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 Hidden Markov models (HMMs) are one of machine learning algorithms 

which have been widely used and demonstrated their efficiency in many 

conventional applications. This paper proposes a modified posterior decoding 

algorithm to solve hidden Markov models decoding problem based on 

MapReduce paradigm and spark’s resilient distributed dataset (RDDs) 

concept, for large-scale data processing. The objective of this work is to 

improve the performances of HMM to deal with big data challenges. The 

proposed algorithm shows a great improvement in reducing time complexity 

and provides good results in terms of running time, speedup, and 

parallelization efficiency for a large amount of data, i.e., large states number 

and large sequences number. 
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1. INTRODUCTION 

Big data refers to a large amount of data created and diffused daily. Big data has a great influence, 

both commercial and economic, on the development of the global economy [1]. This huge amount of data 

constitutes a great source of power. It is an inexhaustible mine of knowledge that must be processed to extract 

valuable information. Thus, big data analytics have attracted many specialized companies and researchers who 

tried to improve and adapt the classical algorithms to handle voluminous data [2]. 

Hidden Markov models (HMMs) [3] are classical statistical models, widely used in many fields such 

as speech recognition [4], finance [5] or bioinformatics [6], but in a big data context, these models have not yet 

reached their maturity. In the previous approaches, the volume of the data did not present a real problem since, 

in general, we did not handle very large size of data. In addition, the applications used structured data, so their 

formats were not very varied which is not the case for big data. Also, algorithms were not fast enough to give 

solutions in real time or to manage the high speed of data generation and diffusion [7]. 

Big data in the context of HMMs applications can be tackled using different approaches, either by 

studying HMMs with multiple sequences, HMMs with long observation sequences or HMMs with a large 

amount of hidden or observed states. In recent years, various works have focused on how to introduce HMMs 

in big data applications in order to make full use of their potential. Thus, many researchers are working on 

improving algorithms which take into account the complex characteristics of big data [8]. In fact, HMMs 

algorithms must be adapted to meet the growing demand for data processing. One of the most promising 

solution is to implement these algorithms under big data framework to take advantage of the powerful tools of 

these facilitating data distribution and parallelism of calculation.  

https://creativecommons.org/licenses/by-sa/4.0/
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The decoding problem is one of the fundamental problems of HMMs. In this problem, in a given 

model 𝜆, we search the most probable state sequence that produced a given observations sequence 𝑂 =
{𝑜1𝑜2. . . 𝑜𝑇}. To solve this problem, Viterbi [9] and posterior decoding algorithms [10], [11] are two of the 

most used algorithms. Even if these two algorithms solve a similar problem, the Viterbi algorithm finds the 

global solution while the posterior decoding algorithm locally finds the most likely hidden states. Although the 

posterior decoding algorithm has shown its processing speed, efficiency and accuracy, it generally has some 

drawbacks when handling big data specifically the suboptimal complexity and high execution time [12]. With 

the exponential development of big data technologies, it is necessary to focus on new approaches to use these 

new technologies to improve classical algorithms in terms of analysis and processing power, mainly parallel 

distributed computing [13]. Spark is certainly one of the most powerful big data technologies which have 

demonstrated their effectiveness in several applications, and which is attracting more and more researchers. 

In this paper, we present a new parallel distributed version of posterior decoding algorithm under 

Spark [14] for HMMs decoding problem. We used the main concepts of the spark framework to achieve this 

implementation; To distribute the data over many blocks, we used the concept of resilient distributed datasets 

(RDD) [15], then for the parallel computation, the MapReduce paradigm [16] is used, and finally to reduce the 

communication cost, we used broadcast variables. One of the major advantages of the proposed solution based 

on spark is to benefit from the richness of its modules offering a variety of tools for data collection and 

preprocessing, a set of optimized algorithms for parallel calculation, and algorithms for analyzing data in real 

time, as well as the possibility of execution of graph algorithms. Through this implementation under spark in 

a cloud environment, we think we contribute to bring hidden Markov models into the new era of big data, 

which opens the doors to the use of hidden Markov models in various fields of applications requiring a huge 

amount of data and parallel processing. The main contributions of this paper are summarized as: 

 Reviewing the foundations of HMMs, mainly the decoding problem. 

 Proposing an improved posterior decoding algorithm, based on parallel distributed computing approach 

using Spark. 

 Evaluating the proposed approach in a cloud environment using several metrics. 

The remainder of this paper is organized as. Section II deals with the hidden Markov models 

fundamentals and presents the HMMs decoding problem followed by a detailed discussion of the posterior 

decoding algorithm. In section III, we explore some related works. In section IV, we describe the proposed 

parallel distributed posterior decoding algorithm under Spark. The experimental results of the proposed 

algorithm evaluation are presented and discussed in section V. Finally, we conclude the paper with a summary 

of our key contributions and discuss possible future work. 

 

 

2. RESEARCH BACKGROUND 

2.1.  Hidden Markov models fundamentals 

Hidden Markov models are based on a 1st order Markov model simulating the evolution of the state 

of the system. It produces a sequence using two sequences of random variables; hidden and observable 

sequences. The hidden sequence corresponds to the sequence of states and the observable sequence corresponds 

to the sequence of observations [3]. They are statistical Markov models used in various fields. Especially in 

speech recognition and in signal processing and communications. Hidden Markov models are also used in 

computational biology and bioinformatics [6], in natural language modelling [17] as well as in finance analysis 

[5] and many other areas. 

The characteristics of an HMM are defined as [3], [18]:  

λ = (A, B, Π): a parametric set. 

N: the number of hidden states in the model. 

S = {s1, s2, . . . , sN}: the set of N states. The state of the HMM at time t is noted qt. 

M: the number of observable symbols in each hidden state. 

V = {v1, v2, . . . , vM}: the set of possible observations (the alphabet) is noted V. ot  ∈ V is the symbol observed 

at time t. 

O = {o1, o2, . . . , oT}: the vector of T produced observations. 

Q = {q1, q2, . . . , qT}, qt  ∈ S: the state sequence that produced an observation sequence. 

aij: the transition probability which represents the probability that the model evolves from state si to state sj, 

where: 

 

aij = P( qt+1 = sj ∣∣ qt = si ), ∀i, j ∈ [1. . N] and ∀t ∈ [1. . T]  (1) 

 

we denote [A] = {aij} as the transition probabilities matrix. 
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bj(vk): the observation symbol probability in hidden state sj where: 

 

bj(vk) =  P(ot = vk | qt = sj), 1 ≤ j ≤  N, 1 ≤ k ≤  M     (2) 

 

we denote [B] = {bj(vk)} as the observation probabilities matrix. 

πi: the vector of initial probabilities, where: 

 

πi = P(q1 = si), 1 ≤ i ≤ N        (3) 

 

we denote [Π] = {πi} as the initial emission probabilities vector. 

P(λ ∣ O): the probability that the HMM λ has produced the sequence O. 

The HMMs are used to solve three main problems: 

 Evaluation: Given the sequence of observations 𝑂 and an HMM 𝜆, how to assess the probability of 

observation 𝑃(𝜆 ∣ 𝑂)? For this problem, a forward-backward dynamic programming procedure [19] is 

used to calculate the probability of the observation sequence efficiently. 

 Finding the most likely path: Given the sequence of observations 𝑂 and an HMM 𝜆, how to find a sequence 

of states 𝑄 that maximizes the probability of observation of the sequence? Viterbi algorithm is a dynamic 

programming technique for finding this single best state sequence 𝑄 = {𝑞1,𝑞2, 𝑞3, . . . 𝑞𝑇} for the given 

observation sequence 𝑂 = {𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑇}. Another algorithm used to solve the decoding problem is 

the posterior decoding algorithm used when several paths have similar probabilities. 

 Learning: How to adjust the parameters (A, B, Π) of an HMM 𝜆 to maximize 𝑃( 𝜆 ∣ 𝑂 ), by using the 

Expectation-Maximization (EM) algorithm [20]. 

 

2.2.  Posterior decoding algorithm 

In hidden Markov models decoding problem, given the sequence of observations 𝑂 =
{𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑇} and an HMM 𝜆, we seek for the most probable sequence of states Q that maximizes the 

probability of observation of the sequence? In this problem we try to guess the correct hidden sequence of 

states. There are two algorithms that are most used to solve this problem: Viterbi and posterior decoding 

algorithms. The definition of the sequence of probable states differs depending on the domain and may 

influence the final solution of the problem. One first approach looks to search for the most probable state 𝑞𝑡 

and to concatenate all such "𝑞𝑡". It means that we have to choose states that are individually most likely at the 

time when a symbol is emitted. This approach is called posterior decoding. Another approach proposes to find 

the best path through the hidden state space, i.e., Viterbi algorithm. 

While the Viterbi algorithm remains the most used and efficient algorithm for the problem of decoding 

HMMs, in some applications it is not the most appropriate. One of the alternatives of this algorithm is the 

posterior decoding algorithm which is also widely used when there are many paths that have almost the same 

probability as the most likely. Posterior decoding algorithm provides the most likely state at any time. It focuses 

on the individual positions in the sequence and seeks to maximize the probability that they are well explained. 

Posterior decoding algorithm involves dynamic programming using the forward and backward 

algorithms and using sums instead of the maximization procedures to calculate the total probability for all 

possible paths. In forward algorithm, we define the forward variable, the probability of producing the partial 

observation sequence 𝑜1, 𝑜2, 𝑜3, . . . , 𝑜𝑡, (until time 𝑡) given the model 𝜆 and that the current state is 𝑠𝑖 at time 𝑡, 

as: 

 

𝛼𝑡(𝑖) = 𝑃(𝑜1𝑜2𝑜3. . . 𝑜𝑡 , 𝑞𝑡 = 𝑠𝑖 ∣ 𝜆)       (4) 

 

The forward algorithm to calculate 𝑃(𝑂 ∣ 𝜆), the probability of the observation sequence 𝑜1, 𝑜2, 𝑜3, . . . ,  𝑜𝑇, 

given the model 𝜆 is as: 

Initialization  

 

𝛼1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1),1 ≤ 𝑖 ≤ 𝑁        (5) 

 

Recurrence 

 

𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖)𝑎𝑖𝑗]𝑏𝑗(𝑜𝑡+1),1 ≤ 𝑡 ≤ 𝑇 − 1 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑁    (6) 

 

Termination (t=T)  
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𝑃(𝑂 ∣ 𝜆) = ∑ 𝛼𝑇
𝑁
𝑖=1 (𝑖)         (7) 

 

The backward variable 𝛽𝑡(𝑖) is calculated similarly to 𝛼𝑡(𝑖) using a backward recursion given that we are 

starting from 𝑞𝑡 at the instant 𝑡. Hence, we define the backward variable as: 

 

𝛽𝑡(𝑖) = 𝑃(𝑜𝑡+1𝑜𝑡+2. . . 𝑜𝑇 ∣ 𝑞𝑡 = 𝑠𝑖 , 𝜆)       (8) 

 

The backward algorithm is as: 

Initialization 

 

𝛽𝑇(𝑖) = 1,1 ≤ 𝑖 ≤ 𝑁         (9) 

 

Recurrence 

 

𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1 𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗), 𝑡 = 𝑇 − 1, . . . ,1,  1 ≤ 𝑖 ≤ 𝑁    (10) 

 

Termination (t=1) 

 

𝑃(𝑂 ∣ 𝜆) = ∑ 𝜋𝑖
𝑁
𝑖=1 𝑏𝑖(𝑜1)𝛽1(𝑖)        (11) 

 

In posterior decoding, for each 𝑡, 1 ≤ 𝑡 ≤ 𝑇, we would find 𝑞𝑡 that maximizes 𝑃(𝑞𝑡 ∣ 𝑂, 𝜆). 

Let 𝛾𝑡(𝑖) be the probability of the being in state 𝑠𝑖 at time 𝑡 for the given observation sequence 𝑂 and 

the model 𝜆 (posterior probability). Thus, at each time, we can choose the optimal state 𝑞𝑡 that maximizes 

𝛾𝑡(𝑖). 

 

𝛾𝑡(𝑖) = 𝑃{ 𝑞𝑡 = 𝑠𝑖 ∣∣ 𝑂, 𝜆 }         (12) 

 

=
𝑃{ 𝑞𝑡 = 𝑠𝑖 , 𝑂∣∣𝜆 }

𝑃{ 𝑂∣∣𝜆 }
         (13) 

 

=
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

∑ 𝛼𝑡
𝑁
𝑖=1 (𝑖)𝛽𝑡(𝑖)

          (14) 

 

with the following constrain being satisfied:  

 

∑ 𝛾𝑡
𝑁
𝑖=1 (𝑖) = 1          (15) 

 

The individually most likely state 𝑞�̂� (the sequence of states obtained by posterior decoding) is defined thus: 

 

�̂�𝑡 = arg max
1≤𝑖≤𝑁

𝛾𝑡(𝑖), 1 ≤ 𝑡 ≤ 𝑇        (16) 

 

In other words, at every position we choose the most probable state for that position. 

The pseudo code of posterior decoding algorithm is given by Algorithm 1. 
 

Algorithm 1: Classical posterior decoding algorithm 

 input: A model 𝜆 = (𝐴, 𝐵, 𝛱) and a sequence of observations 𝑂 = {𝑜1𝑜2𝑜3. . . 𝑜𝑇} 
 output: {𝑞1̂, 𝑞2̂, 𝑞3̂, . . . , 𝑞�̂�} 
 begin 

 forward variable calculation 

 Initialization 

1: for 𝑖 = l to 𝑁 do 
2:   α1(i) ←  π𝑖   b𝑖( o1) 
3: end for 

 Recurrence 

4: for 𝑡 = l to 𝑇 −  1 do 
5: for 𝑗 = l to 𝑁 do 

6:  𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡

𝑁

𝑖=1
(𝑖)𝑎𝑖𝑗] 𝑏𝑗(𝑜𝑡+1) 

7: end for 

8: end for 

 Termination 
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9: 𝑃(𝑂 ∣ 𝜆) = ∑ 𝛼𝑇

𝑁

𝑖=1
(𝑖) 

 backward variable calculation 

 Initialization 

10: for 𝑖 = l to 𝑁 do 

11:   𝛽𝑇(𝑖) = 1 
12: end for 

 Recurrence 

13: for 𝑡 = 𝑇 − 1 downto 1 do 

14: for 𝑖 = l to 𝑁 do 

15:  𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗

𝑁

𝑗=1
𝑏𝑗(𝑜𝑡+1)𝛽𝑡+1(𝑗) 

16: end for 

17: end for 

 𝛾𝑡(𝑖) calculation 

18: for 𝑡 = l to 𝑇 do 

19: for 𝑖 = l to 𝑁 do 

20:   𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂 ∣ 𝜆)
 

21: end for 

22: end for 

 individually most likely state calculation 

23: for 𝑡 = l to 𝑇 do 
24:  �̂�𝑡 = argmax1≤𝑖≤𝑁𝛾𝑡(𝑖) 
25: end for 

 

 

3. RELATED WORK 

In [21], to improve the prediction of the topology of fully beta membrane proteins, Fariselli et al. 

propose a new algorithm for the HMMs decoding problem. This new algorithm, called Posterior-Viterbi, is a 

combination of the posterior and Viterbi algorithms. First, they compute the posterior probabilities of each 

state, then they use the Viterbi algorithm to look for the best posterior possible path through the model. It 

performs better than the others especially when several concurring paths are present. This algorithm is certainly 

effective, but in terms of time complexity it is slower than other algorithms of decoding (e.g., Viterbi, posterior 

decoding). While in terms of space complexity, it needs the same memory requirements as Viterbi and 

posterior. 

In [22], Sand et al. used new generations of multi-core processors that support the SSE instruction set 

to develop a library for HMMs using C++. It exploits an optimized implementation of forward and backward 

algorithms by reformulating matrix multiplications, and for each iteration for the division operation, it uses 

SSE instruction instead of the instruction for chunks multiplication to speed-up the calculation. Lunter et al. 

[23] propose a variant of the posterior decoding, marginalized posterior decoding, which differs from the 

classical algorithm in the way the intervals are treated. It takes into account the columns which contribute to 

an alignment to calculate this alignment that maximizes the posterior probability of the cumulative log of these 

columns.  

Do et al. [24] present the probcons algorithm using pair HMMs to estimate posterior probabilities for 

amino acid residues. It uses an alignment partition function to generate suboptimal alignments. It differs from 

other approaches in its use of maximum expected accuracy to align pairs of sequence profiles. To predict the 

sequence features that combine probabilities for homologs sequence features, Käll et al. [25] propose a 

posterior HMM decoder. This algorithm considers the mean posterior label probability of each position in a 

global sequence alignment. Bourlard et al. [26] improve the posterior probabilities using all possible acoustic 

information and prior knowledge to enhance the functioning of automatic speech recognition systems. The 

objective in this work is to improve the estimation of local posteriors by calculating posterior probability 

recursively to generate local posteriors considering all available acoustic information adding other preliminary 

information. Brown et al. [27] outline a new HMMs decoding approach based on the labelling of sequences in 

such a way that the correct labelling of a sequence is close to the prediction. 

We propose an improvement of posterior decoding algorithm. It is a parallel distributed posterior 

decoding algorithm under Spark which makes it possible to speed up the algorithm for a high number of states 

or a high number of sequences. Thus, the improved algorithm allows the optimization of the complexity and 

reduction of computation time. So, this solution is well adapted to big data applications (high scalability, 

effective management of heterogeneous data and easy integration in big data frameworks). In addition, the 

proposed solution based on Spark allows to benefit from the richness of its modules offering a variety of tools 

for collection, preprocessing and data cleaning, and a set of optimized algorithms for parallel calculation, 

analyzing and managing data in real time. It gives possibility of graph algorithms execution. 
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4. PARALLEL DISTRIBUTED POSTERIOR DECODING ALGORITHM USING SPARK 

Many recent researches have focused on the parallel distributed implementation of classical 

algorithms using big data platforms including the classical algorithms of HMMs [28]-[33]. We implemented 

our algorithm under Spark using the Python language. We used the main concepts of the Spark framework to 

achieve this implementation; the MapReduce paradigm to perform parallel computations, the resilient 

distributed datasets (RDD) concept to distribute the data over many blocks and to reduce the communication 

cost, we used the broadcast variables. 

Spark is one of the platforms often used for big data processing to handle a huge amount of data in 

batch and real time processing modes. Spark uses RDDs to enable efficient reuse of data in a broad family of 

applications. RDDs are characterized by their fault tolerance property and allow the storage of intermediate 

data in memory using parallel data structures, the control of partitioning, and the manipulation of data using a 

set of operators. RDDs support two types of operations: transformations and actions. The transformations (e.g., 

map, filter, sample) return a new RDD while the actions, like reduce, collect, and count, evaluate and return a 

new value.  

Spark, like Hadoop [34], is based on a distributed storage system (e.g., HDFS [35]) to allow the 

storage of input and output data of Spark's jobs [36]. Spark is based on following elements: Spark core, which 

is the framework execution engine, Spark cluster manager, which manages the cluster resources (Kubernetes, 

Mesos [37], Yarn [38]), Spark SQL [39], Spark streaming [40], MLlib, the distributed machine learning library 

[41] and GraphX [42] as shown in Figure 1. 

 

 

 
 

Figure 1. Spark architecture 

 

 

In addition, to reduce the communication cost, we used the fundamental concept of Spark, the 

broadcast variables. A Spark action is performed through a set of steps. These steps are separated by distributed 

shuffle operations. Shared variables are therefore broadcast automatically and are cached. These are the 

common data needed for the tasks in each step.  

To optimize the calculations on Spark, we used vectors. Each column of the matrices is stored in a 

vector. Vectors are less consuming in terms of computation time [43]. It is better to work on vectors rather than 

on matrices. Indeed, even if the filling of the vectors represents more operation than the filling of a matrix, the 

program will be faster. The explanation is as: When filling a vector, starting from the first component, the 

processor automatically allocates cache memory for the following n components. Whereas when filling a 

matrix, only the components of the first line are allocated a place in the cache memory. Going to the next line 

resets the operation. So, for each matrix, we use a vector to store the elements of each column. For example, 

when calculating the posterior probability 𝛾𝑡(𝑖), the values of 𝛾1(1), 𝛾1(2), 𝛾1(3), ..., 𝛾1(𝑁) are stored in the 

vector 𝐺𝑎𝑚𝑚𝑎1 as shown in Figure 2. 

 

 

 
 

Figure 2. Calculation and storage of 𝛾𝑡(𝑖) 
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The steps of the proposed algorithm implemented under Spark is as. We first calculate the values of 

the forward and backward variables as we explained in Section 2 by parallelizing the loops on 𝑖 and 𝑗. Under 

Spark, this task is performed using multiple executors in parallel. Then, from these stored values in 𝐴𝑙𝑝ℎ𝑎𝑡 

and 𝐵𝑒𝑡𝑎𝑡 vectors, we compute the 𝛾𝑡(𝑖) in parallel for each t as shown in Figure 3. Thus, we use different 

RDD operators (map, reduce, ...) to efficiently perform calculations in parallel. For example, using the reduce 

function to calculate 𝑃(𝑂|𝜆), this allows to aggregate the elements of an RDD by applying a commutative and 

associative function passed as an argument instead of making a sum on the elements 𝛼𝑇(𝑖) with 𝑖 which varies 

between 1 and 𝑁. According to Figure 3, for a value of 𝑡, the calculation of 𝛾𝑡(𝑖) 𝑁 times is performed only 

once. It is therefore a gain of 𝑇 ∗  𝑁 operations. This is not negligible for large programs. The 𝛾𝑡(𝑖) for each 𝑡 

will be stored in the vector 𝐺𝑎𝑚𝑚𝑎𝑡. Then, we apply the function 𝑎𝑟𝑔𝑚𝑎𝑥 on the 𝛾𝑡(𝑖) on all 𝑁 states to find 

the individually most likely state. 

 

 

 
 

Figure 3. Parallel calculation of the values of posterior probability 𝛾𝑡(𝑖) 

 

 

The proposed parallel distributed posterior decoding algorithm using Spark is presented in Algorithm 2. 

 
Algorithm 2: Parallel distributed posterior decoding algorithm under Spark 

 input: A model 𝜆 = (𝐴, 𝐵, 𝛱), a sequence of observations 𝑂 = {𝑜1𝑜2𝑜3. . . 𝑜𝑇} 

 output: The individually most likely state 𝑞�̂� 

1 begin 

2 for each executor𝑗  of 𝑁 executors do 

3 Parallel do 

4  α1(j) ←  π𝑗  b𝑗(o1) { 𝑗 ∈  {1, 2, 3, … , 𝑁}} 

5 end for 

6 for 𝑡 ← 1 to 𝑇 − 1 do 

7 for each  executor𝑖,𝑗 of 𝑁 ∗ 𝑁 executors do 

8 Parallel do 

9 
 calculate (𝑚𝑎𝑝) 𝛼𝑡(𝑖)𝑎𝑖𝑗 and store α𝑡(i) in Alpha𝑡 , 𝑖, 𝑗 ∈ {1, … , 𝑁}  

 sum (𝑟𝑒𝑑𝑢𝑐𝑒) of 𝛼𝑡(𝑖)𝑎𝑖𝑗, then multiple by b𝑗(o𝑡+1), 𝑖, 𝑗 ∈ {1, … , 𝑁}  

10 end for 

11 end for 

12 𝑃(𝑂|𝜆) ← Alpha𝑇 . reduce (lambda a, b : a + b) 

13 for each executor𝑗  of 𝑁 executors do 

14 Parallel do 

15   β𝑇(j) ← 1 { 𝑗 ∈ {1, 2, 3, … , 𝑁}} 

16 end for 

17 for 𝑡 ← 𝑇 − 1 downto 1 do 

18 for each executor𝑖,𝑗 of 𝑁 ∗ 𝑁 executors do 

19 Parallel do 

20  𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛽𝑡+1(𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1) 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛽𝑡(𝑗) in Beta𝑡 , 𝑖, 𝑗 ∈ {1, … , 𝑁}  

21  end for 

22 end for 

23 for each executor𝑡,𝑖 of 𝑇 ∗ 𝑁 executors do 
24 Parallel do 
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25 
 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑡(𝑖) ←

𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃(𝑂|𝜆)
 

 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒 𝛾𝑡(𝑖) in  Gamma𝑡 , 𝑖 ∈ {1, … , N} ; 𝑡 ∈ {1, … , T} 
26 end for 

27 for each executor𝑡 of 𝑇 executors do 
28 Parallel do 

29  𝑞�̂� ← 𝐚𝐫𝐠𝐦𝐚𝐱( Gamma𝑡) 
30 end for 

31 return {𝑞1̂, 𝑞2̂, 𝑞3̂, …, 𝑞�̂�} 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Experimentation setup 

We evaluated the new algorithm using Spark in a cloud environment. We used the t2.large cloud 

computing platform under Amazon EC2. It is characterized by a resizable computing capacity and a very high 

level of security. We carried out the experiments with a configuration consisting of 8 GB of memory and 2 

CPU with 2.0.1 as version of Spark with 5 GB of storage for Amazon S3. T2 instances are expandable capacity 

instances that provide a high frequency Intel Xeon processor with expandable CPUs and present a high level 

of balance between computing, memory, and network resources.  

In this study, we evaluate the proposed algorithm by performing different experiments using dataset 

which consist of sequences of integers drawn from a multinomial distribution. In the first experiment, we fixed 

the number of sequences and measured the running time in terms of states number, then we fixed the number 

of states and measured the running time in terms of sequences number. To evaluate the efficiency of this 

parallel distributed implementation, we also measured the acceleration and parallelization efficiency of the 

proposed algorithm. For these last two measurements, we created four subsets of data with different numbers 

of sequences, and we measured the speedup then the efficiency by varying the number of used nodes. 

 

5.2.  Computational complexity 

We compared the proposed parallel distributed posterior decoding algorithm to the classical one in 

terms of time and space complexities. As shown in Table 1, the results indicate a great improvement in time 

complexity compared to the classic version while the space complexity remains almost the same. Thanks to 

this implementation, the complexity has been reduced from 𝑂(𝑁2(𝑇 −  1)) and has become 𝑂(𝑇 −  1) with 

𝑁 the states number and 𝑇 the length of the observation sequence. 

The results in Table 2 matches the results in Table 1. This table presents a step by step time complexity 

comparison between classical posterior decoding algorithm and new parallel distributed algorithm under Spark. 

For most stages of the algorithm (i.e., forward, and backward variables, posterior probability) there is a 

remarkable improvement. In sum, from this table, the results of the proposed algorithm are much better than 

those of the conventional one. From the two tables, the results have shown that the proposed algorithm 

improved since the time complexity is considerably ameliorated. 

 

 

Table 1. Complexity comparison 

Complexity Type 
Complexity comparison 

Classic posterior decoding Parallel distributed posterior decoding 

Time complexity  𝑂(𝑁2(𝑇 −  1)) 𝑂(𝑇 −  1) 
Space complexity 𝑂(𝑁2(𝑇 −  1)) 𝑂(𝑁2(𝑇 −  1)) 

 

 

Table 2. Complexities comparison step by step of classical algorithm and parallel distributed under Spark. 

Operation 
Complexity comparison 

Classic posterior decoding Parallel distributed posterior decoding 

Initialization (Forward variable) 𝑂(𝑁) 𝑂(1) 

Recurrence (Forward variable) 𝑂(𝑁2(𝑇 −  1)) 𝑂(𝑇 −  1) 

Termination (Forward variable) 𝑂(𝑁) 𝑂(1) 
Initialization (Backward variable) 𝑂(𝑁) 𝑂(1) 
Recurrence (Backward variable) 𝑂(𝑁2(𝑇 −  1)) 𝑂(𝑇 −  1) 

Calculation of posterior probability 𝑂(𝑁(𝑇 −  1)) 𝑂(1) 
individually most likely state calculation 𝑂(𝑁2(𝑇 −  1)) 𝑂(1) 

 

 

5.3.  Performance metrics 

5.3.1. Running time analysis 
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In Figure 4, the results of the proposed parallel distributed version of posterior decoding algorithm 

performances, in terms of running time according to states number, are very significant.  It is noticed from the 

curve in this figure that, with the increasing of the states number, the ratio between running time and states 

number remains a little close stable. Figure 5 shows the performances of the parallel distributed posterior 

decoding algorithm under Spark in terms of running time according to sequences number. The curve shows 

that, with the increase of the sequences number, the proposed algorithm presents good results in terms of 

running time. This explains that this algorithm is well suited to applications with very large sequences number. 

 

5.3.2. Speedup analysis 

To measure the performance of parallel implementations, one of the frequently used metrics is 

speedup. It measures the evolution of execution time as a function of the number of nodes. The acceleration is 

the benefit obtained by a parallel implementation of an algorithm (under p nodes) compared to the same 

algorithm on a single node. 

According to Amdahl's Law, the speedup is calculated as:  

 

𝑆𝑝 =  𝑇𝑠 / 𝑇𝑝           (17) 

 

where 𝑇𝑠 and  𝑇𝑝 are respectively the processing times on 1 and p resources. 

 

 

  
 

Figure 4. Parallel distributed posterior decoding 

algorithm running time as a function of states 

number 

 

Figure 5. Parallel distributed posterior decoding 

algorithm running time as a function of sequences 

number 

 

 

These can be cores in a processor, processors in a shared memory machine, nodes (PCs) in a cluster 

and disks in a mass storage system. In our case, Ts presents the execution time of the sequential algorithm and 

Tp the parallel algorithm execution time on p nodes. As it can be noticed in Figure 6, the proposed algorithm 

presents a significant improvement in execution time and this according to the good results obtained from 

speedup which increases with the number of nodes used while being relative to the volume of data processed. 

 

 

 
 

Figure 6. Speedup of parallel distributed posterior decoding algorithm as a function of nodes number 
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5.3.3. Parallelization efficiency analysis 

Efficiency is a profitability metric that allows to quantify the rate of good use of the resources used in 

a parallelization. This mesure is defined as: 
 

𝐸𝑝  =  𝑆𝑝/𝑝          (18) 

 

where 𝑆𝑝 is the speedup and  𝑇𝑝 is the parallel algorithm execution time on p nodes. 

According to Figure 7, the efficiency depends on the number of used nodes and on the volume of the 

data. So, for different subsets of data, a satisfactory efficiency rate has been obtained. 
 

 

 
 

Figure 7. Parallelization efficiency as a function of nodes number 
 

 

According to these measurements of yield of parallel computation, the proposed algorithm presents a 

high level of scalability since the level of parallelism increases with the number of nodes. In addition to these 

performances, the implementation under a big data platform (i.e., Spark) allows to fully benefit from the 

advantages of using many data preprocessing tools especially for large scale multidimensional data, features 

selection and model’s evaluation. Indeed, Spark provides a variety of tools for collection, features extraction, 

selection and transformation and data cleaning, a set of efficient algorithms for analyzing and managing data 

in real time and powerful techniques for model evaluation and selection thanks to Spark’s MLlib the machine 

learning library, to Spark SQL for querying large and structured data, to Spark Streaming to process streaming 

data and Spark GraphX to handle graphs and graph-parallel computation.It is also important to note that this 

improved algorithm can be easily transposed and integrated into any other big data framework.The results of 

the proposed algorithm compared to the results of other implementations and to the classical version show a 

big improvement in terms of execution time. 

 

 

6. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a parallel distributed algorithm based on Spark. It is a new implementation 

of posterior decoding algorithm under Spark for hidden Markov models decoding problem. The proposed 

algorithm presents an improvement of the classical algorithm using the benefits of a big data framework (e.g., 

Spark). We evaluated the new algorithm and the findings verified that this one solves the decoding problem 

significantly faster than the old algorithm. The obtained speedup is due to the implementation of the new 

algorithm under Spark, so to the data distribution over several blocks and parallel computation. It is worth 

mentioning that we only investigated the time complexity, while for space complexity, the algorithm in this 

paper will yield same complexity as the classic algorithm. Hence, in future, we will extend the idea of 

improvement of space complexity of the studied algorithm in this paper to the research. We plan to study the 

impact of the impoved algorithm in the context of big data problems in the most promising areas. Thus, this 

implementation of the classical posterior decoding algorithm under Spark optimized the complexity and 

reduced the computation time. We can say that we have succeeded to improve one of the most important 

algorithms of hidden Markov models to resolve the decoding problem leveraging one of the most promising 

big data technologies, the Spark framework, in a cloud environment. Finally, this parallel distributed posterior 

decoding algorithm allows, effectively, to meet the needs of this great digital revolution by proposing a well-

adapted algorithm to the big data context. 
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