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 Deep reinforcement learning has been successful in solving common 

autonomous driving tasks such as lane-keeping by simply using pixel data 

from the front view camera as input. However, raw pixel data contains a very 

high-dimensional observation that affects the learning quality of the agent due 

to the complexity imposed by a 'realistic' urban environment. Ergo, we 

investigate how compressing the raw pixel data from high-dimensional state 

to low-dimensional latent space offline using a variational autoencoder can 

significantly improve the training of a deep reinforcement learning agent. We 

evaluated our method on a simulated autonomous vehicle in car learning to 

act and compared our results with many baselines including deep 

deterministic policy gradient, proximal policy optimization, and soft actor-

critic. The result shows that the method greatly accelerates the training time 

and there was a remarkable improvement in the quality of the deep 

reinforcement learning agent. 
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1. INTRODUCTION 

Series of automation and machine learning development has progressed through the years in order to 

make everyday tasks effortless. Case and point, there has been a surge of interest in self-driving cars or 

autonomous vehicles (AV), the ability to drive safely from one point to another with little to no human 

intervention. With the recent study and advancement on AV, the attention of different high-tech companies 

and researchers are rapidly growing. They are highlighting the need for a level five (5) full automation [1], 

where vehicles can be driven safely without human intervention or supervision. There is still a long way for 

this to be achieved along with major challenges on how to design an accurate model of an autonomous 

vehicle in a real-world environment. 

Existing decision-making methods for autonomous driving uses a rule-based approach which 

requires a manually designed driving policy [2], [3]. The problem with such an approach is they lead to 

inaccurate decision-making, as predefined models are biased in a highly stochastic environment and suffer 

heavily when tasked with different scenarios. As an alternative, many researchers have used an imitation 

learning technique that learns a driving policy based on data obtained from an expert driver [4], [5]. Though, 

imitation learning suffers from several weaknesses because a policy learned from an expert driver is limited 

to the knowledge of the said driver and most expert drivers only show good driving behavior, which the 

model may never learn how to deal with a risky situation. Imitating learning is also costly and time-

consuming to implement in a real-world environment. 

https://creativecommons.org/licenses/by-sa/4.0/
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Another method is deep reinforcement learning (RL) it achieves human-level performance in 

playing games like Go [6] and Atari [7]. There have been some significant breakthroughs in continuous 

control of deep RL methods [8], [9]. As a result, deep RL has been used to learn a driving policy with no 

expert data. Despite these breakthroughs, training a deep RL in a highly stochastic environment is 

challenging due to the high demand of computational cost it requires i.e., to achieve reasonable performance 

in playing Atari games deep RL required hundreds of millions of training steps [10], resulting in months of 

consistent training. Similarly, AlphaGo trained data from expert Go players for over 30 million training steps. 

The sheer amount of computational cost imposed on training a deep RL algorithm undermines its application 

in autonomous driving. 

In this paper, we proposed using state representation learning (SRL) to retrieve relevant information 

from raw pixel data to accelerate the training of a deep RL agent by learning a low-dimensional state 

representation of an autonomous driving environment rather than directly using a front view image as input 

to train a deep RL agent. We used variational autoencoder (VAE) [11], a type of generative neural network 

model that comprises an encoder and a decoder network. The idea is to utilize backpropagation to train the 

network to reconstruct a high-dimensional input signal after compressing it into a low-dimensional vector, as 

shown in Figure 1. The goal of a VAE is to minimize reconstruction loss. To achieve this, we collected raw 

image data by manually driving the vehicle in the simulated environment. These images are sent as input 

vectors into a VAE network architecture that comprises an encoder and a decoder. The encoder compresses 

the raw image data into the most essential components and attempts to reconstruct the original signal by 

decoding the compressed representation. The pre-trained VAE images are used to train our deep RL agent, 

which takes the encoded low-dimensional states-input and outputs continuous control commands. 

 

 

 
 

Figure 1. The proposed framework: first the raw captured image is encoded with a VAE and sent as input of 

a pre-trained low dimensional state space into our agent that learns a driving policy to output control 

commands such as throttling and steering 

 

 

Ever since deep RL drew attention after its tremendous success in playing Atari games at a human 

level performance in high-dimensional state space, there has been some promising application in autonomous 

driving by many researchers [12]. Some of these researchers are Vitelli and Nayebi [8] which implemented a 

deep Q-network (DQN) agent on autonomous driving by simply using raw pixel data as input to train the 

policy network. They tested their method on a racing car simulator (TORCs) to evaluate the performance of 

the DQN agent. Pan et al. [13], acquired real-world images and fed them into an asynchronous advantage 

actor-critic model to train a suitable driving policy virtual environment. Sallab et al. [14] proposed a 

framework for an end-to-end autonomous vehicle based on a deep RL pipeline using recurrent neural 

networks to deal with partially observable Markov decision process scenarios in a TORCs simulator. 

Lillicrap et al. [12] tested their proposed continuous control deep reinforcement learning algorithm (deep 

deterministic policy gradient [DDPG]) on a lane following task in TORCs. Perhaps, there are many related 

works on autonomous driving with deep RL, however, most of the aforementioned approach is developed 

and tested in a racing environment or Donkey Car simulator [15] which is not practical in a real-world 

environment or used a raw pixel data directly from a front camera or manually designed feature 



Int J Artif Intell ISSN: 2252-8938  

 

Accelerating the training of deep reinforcement learning in… (Emmanuel Ifeanyi Iroegbu) 

651 

representation which can be computational intensity and time-consuming to train especially in a high-

dimensional environment. 

SRL has been gaining traction in deep RL because of its ability to extract low-dimensional state 

space from a high-dimensional environment by reducing the complexity of the environment. Raffin et al. 

[16], argued that SRL improves the quality of an agent's learning by giving the agent a state space that 

ignores irrelevant distractors, and is disentangled in its feature representation. Kendall et al. [17], was one of 

the first researchers to apply deep reinforcement learning with SRL in autonomous driving. They first 

proposed a method of policy learning by simply mounting a single monocular image as input to observe the 

environment and compared it with using an online VAE. Using VAE gave a minor advantage over raw image 

data. However, training a VAE online i.e., simultaneously with a deep RL agent causes instabilities in the 

policy training [18]. We addressed this issue in our paper by opting to train the VAE offline by using a pre-

trained VAE with fixed feature extraction. We build on these by demonstrating how compressing the raw 

input image from high-dimensional observation to low-dimensional latent space before training our deep RL 

agent, not only reduces the training time but also improves the quality of the agent. On top of that, we trained 

and evaluated our agents using DDPG, proximal policy optimization (PPO), and soft actor-critic (SAC) and 

compared our results with the deep RL baselines. 

 

 

2. ALGORITHM 

Deep RL is simply the use of deep neural networks as a function approximator for policy and value 

functions in a reinforcement learning framework. The neural network is represented by a policy 𝜋(𝑎|𝑠; 𝜃) 

and a value function 𝑄(𝑠; 𝜃). We applied 3 state-of-the-art model-free deep RL algorithms to our proposed 

framework to learn a driving policy. This section gives a brief introduction to these algorithms. 

 

2.1.  Deep deterministic policy gradient 

DDPG is a kind of actor-critic algorithm similar to an approximate deep Q network. It uses two 

separate neural networks for function approximators [12]: an actor and a critic. The actor is used to 

approximate optimal policy deterministically i.e., it always tries to output the best-believed action for any 

given state. The actor 𝜇(𝑠; 𝜃𝜇) learns an 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) as the best action. The critic 𝑄(𝑠, 𝜇(𝑠; 𝜃𝜇;  𝜃𝑄) 

learns to evaluate the optimal action-value function by using the actor's best-believed action. The algorithm 

samples a batch of transitions from an experience replay memory then updates the critic network using a 

target of: 

 

𝑦𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾. 𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1)) (1) 

 

Meanwhile, the actor-network is updated using gradients of the output from the critic network:  

 

𝛻𝜃𝜇𝐽 ≈ 𝐸𝑠𝑡
~𝜌𝛽[𝛻𝑎𝑄(𝑠, 𝑎)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) ⋅ 𝛻𝜃𝜇𝜇(𝑠)|𝑠=𝑠𝑡

] (2) 

 

where 𝛻𝑎𝑄(𝑠, 𝑎)|𝑠=𝑠𝑡,𝑎=𝜇(𝑠𝑡) is the action mean value of the critic network. To get the mean action, the actor-

network uses the current state as input. Then it computes the actor gradient output for the actor weights given 

as 𝛻𝑎𝑄(𝑠, 𝑎). The actor gradient is used to send control commands to the agent. 

 

2.2.  Proximal policy optimization 

PPO is a policy gradient-based model-free reinforcement learning algorithm that employs first-order 

trust-region criteria to prevent divergence [19]. It combines trust region policy optimization (TRPO) [20] 

with gradient descent to stabilize training by creating a loss function that nearly guarantees a simultaneous 

improvement of the agent's policy. PPO attempts to improve the "surrogate" objective from TRPO by 

clipping it into a certain region and further solving it with the first-order optimization using stochastic 

gradient descent (SGD) [21]. The clipped "surrogate" objective is defined as: 

 

𝐽𝐶𝐿𝐼𝑃(𝜋𝜃) = �̂�𝑡[(𝑟𝑡(𝜃)�̂�𝑡) , 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜀, 1 + 𝜀)�̂�𝑡)] (3) 

 

where the probability ration 𝑟𝑡(𝜃) = 𝜋𝜃(𝑠𝑡)/𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡), the advantage estimate �̂� is estimated by GAE. 

Without the hard constraint of Kullback–Leibler (KL) divergence common in TRPO, the update rule 

becomes: 

 

𝜃 = 𝜃𝑜𝑙𝑑 +  𝛼𝛻𝜃𝐽𝐶𝐿𝐼𝑃(𝜋𝜃) (4) 
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where ∝ is the learning rate. To avoid greedy updates, PPO uses the change in probability ratio only when it 

makes the objective worse. Thereby providing an alternative clipped surrogate objective using a penalty on 

KL divergence with an adaptive coefficient. 

 

𝐽𝐾𝐿𝑃𝐸𝑁(𝜋𝜃)  = 𝐸𝑡𝜃𝑜𝑙𝑑
[

𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

�̂�𝑡 − 𝛽𝐾𝐿[𝜋𝜃𝑜𝑙𝑑
(∙ |𝑠𝑡, 𝜋𝜃(∙ |𝑠𝑡))]], (5) 

 

where 𝜃𝑜𝑙𝑑 is the policy parameters before the update. Similar to (4), the KL penalty version is solved by 

applying an SGD leading to the update rule. 

 

𝜃 = 𝜃𝑜𝑙𝑑 + 𝛼𝛻𝜃𝐽𝐾𝐿𝑃𝐸𝑁(𝜋𝜃) (6) 

 

The computation for optimizing both versions of the objective function is much less than that of a 

TRPO. Therefore, the experimental results when evaluated in a MuJoCO environment, RoboSchool, and 

Atria games task shows that PPO performs better than TRPO. 

 

2.3.  Soft actor-critic 

SAC is an off-policy algorithm that employs the best sample complexity and convergence property 

without the need for too many hyperparameter tuning. This makes its performance significantly better than 

the DDPG and PPO methods in challenging decision-making tasks. SAC attempts to balance an expected 

return by learning a stochastic policy 𝜋∗that maximize both the rewards and the entropy as: 

 

𝜋∗ = ∑ 𝐸(𝑠𝑡 , 𝑎𝑡)𝑇
𝑡=0 ~ 𝜏𝜋[𝛾𝑡(𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛼𝐻(𝜋(𝑠𝑡))] (7) 

 

where the entropy is 𝐻(𝜋(𝑠𝑡)) = 𝐸𝑎~𝜋(.|𝑠)[−𝑙𝑜𝑔 (𝜋(𝑠)]. In the most actor-critic algorithm, we define the 

optimal policy in respect to the reward, however, SAC changes that traditional objective of the Markov 

decision process, by introducing a new value function called the soft value function defined as: 

 

𝑉(𝑠𝑡) = 𝐸𝑎𝑡~𝜋[𝑄(𝑠𝑡 , 𝑎𝑡) − 𝛼 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝜋(𝑠𝑡)) ] (8) 

 

where 𝑄𝜃  is the soft Q-value function. To find an optimal policy, the critic has to convert into an optimal 

critic by using a bellman operator 𝑇𝜋 such that: 

 

𝑇𝜋𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟(𝑠𝑡 , 𝑎𝑡) + 𝛾𝐸𝑠𝑡+1~𝑝(𝑠𝑡,𝑎𝑡)[𝑉(𝑠𝑡+1)] (9) 

 

Given the established bellman operator, it tries to minimize the expectation over transitions of the 

specific temporal difference error. This process is called the policy evaluation step: where the critic 

parameters are learned by minimizing:  

 

𝐽(𝜃) = 𝐸(𝑠𝑡,𝑎𝑡,𝑠𝑡+1)~𝐷[(𝑄𝜃(𝑠𝑡 , 𝑎𝑡) + 𝛾𝑉𝜃(𝑠𝑡+1)))2] (10) 

 

 

3. RESEARCH METHOD 

3.1.  Environment setup 

The environment of the experiment is developed on car learning to act (CARLA) [22], an urban 

autonomous driving simulator built on an open-source protocol and implemented in an unreal engine 4 

(UE4). It provides a variety of urban layouts, vehicle models, pedestrians, and road obstacles. making it 

possible for our agent to learn to drive in a 'realistic' urban traffic simulation environment. The simulation 

supports different sensors suits including cameras, raw images, depth maps, semantic segmentation images, 

and lidars. We concentrated on the raw pixel data from CARLA's built-in front-facing camera. And the VAE 

was trained for better state representation. 

 

3.2.  Continuous action space 

Since model-free deep RL are continuous action algorithms, our deep RL agent acquired feedback 

during training from the environment by continuous action values such as steering, throttle, and brake. These 

are controlled by three different value action in CARLA: 

− Steering [-1, 1]: controlled by a positive value that shows to steer right, while a negative value indicates 

to steer left.  
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− Throttle [-1, 1]: controlled by a positive value that shows forward acceleration, while a negative value 

indicates backward acceleration.  

− Brake [0, 1]: a value of 1 means to apply the brake while a value of 0 means to prevent braking. 

Similar to Kendall, we reduced the action space by removing the brake action. The vehicle will 

drive at a low speed with no other vehicle present and with no consideration of traffic rules eliminating the 

need for braking. That leaves us with a steering and throttle control vector.  

 

3.3.  Latent state space  

As we intend to reduce the complexity of the environment from high dimensional state space to low 

dimensional state space, we gathered datasets needed to train the VAE by manually driving around the 

CARLA environment with a keyboard, collecting images from the front-facing camera. The vehicle does not 

follow any traffic rules of imitation learning. Also, there is no need for labeling such as the ground truth 

position of the vehicle in the training dataset with exception of the raw pixel data, which is essential. We 

collected 10,000 images (approximately 15 minutes of driving). 

A VAE model to reconstruct the collected input image from the sampled gaussian latent vector and 

minimize the reconstruction loss was created. The model contains an encoder and a decoder with four 2D 

convolution layers (conv2d) with 32, 64, 128, and 256 separate channels. Each conv2d has two (2) strides 

sets and a ReLu activation function. As well as the latent space layer that is fully connected to the last conv2d 

with a size of 64, we also used Adam optimizer [21], with a learning rate of 10−4 and a batch size of 100. A 

KL-tolerance factor was applied to ensure the optimizer only applies a KL-loss once the KL-loss exceeds a 

tolerance factor greater than zero. In Figure 2, we explored how the encoder, 𝑞, takes raw image input 𝑥 and 

outputs two vectors, 𝑧𝜇 and 𝑧𝜎 , through a parallel fully connected layer. Then we used sample z from 𝑁(𝑧𝜇, 

𝑧𝜎) and passed through a decoder 𝑝, producing a reconstructed signal �̂�. 

 

 

 
 

Figure 2. The architecture of our VAE 

 

 

3.4.  Network architecture  

We set all networks with the same convolutional layers while the first dense layer is similar to our 

VAE model. To ensure the distribution of features is mobile, the policy was trained with a fixed feature 

extractor. The network architecture of the three deep RL algorithms (DDPG, PPO, and SAC) used in this 

work was adopted from implementing Stable Baseline by Hill et al. 2019 [23]. The implementation was 

altered by adding the optimization for the VAE in every episode. We found the following tuned hyper-

parameters as the most effective in the experiment. 

− DDPG: Defined a discount factor of 0.99, a gradient clipping of 0.005, the replay memory size of 

10000, optimization steps of 300 between episodes with batch size 64, and an Ornstein-Uhlenbeck 

process [24] with 𝜃 = 0.15 and 𝜎 = 0.2 inspired by the work of Lillicrap et al. [12].  

− PPO: A multi-layer perceptron with a discount factor of 0.99, an entropy loss of 0.0, an optimization 

step of 256, and a mini-batch size of 4 with a learning rate of 3e-3 for 10 epochs. 

− SAC: A buffer size of 30000 with an optimization step of 600 and batch size of 64. We set the learning 

rate to 3e-4 with gamma 0.99. SAC does not need an exploration policy; it is a component learned 

during training. 

 

3.5.  Reward function 

As a baseline, we aimed to train our agent with a reward function similar to Kendall's. In their work, 

they simply defined a reward function that is proportional to the acceleration of the vehicle: 

 

𝑟(𝑣) = {0 𝑣 
 𝑣>𝑣𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑟 𝑜𝑛 𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 
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where 𝑣 is the current speed of the vehicle in km/h, 𝑣𝑡𝑎𝑟𝑔𝑒𝑡 is the target speed (the recommended speed 

required for the agent to maximize reward), and an infraction when the agent gets off the track or collides 

with an obstacle. To prevent the agent from getting stuck in a bad state due to a well-known bug in CARAL, 

where collisions are not annotated when the vehicle is moving at a low speed of 1 km/h or less [25], we 

added a live penalty to punish the agent each time it gets stuck without moving or crashing at a low forward 

speed.  

 

 

4. RESULTS AND DISCUSSION 

To evaluate the effect better state representation has on policy learning, we trained a DDPG agent 

using raw pixel (baseline) and compared the result with our DDPG agent trained with a VAE (DDPG+ 

VAE). Similarly, we trained a SAC and PPO agent with pre-trained autoencoders and compared the result 

with our DDPG+ VAE agent. Finally, we evaluated our proposed method based on the cumulative reward 

obtained over 100 training episodes using the reward function described in section 3.5. 

 

4.1.  Comparing the baseline with our DDPG+ VAE agent 

We established the baseline as a DDPG agent, which is trained directly from pixel data obtained 

from the vehicle's front camera. We selected the parameters of the baseline model similar to Kendall's 

implementation, whereas our DDPG+ VAE is the agent pre-trained with VAE as discussed in section 3.3. 

Figure 3 shows how the baseline fell short in performance as compared with our DDPG+ VAE 

agent. The baseline agent could barely learn any decent lane following skills after 100 training episodes. It 

keeps turning right and then goes off lane at most episodes, while only managing an average cumulative 

reward of 128.31. Nonetheless, our pre-trained DDPG+ VAE agent was able to learn good lane following 

skills after only six (6) training episodes and having an average cumulative reward of 276.13. It even learned 

how to take turns after a couple more episodes. This proves that our DDPG+ VAE agent not only learns 

faster than the baseline but also improves the overall quality of the deep RL agent. 

 

 

 
 

Figure 3. Comparing the results of the baseline agent with our DDPG agent with pre-trained VAE 

 

 

4.2.  Comparing our DDPG+ VAE agent with other model-free deep RL algorithm  

To ensure the best algorithm for our method, we evaluated the effect of SRL on other deep RL 

algorithms in autonomous driving. We compared the performance of our proposed DDPG agent to other deep 

RL baselines with VAE. We trained both SAC and PPO agents with pre-trained VAE for 100 episodes and 

compared the results with our DDPG implementation. As observed from Figure 4, the SAC agent 

outperformed the other two agents by a large margin. It learned a good lane following skill on its first few 

episodes while being able to successfully drive around the town without any collisions accumulating an 

astonishing average cumulative reward of 631. Meanwhile, PPO and DDPG agents were only able to obtain 

an average cumulative reward of 276 and 246 responsively. We attribute the preeminence of the SAC 

algorithm to its ability to learn an exploration policy during training. As a result, we recommend SAC with 

pre-trained VAE as an alternative in speeding up deep RL training in autonomous driving. We have compiled 

videos showcasing the results of our experiments. This video can be found at https://youtu.be/kriYuE5z44M. 
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Figure 4. This shows that SAC has the best performance among all methods 

 

 

5. CONCLUSION 

In this paper, we explored how several aspects of deep reinforcement learning can solve a simple 

lane following autonomous driving tasks. From the methods used, we suggest that VAEs can accelerate the 

training of deep RL agents and how state representation affects the overall performance of the deep RL agent 

autonomous driving. This method exhibits that it is not only limited to 3D environments that are visually 

simple such as Prakash’s Donkey Car simulator and Kendall’s Custom in-house simulator but also efficient 

in a “realistic” urban driving simulator like CARLA. Although there were some challenges in setting up the 

final environment on CARLA, we have conclusively created a self-contained deep RL system that works 

alongside CARLA. We have shown that employing a pre-trained VAE helps improve training a deep RL 

agent as compared to training raw pixel data directly. It was also showcased how the VAE affects the overall 

result of the agent, and that a pre-trained VAE performs much better than optimizing the VAE the deep RL 

agent in alternate training phases. We also concur with the work of Raffin that demonstrates a more recent 

reinforcement learning algorithm, SAC, can work better than Kandell's DDPG in autonomous driving. 
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