
IAES International Journal of Artificial Intelligence (IJ-AI) 

Vol. 10, No. 1, March 2021, pp. 110~120 

ISSN: 2252-8938, DOI: 10.11591/ijai.v10.i1.pp110-120      110 

  

Journal homepage: http://ijai.iaescore.com 

Toward a deep learning-based intrusion detection system for 

IoT against botnet attacks 
 

 

Idriss Idrissi1, Mohammed Boukabous2, Mostafa Azizi3, Omar Moussaoui4, Hakim El Fadili5 
1,2,3,4MATSI Research Lab., ESTO, Mohammed First University, Oujda, Morocco 

5LIPI Research Lab., ENSAF, Sidi Mohamed Ben Abdellah University, Fez, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 9, 2020 

Revised Dec 30, 2020 

Accepted Feb 2, 2021 

 

 The massive network traffic data between connected devices in the internet 

of things have taken a big challenge to many traditional intrusion detection 

systems (IDS) to find probable security breaches. However, security attacks 

lean towards unpredictability. There are numerous difficulties to build up 

adaptable and powerful IDS for IoT in order to avoid false alerts and ensure a 

high recognition precision against attacks, especially with the rising of 

Botnet attacks. These attacks can even make harmless devices becoming 

zombies that send malicious traffic and disturb the network. In this paper, we 

propose a new IDS solution, baptized BotIDS, based on deep learning 

convolutional neural networks (CNN). The main interest of this work is to 

design, implement and test our IDS against some well-known Botnet attacks 

using a specific Bot-IoT dataset. Compared to other deep learning 

techniques, such as simple RNN, LSTM and GRU, the obtained results of 

our BotIDS are promising with 99.94% in validation accuracy, 0.58% in 

validation loss, and the prediction execution time is less than 0.34 ms. 
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1. INTRODUCTION 

Nowadays an enormous number of objects are dispatched around the world and are connected 

between them and to the internet. They vary from personal gadgets, wearables, sensors, actuators to home 

appliances and medical devices. As estimated by CISCO in 2025, it would be somewhere 75 billion devices 

connected to the Internet [1]. The IoT has raised concerns that are growing rapidly without fitting thought of 

the significant security challenges [2]. 

Nowadays, most of the security concerns are like those of regular servers, workstations and 

smartphones; however, security moves extraordinarily to the IoT, including mechanical security controls, 

hybrid frameworks, IoT-explicit business procedures, and edge devices [3]. Traditional security protection 

technology is limited due Zero-Day attacks and vulnerabilities and future new attacks that are continuously 

changing nature; setting up a steady, reliable, and precise intrusion detection is becoming mandatory for 

improving the IoT security [4]. 

Botnets or zombies are robots of infected internet-connected devices, they are used to achieve 

distributed denial-of-service attack (DDoS attack), password cracking, key logging (steal data), 

cryptocurrency mining, and give the attacker the possibility of accessing the device using command and 

control (C&C) software [5]. In September 2016, “Mirai” malware, an IoT Botnet attacked many sites offline 
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like the cloud service provider “OVH” with nearly 1.1 TBps, the website of computer security consultant 

Brian Krebs with 620 Gbps of traffic, and many other websites like dynamic DNS provider “Dyn” [6]. 

The detection and prevention from different attacks are a big challenge. IDS using machine-learning 

methods, has gained a wide reputation [7]. IDS is an essential component in the security mechanism, it is 

used for the analysis and detection of the security breaches on a network [8]. IDS systems can be gathered 

into two categories: the first one “anomaly detection” and the second is “Misuse detection”, or gathered into 

three major distinct families “host-based”, “network-based” and “hybrid”. IDS investigate both traffic in the 

network and in the operating systems. IDS are used for effective network protection. Numerous research 

works are trying to apply data mining and machine learning algorithms to cyber security. In Machine 

learning, patterns recognition and data mining algorithms are extensively applied to distinguish the normal 

traffic from the malicious one. 

 

 

2. ARTIFICIAL NEURAL NETWORKS (ANN) 

In last recent years, one of the most resulting and efficient subsets of artificial intelligent is deep 

learning (DL) which it is also a subset of machine learning based on artificial neural networks (ANN) [9]; a 

computing system inspired from biological brain where the machine learns from many training examples, 

allowing it to classify other examples [10]. DL is increasingly being used. It can be applied in many data 

processing layers into a hierarchical architecture to make a deep model. DL accounts on its capacity to 

identify ideal features in raw data through successive nonlinear transformations, with every alteration 

achieving a more elevated level of complexity and abstraction [10]. It has been applied efficiently to many 

different research fields, from medical image processing, natural language processing, speech recognition, 

and signal recognition to many other domains of science, business and government. In all these fields, DL 

showed tremendously promising results [11]. In the IoT security field, the machine trains on various 

collected and labeled attacks and also normal traffic to learn them, were finally this machine can identify new 

similar attacks. 

Convolutional neural networks (CNN or ConvNets): it’s a deep learning class developed in 1998 by 

LeCun in the LeNet architecture [12]. In recent two decades, CNN gained big success. It’s composed of an 

input layer, many hidden layers in between, and an output layer as shown in Figure 1 like the multi layer 

perceptron (MLP) [13] networks. Best known and used layers are: convolution, activation or ReLU, and 

pooling [14]. The convolutional layer is the most important one, it takes a convolution kernel also called a 

mask or a filter then pass it over the data (usually images) and transform it based on the values from the filter 

as shown in Figure 1. Then it calculates the feature map values using the formula (1), where the input data is 

represented by 𝑓 and the kernel by ℎ, 𝑚 and 𝑛 are respectively the indexes of rows and columns of the 

resultant matrix [15]. 

The pooling layer it is what achieves progressively down sampling to reduce the size of the 

succeeding layers through max pooling or average pooling to help overfitting. Max pooling divides the input 

into non-overlapping clusters and selects the maximum value for each cluster in the previous layer [16]. 

 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚,𝑛] = ∑ ∑ ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]𝑘𝑗  (1) 
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Figure 1. CNN layers 
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Contrariwise to the traditional feature selection algorithms it has the capability of learning better 

features automatically and categorize the traffic. In addition, it can achieve better classification and learn 

additional features with more traffic data because it shares the same convolution matrix (kernel), that would 

decrease the number of parameters and calculation sum of training significantly. This gives CNN a fast 

recognition of attack nature, contrariwise to other deep-learning algorithms, or machine learning algorithms 

that can be over-fitted with massive big data. Moreover, the literature shows that using CNNs in intrusion 

detection field gives better results than other algorithms [17-18]. 

Recurrent neural networks (RNN) are a class of deep neural networks that contains feedback 

connections as shown in Figure 2. The fully connected layer works on a flattened input where each of these 

inputs is connected to all neurons. The activation function of a node describes its output given a one or set of 

inputs. Rectified linear unit (ReLU) activation as shown in Figure 3(a), it is a ReLU used on all elements of 

the volume. It aims at introducing non-linearities to the network. LSTM is composed of memory blocks that 

are a set of recurrent connected subnetworks. These blocks are composed with a self-connected memory cells 

(one or many) as shown in Figure 4 which offer a memory to remember the previous data, and three units 

called gates: input gate (3.a), a forget gate (3.b) and an output gate (3.c) which they provide a continuous 

equivalent of write, read and reset operations [21]. These gates are sigmoid as shown in Figure 3(b) and tanh 

as shown in Figure 3(c) activation functions meaning that their output is a value between 0 and 1 for sigmoid, 

and between -1 and 1 for tanh. Derived from feedforward neural networks (FNN) but unlike FNN, there are 

loops (bidirectional data flow) and memories to remember previous computations as shown in Figure 4 [19]. 

And allowing preceding outputs to be used as inputs while having hidden states [20] where for each timestep 

𝑡 , the activation 𝑎<𝑡> and the output 𝑦<𝑡>are expressed: 

 

 (2) 

 

Where 𝑊𝑎𝑥 , 𝑊𝑎𝑎 , 𝑊𝑦𝑎, 𝑏𝑎, 𝑏𝑦 are coefficients that are shared temporally and 𝑔1, 𝑔2 activation 

functions 
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Figure 2. Recurrent neural networks layers 

 

 

RNN can face the long-term dependency problem and the vanishing gradient & exploding gradient, 

so we cite here the best known RNN networks, the long short-term memory (LSTM) and gated recurrent unit 

(GRU) networks to solve these problems. The main difference to simple RNN is that the nonlinear units in 

the hidden layers are replaced by memory blocks. The following formula (3) represents the gates in LSTM 

[22]. 

 

 (3) 

 

Where: 𝑥𝑡 are the input gates (“𝑖” for the input gate, “𝑓” for the forget, and “𝑜” for the output gate); 

“𝜎”it is the sigmoid function; 

“𝑏𝑖” it is the biases for the gate(x); 



Int J Artif Intell ISSN: 2252-8938  

 

Toward a deep learning-based intrusion detection system for IoT against botnet attacks (Idriss Idrissi) 

113 

“ℎ𝑡−1” it is the output of the precedent LSTM block; 

“𝑥𝑡” it is the current input. 

Gated recurrent unit (GRU) is a simplified version of LSTM, where the GRU modulates the flow  

of information inside the unit using gating units as shown in Figure 4, without separating the memory cells 

[23-24]. It merges the forget and the input gates into an “update gate”, also merges cell and hidden state, 

GRU has fewer parameters than the LSTM. It is defined by the following formulas. 

 

 (4) 
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Figure 3. Activation functions: (a) ReLU, (b) Sigmoid, (c) Tanh 
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Figure 4. RNN, LSTM & GRU blocks [25] 

 

 

3. RELATED WORKS 

Koroniotis et al. [26] applied support vector machine (SVM), LSTM and RNN to evaluate the IoT-

Dataset. The authors focused on binary classification on the dataset, and their prediction result was either a 

“normal traffic” or “some type of attacks” (for every type of attack), which is not helpful for implementing 

many models (for every attack type) to a working IDS contrary to a multi-label output (numerous categories 

of attacks) that gives one and only one model. 

Ibitoye et al. [27] in their research compared the performance between two deep learning models 

self normalizing networks (SNN) and feed forward neural networks (FNN) inside the milieu of an IoT 

network. This comparison shows that FNN outperforms SNN, even if SNN remains better in regards to 

adversarial samples. Also, the authors examined the impact of feature normalization on the adversarial 

strength and demonstrated its bad influence to adversarial attacks resisting. 

Ferrag et al. [28] in his paper conducted a comparative study with two datasets, Bot-IoT and CSE-

CIC-IDS2018 datasets using some deep learning approaches, such RNN, CNN, Boltzmann machine, deep 

belief networks (DBN), deep Boltzmann machines (DBM), deep autoencoders and deep discriminative 

models, with 100 hidden layers to get an accuracy of 98.394%. 

Mengmeng [29] proposed using FNN an intelligent binary and multiclass classification, but with 

just few classes to get 99% in all evaluation measures (accuracy, precision, recall and F1 score) for 

DDoS/DoS attacks while the normal traffic classification got an accuracy of 98%. 

AlKadi [30] proposed a system named mixture localization-based outliers (MLO) on the BoT-IoT 

Dataset that uses utilizes gaussian-mixture models for fitting network data and a local outlier factor function 

for discovering abnormal patterns in network traffic data, and gotten an accuracy of 97.98%. 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 1, March 2021:  110 – 120 

114 

In fact, convolutional neural networks (CNN or ConvNets) are a class of deep neural networks that 

are used in many fields but mostly in pattern recognition. CNN is a class of neural networks that uses the 

convolution and the pooling layers instead of the fully connected hidden layers [31]. Contrariwise to the 

traditional feature selection algorithms it has the capability of learning better features automatically and 

categorize the traffic. In addition, it can achieve better classification and learn additional features with more 

traffic data because it shares the same convolution matrix (mask), that would decrease the number of 

parameters and calculation sum of training significantly. This gives CNN a fast recognition of attack nature, 

contrariwise to other deep-learning algorithms, or machine learning algorithms that can be over-fitted with 

massive big data. Moreover, the literature shows that using CNNs in intrusion detection field gives better 

results than other algorithms [17-18]. 

The related work listed above can provide a good prediction of botnet attacks that can affect an IoT 

system. However, these works could not recognize type of attack due to the binary classification. Hence our 

study constitutes an important experimental extension of the above-mentioned works by benchmarking the 

Bot-IoT dataset using CNN compared to different deep learning models, using the multilabel classification 

corresponding to various categories of attacks in the IoT. 

 

 

4. PROPOSED METHOD 

BotIDS is our proposed network IDS obtained by learning from the Bot-IoT dataset. This solution is 

planned to be placed in a fog node when it will be implemented in a real IoT environment. A such 

deployment gives it the power of analyzing in real time the inbound and outbound traffic through the network 

by sniffing it as shown in Figure 5. This location will make our BotIDS able to monitor all traffic to/from the 

devices both inside and outside the network, and even particularly the traffic between this insider devices in 

case of a lurking zombie device inside the network. 
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Figure 5. Architecture of proposed approach 

 

 

The BotIDS is a deep learning-based method on a deep learning model that contains three phases: as 

shown in Figure 6 
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Figure 6. Model building process 

 

 

− 1st Phase: Dataset preprocessing; First of all, we need to alter the raw data and normalize its values with 

the goal of the best performance of deep learning model, and then convert it into image shape.  

− 2nd Phase: Building the model; the model is at first fit on a training dataset (a part of the dataset) using 

parameters to achieve the improvement of the model performance, these parameters are changed in the 

training process to reach better performance. Secondly, the test dataset (the remaining part of the 

dataset) is used to validate the accuracy of the model. 

− 3rd Phase: Evaluating the model by prediction; after building and generating the model, we evaluate 

this model with the test dataset by predicting attacks and calculating the time needed for this prediction. 

 

 

4.1.  Dataset preprocessing 

For conducting proposed work, we have used the latest Bot-IoT dataset [32] that was created 

specifically for IoT systems by an actual network milieu at the Cyber Range Lab of the Center of UNSW 

Canberra Cyber. The environment incorporates a combination of usual normal and bad traffic, with six types 

of attacks and 10 subcategories, namely, reconnaissance (service scanning and OS fingerprinting), DDoS 

(TCP, UDP and HTTP), DoS (TCP, UDP and HTTP), theft (key logging and data exfiltration). 

With 72 million records of data traffic simulated IoT environment. The whole data was ascended 

down to 5% into a “full-feature” dataset with around 3.6 million records and another version called “10 best 

features” is also provided with selection of best features from the “Full features” version, both versions are 

used for our experiment. The training and test dataset have 11 output classes which reflect the normal traffic, 

and the 10 types of attacks which were carried out against the IoT network. 

The Bot-IOT dataset contains network connection attributes; nominal, numeric and IP addresses. 

We convert the nominal data to numeric data, ipv4 and ipv6 also be converted to numerical shape, and 

merging category and subcategories fields into one field that contains 10 types of attacks and the 11th is a 

normal traffic then we convert the new category attribute using “one-hot encoding”, and dropped the binary 

“Attack” field cause. Our focus is on a multilabel output and not a binary one. 

After encoding the data, we normalized it using Scikit-learn; meaning scaling the vectors 

individually to unit norm, and converting the normalized output data into image data shape. 

Then we split the data at first into data X (contains all the features except the “category” feature) 

and label Y (contains the “category” feature), and then split it into random training subset and testing subset 

with 75% for training set and 25% for the testing set. Figure 7 shows the number of data rows for each set 

and each attack type. 
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Figure 7. Attacks distribution in training and testing sets 

 

 

4.2.  Building our models 

The CNN models were defined to have an input layer with the number of neurons equal to the 

amount of input features, four hidden layers Convolution2D layer, MaxPooling2D layer, Flatten layer, Dense 

layer and an output layer. For the best features dataset, the model was trained in 10 epochs (the whole dataset 

is passed through the neural network 10 times) with batch size of 32 (amount of training simples in a single 

batch is 32) and a kernel size of (1, 10). The neural network comprises 16 input neurons (in the first layer, the 

same number as the features), with 4 intermediate (hidden) layers with 32 (Convolution2D), 32 

(MaxPooling2D), 480 (Flatten), 22 (Dense) neurons, and 11 output neurons for the multilabel classification 

as shown in Figure 8. For our full-feature dataset, the model was trained in 15 epochs (batch size of 32 and a 

kernel size of (1, 10)), and had a 40-neuron input layer, same number and consistency of hidden layers as 

with the best feature model and 11 output neurons for the multilabel classification. In both cases, for the input 

and hidden layers, the activation function that was used was ‘Relu’, while the output layer activation function 

was ‘Softmax’ as shown in Figure 8 and Table 1. 

The other recurrent neural network (RNN) models were defined to have one input layer with the 

number of neurons equal to the amount of input features, four hidden layers and an output layer. For the best 

features dataset, the model was trained in 40 epochs with 32 in the batch size. The neural network comprised 

16 input neurons (in the first layer, the same number as the features), with 4 (SimpleRNN/LSTM/GRU) 

intermediate (hidden) layers with 32, 64, 128, 22 neurons, and 11 output neurons for the multilabel 

classification as shown in Figure 9. For our full-feature dataset, the model was trained in 40 epochs (32 in the 

batch size), and had a 40-neuron input layer, same number and consistency of hidden layers as with the best 

feature model and 11 output neurons for the multilabel classification. In both cases, for the output layer 

activation function was ‘Softmax’ as shown in Figure 9, and Table 1. 

 

 

 
 

Figure 8. CNN model layers     Figure 9. RNN models layers 
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Table 1. Models parameters for the implemented models 
DL 

Algorithm 
Convolutional neural network 

(CNN) 
Simple recurrent neural 

network (RNN) 
Long short-term memory 

(LSTM) based RNN 
Gated recurrent unit 
(GRU) based RNN 

Dataset 

version 
Full features Best features 

Full 

features 

Best 

features 

Full 
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Activation 
function 

Hidden layers: Relu Output layers: 
Softmax 

Output layers: ‘Softmax’ Output layers: ‘Softmax’ Output layers: ‘Softmax’ 

Optimizer adam adam adam adam 

Batch size 32 32 32 32 

 

 

5. RESULTS AND DISCUSSION 

5.1.  Hardware characteristics 

The results we obtained are performed on a machine (laptop) with following hardware 

characteristics. 

− CPU: Intel i7 8th generation (1 socket, 6 cores, 12 threads) 

− RAM: 8 GB 

− GPU: NVidia GeForce GTX 1050 with cuda v10.1 

In our experiments we worked with Keras (2.2.4); an open-source python deep learning library 

which is running on top of Google’s open-source data flow software; TensorFlow (1.13.1) as a backend 

engine. 

 

5.2.  Evaluating the model 

In Figures 10-11 (generated by Tensorboard) and Table 2, we present the accuracy training, loss 

training, accuracy validation, loss validation along with training time of all models that are trained over 

several epochs. We consider the number of epochs for which our model reaches the best results for each 

version of the dataset (full features and best features). We initially tested each model with a batch size of 128, 
which allowed us to get good timing for all models but with a poor performance, compared to a smaller batch 

size like 32 records that leads to an improved result but with a higher computation time. 

As shown in Figure 10 and Table 2, CNN models in both dataset versions “Full Features” and “Best 

Features” reaches respectively 99,430 and 99,935 as accuracy in just 1395s and 823s (15 and 10 epochs for 

each). Compared to our CNN, GRU is a little more accurate but it took more time to be trained (12412s and 

5818s in 40 and 20 epochs). The time of our CNN is almost twice compared to simple RNN for the “Full 

Features” version (6089s in 40 epochs), and almost equal to the “Best Features” version (5708s in 40 

epochs). On the other hand, LSTM models have their best accuracy in a timing between simple RNN and 

GRU (with 10627s and 8302s in 30 and 15 epochs). For the Loss as shown in Figure 11 and Table 2, CNN 

models are always the best reaching models in both dataset versions, “Full Features” and “Best Features”, 

with respectively 0,582% and 1,663% compared to other RNN models (between 1.7% and 2.9%). By 

examining these results, it is clear that the CNN model using “Full Features” is the best model according to 

its higher accuracy (0.9993), and the best time performance when considering the whole time for obtaining 

these results. In addition, when comparing the resulting metrics in all models with the two-dataset versions, 

we clearly see that the “Full Features” version gets best performance related to “Best Features” version. This 

means that deep learning algorithms can achieve better classification and learn additional features with 

additional traffic data as already explained in the previous section, but in computation time and energy 

consumption, it consumes more because more data to train are needed. 

In Figure 12, we compared the time that a prediction would take for all the considered models (how 

much time the IDS would take to identify an attack) which could be another important metric for the IDS 

implementation in a real IoT environment. We then concluded that CNN has not only the best accuracy and 

the lowest loss, but also the lowest time to predict an attack with just a fragment of milliseconds (with an 

average of 0.34ms). The other models make a detection of an attack in more than twice or triple that time of 

CNN (0.78ms for simple RNN, 1.03ms for GRU, and 1.08ms for LSTM). 
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The amount of data in the dataset is considerably unbalanced regarding the different types of 

attacks. For example, DoS (HTTP), DDoS (HTTP), key logging, and data exfiltration attacks in the training 

and test sets have very small amount of data as shown in Figure 7. Therefore, the model has a limited 

capability to learn accurately these types of attacks. The detection average of these attacks is one of the main 

factors restricting the overall detection accuracy. 
 

 

 

 

 

Figure 10. Accuracy scalar 
 

 

 

 

 

Figure 11. Loss scalar 
 

 

Table 2. Training and testing results for the implemented models 
DL 

Algorithm 

Convolutional Neural 

Network (CNN) 

Simple RNN (Recurrent 

Neural Network) 

Long Short-Term Memory 

(LSTM) based RNN 

Gated Recurrent Unit (GRU) 

based RNN 

Dataset 

version 

Full 

Features 

Best 

Features 

Full 

Features 

Best 

Features 

Full 

Features 

Best 

Features 

Full 

Features 

Best 

Features 

Epochs 15 10 40 40 30 25 40 20 

Layers 4 4 4 4 4 4 4 4 

Accuracy 
training 

0.99762 0.99086 0.98167 0.98038 0.98395 0.98285 0.98787 0.98301 

Loss 

training 
0.01132 0.03294 0.07101 0.07115 0.06155 0.06526 0.04508 0.06661 

Accuracy 
validation 

0.99935 0.99430 0.99406 0.99427 0.99401 0.99747 0.99403 0.99430 

Loss 

validation 
0.00582 0.01663 0.02021 0.01819 0.01848 0.02278 0.01762 0.02921 

Timing 

Total: 

1395s 
Epoch: 

138s 

Step: 

47μs 

Total: 

823s 
Epoch: 

82s 

Step: 

30μs 

Total: 6089s 

Epoch:153s 

Step: 52μs 

Total: 5708s 

Epoch:142s 

Step: 52μs 

Total:10627s 

Epoch:354s 

Step:121μs 

Total: 8302s 

Epoch:332s 

Step:121μs 

Total:12412s 

Epoch:310s 

Step:106μs 

Total:5818s 

Epoch: 291s 

Step:106μs 
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Figure 12. Prediction timing comparison 

 

 

6. CONCLUSION 

The number of IoT objects dispatched around the world is growing progressively, which makes its 

security a big challenge. Our work here focused on intrusion detection systems for IoT using four variants of 

deep learning models, and compared them efficiently to detect various types of IoT network attacks, usually 

done by botnets. After several experiments, we obtained a reasonable detection rate on our all four models. 

By analyzing the obtained results, we concluded that CNN is the best one for intrusion detection systems, it 

was able to identify successfully different types of attacks and showed the higher accuracy (with 99.94%) in 

comparison with other DL algorithms, such as Simple RNN, LSTM, and GRU, and it allowed a detection 

with lower loss rates (0.58%) and a better performance in terms of prediction time. As future works, we will 

apply the CNN model on a real network traffic data, and reinforcing it using deep transfer learning by adding 

other characteristics from other datasets or from diverse firewalls, logs, and IDS servers. In addition, we will 

try to use self-supervised learning to generate a powerful and updated model, and then implement an 

autonomous intrusion detection system. 
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