, Oz, O2) positioned 

according to the 10-20 International System of Electrode Placement, plus Ground were applied, pre-mounted 

in an elastic electrocap. Reference electrodes were manually applied to left and right mastoids, where the Fp1 

and Fp2 electrodes were used for ocular artifact detection. Horizontal eye movements were monitored with 

electrodes at the left and right outer canthi and vertical eye movements were monitored at Fp1 and Fp2. 

EEGs were amplified with a gain of 5,000 and filtered with a bandpass of 0.1-30 Hz. EEGs were acquired as 
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continuous signals and were subsequently segmented into epochs of 1s (a 100 ms pre-stimulus baseline and a 

900 ms post-stimulus epoch).  

 

2.5.  EEG data processing 

EEG recordings were filtered and carefully inspected for eye movement and muscle artifacts.  

ERPs were obtained by averaging epoch, which started 100 ms before the stimulus onset and ended 900 ms 

thereafter; the -100-0 ms interval was used as a baseline. Epochs with voltage variation exceeding ±100µV at 

any EEG channel were rejected from further analysis. The MMN was obtained by subtracting the response to 

the standard (S) from that to the deviant (D) stimulus. All responses were recalculated offline against average 

reference for further analysis. For analysis of processing time, ERP component latency was measured at the 

electrode sites where the mean component amplitude was maximal or near maximal across conditions.  

Peak amplitude and latency values of 50 ms time-window were used to measure components in this study. 

These data provide a topographic description of these peak-related components.  MMNs were statistically 

assessed by t-tests comparing the averaged amplitude of the deviant (D) minus standard (S) difference 

waveform to zero in the 50 ms time-window around the latency of the peak in the grand-average responses. 

 

2.6.  Spatial analysis 

The average MMN latency was defined as a moment of the global field power (GFP) with an epoch 

of 50-ms time window related stable scalp-potential topography. In the next step, sLORETA was applied to 

estimate the current source density distribution in the brain, which contributed to the electrical scalp field.  

sLORETA computed the smoothest of all possible source configurations throughout the brain volume by 

minimizing the total squared Laplacian of source strengths [34].  

 

2.7.  Statistical analysis 

During the auditory stimulation, electric activity of the subjects’ brain was continuously recorded. 

The MMN was obtained by subtracting the response to the standard (S) ([kha:] - mid tone OR [khá:] -  

high tone) from that to the deviant (D) ([khá:] - high tone OR [kha:] - mid tone) stimulus. When significant 

stimulus main effects were detected, topographic maps were generated from the mean peak voltage values 

across subjects. All MMN amplitude measures were taken relative to average baseline voltage in the 100 ms 

interval prior to stimulus onset.  A p value criterion of ≤  0.05 (two-tailed) was used for significance testing 

with one sample t-test.  
 

 

3. RESULTS AND DISCUSSION 

The difference waveforms show that deviant stimuli with mid tone ([kha:]) and high tone  

([khá:]) elicited MMN between 215-284 ms with reference to the standard-stimulus ERPs.  

Table 1 shows mean amplitude of mismatch negativity elicited in the study. The t-test comparing mean 

MMN amplitudes were statistically significant (e.g., [kha:] - mid tone (-2.11±0.75); [khá:] - high tone  

(-3.27±0.04); t(9) = 1.41, p < 0.05. 
 

 

Table 1. Mean amplitude (µV) ± S.D. of mismatch negativity 
Stimuli* Mismatch Negativity Amplitudes (µV±S.D.) p-value 

[khá:] - [kha:] -2.11±0.75 <0.05 
[kha:] - [khá:] -3.27±0.04  

*Stimuli, non-speech sound or hum speech of monosyllabic, Thai words, i.e. [kha:] - mid tone and [khá:] - high tone, were 

digitally edited to have equal peak energy level in decibels SPL with the remaining data within each of the stimuli scaled accordingly. 

 

 

Source localization analyses of each MMN deviant stimulus were further performed by using 

sLORETA technique to measure the degree of cortical activation and to localize the brain area contributing to 

the scalp. Table 2 shows the xyz-values in Talairach space in the time window between 215-284 ms as 

calculated by sLORETA.  
 

 

Table 2. Stereotaxic coordinates of activation foci of mismatch negativity 
Stimuli Coordinates (mm) x y z Brodmann Area (BA) t-values 

[khá:] - [kha:] 53 -60 8 39 3.83 
[kha:] - [khá:]  46 -67 8 39 4.69 
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In [kha:] - mid tone perception, a single source was estimated to be located in the middle temporal 

gyrus (MTG) (Brodmann area (BA) 39; X = 53, Y = -60, Z = 8; MNI cords; t = 3.83) of right hemisphere. 

Similar to [kha:] - mid tone perception, a single source of [khá:] - high tone perception was shown in the 

middle temporal gyrus (MTG) (Brodmann area (BA) 39; X = 46, Y = -67, Z = 8; MNI cords; t = 4.69)  

of right hemisphere, as shown in Figure 1. 
 

 

 
 

Figure 1. Graphical representation of the standardized Low-resolution Electromagnetic Tomography (sLORETA)  

t-statistic comparing the mean MMN deviant stimuli responses at the epoch of 50-ms time window between 215-284 ms 

of the global field power (GFP) waveforms related stable scalp-potential topography at the middle temporal gyrus (MTG) 

of the right hemisphere for [kha:] - mid tone perception (Brodmann area (BA) 39; X = 53, Y = -60, Z = 8; MNI cords;  

t = 3.83) (Top) and [khá:] - high tone perception (Brodmann area (BA) 39; X = 46, Y = -67, Z = 8; MNI cords; t = 4.69) 

of right hemisphere (bottom). Red color indicates local maxima of increased electrical activity in an axial, a saggital and 

a coronal slice through the reference brain. Blue dots mark the center of significantly increased electric activity. 

 

 

Both [kha:] - mid tone perception and [khá:] - high tone perception elicited a strong MMN between 

215-284 ms with reference to the standard-stimulus ERPs. Source localization analyses performed using 

sLORETA demonstrated that sources were obtained in the middle temporal gyrus (MTG) of the right 

hemisphere for both [kha:] - mid tone perception and [khá:] - high tone perception. The current findings 

stayed in the same line of previous studies recorded by Magnetoencephalogram (MEG) technique [35-36]. 

As the synthesized non-speech sounds of monosyllabic Thai words were employed in the present study,  

the detection of tone was most likely acoustically driven rather than semantically driven, such that the stimuli 

were processed without any access to semantic information. The synthesized sounds were listened  

by five native tonal speakers and evaluated as non-speech sounds or hum speech. We hypothesized that the 

acoustic aspect in the absence of phonetic or higher-order properties may account for neuronal responses of 

this tone perception. By referencing to previous study, it is reasonable to speculate that the continued 

auditory processing required for the tone interferes with or masks the detection mechanism underlying  

the MMN [35]. Additionally, the current findings showed similar results with previous tone studies that 

reported a clear MMN elicited by both duration increments and decrements [37]. However, the present study 

were controlled pairs of stimuli with the same duration and did not investigated the MMN in both duration 

increments and decrements compared to previous study [37]. 

Theoretically, the MMN component of ERPs elicited in the auditory cortex when incoming sounds 

are detected as deviating from a neural representation of acoustic regularities [22]. It is mainly generated in 

the auditory cortex occurring between 100 to 250 ms [ 28]  and thus long been regarded as specific to the 

auditory modality [ 22, 28-29] . Although MMN implies the existence of an auditory sensory memory that 

stores a neural representation of a standard against which any incoming auditory input is compared,  
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it is clear that the MMN can be elicited in auditory modality in the absence of attention [38-39]. The MMN 

component in the present study was found to be more sensitive to [khá:] - high tone perception compared to 

[kha:] - mid tone perception. The current findings revealed similar result to previous tone studies showing a 

larger MMN elicited by increments than decrements [40]. One might expect language-specific effects on the 

elicitation of the MMN of speech in the present study, since Thai is a tonal language. A tendency towards 

stronger MMN in either [kha:] - mid tone perception or [khá:] - high tone perception is observed and support 

such an expectation in that statistically significant difference in MMN amplitudes was found between [kha:] - 

mid tone perception or [khá:] - high tone perception at an acoustic level. At least two previous studies at a 

phonetic level demonstrated that the MMN was enhanced in Finnish subjects by their first-language (Finnish) 

phoneme prototype rather than a non-prototype (Estonian) [22] and that the MMN for a vowel  

contrast in Finnish was not generated in native Hungarian speakers with no knowledge of Finnish [24], 

implying that the MMN reflects language-specific memory traces formed by early and extensive exposure to 

a first language [22, 24]. Hence, our current finidngs are stayed in the line of these previous MMN studies.  

The topographic analysis in the present study was used to locate sources particularly involved in the 

discrimination of these different synthesized acoustic sounds perception as well as characterizing the cortical 

distribution of the ERP electrical generators. The source analyses of the MMN components suggest that both 

[kha:] - mid tone perception and [khá:] - high tone perception may elicit activity in the middle temporal gyrus 

(MTG) of the right hemisphere in alcoholic tonal brain speaker. However, source modeling using a single 

equivalent dipole approach has well-recognized spatial limitations, perhaps accounting for the discrepancy 

between current findings and previous reports of MMN/MMF generators in the planum temporale.  

While there existed no hemispheric differences in the current study, the current findings contrasted with 

previous f-MRI [41] and MEG [9] reports that the left posterior superior temporal gyrus was found to be 

activated by the pre-attentive detection of acoustic changes in non-speech (tones) and speech (CV syllables). 

However, language-specific word-related MMN component at acoustic and phonetic levels in both [kha:] - 

mid tone perception and [khá:] - high tone perception in alcoholic tonal brain speaker remain to be 

investigated in future studies. 
 

 

4. CONCLUSION 

The current findings show that both [kha:] - mid tone perception and [khá:] - high tone perception 

elicited a strong mismatch negativity between 215-284 ms with reference to the standard-stimulus ERPs. 

Source localization analyses performed by using sLORETA demonstrated that the middle temporal  

gyrus of the right hemisphere was the main source for both [kha:] - mid tone perception and [khá:] - high tone 

perception in alcoholic tonal brain speaker. Finding the present evidences of alcoholic tonal brain  

speaker in this study, an automatic detection of tone perception is a useful index of language universal 

auditory memory traces. 
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