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 Live streaming is becoming a popular channel for advertising and marketing. 

An advertising company can use this feature to broadcast and reach a large 

number of customers. YouTube is one of the streaming media with an 

extreme growth rate and a large number of viewers. Thus, it has become a 

primary target of spammers and attackers. Understanding the behavior of 

users on live chat may reduce the moderator’s time in identifying and 

preventing spammers from disturbing other users. In this paper, we analyzed 

YouTube live streaming comments in order to understand spammers’ 

behavior. Seven user’s behavior features and message characteristic features 

were comprehensively analyzed. According to our findings, features that 

performed best in terms of run time and classification efficiency is the 

relevant score together with the time spent in live chat and the number of 

messages per user. The accuracy is as high as 66.22 percent. In addition, the 

most suitable technique for real-time classification is a decision tree. 
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1. INTRODUCTION 

Spam is an unwanted message that consists of texts and links. Besides insulting posts, mass 

messaging, cruelty, humiliation, hate speech, malicious, fake hints [1], or fraudulent reviews, most spams 

messages are intended for advertising purposes: explicit advertising message or links to malicious websites in 

the form of long URLs or short URLs (Google URL Shortener, Bitly, TinyURL) redirecting to a product’s 

website in order to increase the site’s rating or promote products. 

One good example of spam is clickjacking [2]: a malicious technique that tricks users into clicking 

on an encapsulated application disguised in the form of a picture, link, button, or something else that is 

intended for clicking. Users are usually unaware of any deception when they enter data into forms connected 

to clickjacking. Clicking on such a page, which seems innocuous, may result in the installation of a harmful 

program or disclosure of confidential information in a computer or URL redirection mechanisms that attacker 

can automatically redirect a visitor to a captured web site [3]. 

Video and comment spam is also another common unwanted content that may be generated and 

posted by an automated program, bot, or fake users [4]. Posted contents are usually unrelated to the topic of 

interest. 

Recently, there has been dramatic growth in the amount of spam found in online social networks 

and live streaming media. On twitter network, spam or faux tweets [5-6] are in form of a hashtag that is not 

connected to topics or unrelated topics, hashtag may include offensive material such as ad hominem attacks 

or vulgar language. Also, the same hashtag may mean different things to different people and the motivations 

https://creativecommons.org/licenses/by-sa/4.0/


                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 1, March 2021:  139 – 150 

140 

behind spam may bring participants’ attention to products or services. To promote the contents on social 

media, these online media allow users to input their opinions and express their views on the contents which 

gives rise to review spam or opinion spam. The opinion content may or may not contain valuable information 

in either positive or negative ways. If the content is related to consumer products, it may provide information 

that is valuable to the product owner and will assist the owner to investigate and identify product problems 

and improve customers’ satisfaction. Review spam can be separated into 3 types [7]. The first is false 

opinions, where the review contains a false opinion to promote competitive products and encourage negative 

opinions to damage the product under review. Second is reviews on brand only, which comprise reviews 

which do not relate to the specific product being reviewed, but merely express an opinion on the brand. This 

type of review can often be highly biased. The third type is non-reviews, which are reviews that contain 

messages unrelated to the product being reviewed. 

Live streaming is an easy way to broadcast videos in real-time, and it has become very popular 

because it provides a platform for interaction and content sharing to reach a large target audience. A public 

live streaming platform such as YouTube has a live chat feature that allows viewers to communicate in real-

time by chatting with content owners and other viewers. The product owner can exploit the benefits of this 

medium and improve services to meet the needs of the customer in real-time. On the other hand, live chat has 

become a vulnerable access point in live streaming because it can be a channel where other marketers 

promote their websites or services. Spammers can use this service to spread unwanted content or spam 

content such as porn sites and malware. 

There has been and continues to be, a great deal of research on the prevention of spam comments on 

social networks, especially YouTube. The work can be divided into 2 areas [8]: prevention and detection 

based. To prevent spam comments from appearing on the live chat, YouTube allows content owners to 

provide a list of blocked words which may indicate spam in addition to having a moderator to monitor live 

chats and manually remove unwanted conversations. If a message contains a blocked word, the system will 

delete the message or move it to a held for the review section. To detect comment spam, Benevenuto, et al. 

proposed a spam comment classifier [9] as a browser plugin by using a set of features such as stop word 

ratio, word duplication ratio, post-comment similarity, the number of words and the number of sentences in 

the comment. Their results suggested that random forest tree can accurately classify spam when used with all 

of the features or a subset of features. Similarly, tubespam purposed in [10] can automatically filter undesired 

comments posted on YouTube. In the experiment, the researchers collected text comments posted in five of 

the most viewed YouTube videos (Psy, KatyPerry, LMFAO, Eminem, and Shakira) and manually labeled 

each comment spam or ham (legitimate comment) using bag-of-words and frequency representation. The 

result of the experiment showed that most classification techniques such as decision tree, logistic regression, 

bernoulli naïve bayes, random forests, linear, and gaussian SVMs have spam detection and blocking accuracy 

rates higher than 90% and ham blocking rates of lower than 5%. 

In this paper, we focused on the study of users’ behavior on YouTube live streaming. In particular, 

we explored whether different potential markers in user comments, such as relevant score using bag-of-

words, similarity between comments, polarity of the comments, number of chat messages, interarrival time of 

chat messages, and time duration that a user spent in a live chat can be used to effectively differentiate 

spammers from normal users. 

 

 

2. BACKGROUND OF THE STUDY 

Spam, poses a huge challenge for researchers aiming to find ways to detect or exclude these 

unwanted messages from nearly every online media. Many studies focused on traditional methods, such as 

content-based analysis or extraction of features from the content or their information. Analysis of users’ 

behavior is often, used to improve the accuracy and performance of spam detection. 

In an experiment based on content analysis, Rathod and Pattewar [11] analyzed a body of the Gmail 

dataset to classify legitimate and spam email using the Bayesian classifier model. The proposed bayesian 

classifier was able to achieve as high as 96.46% accuracy. Moreover, similarity and relevance are important 

features used to distinguish spams from regular messages. Liu et al. [7] developed two algorithms to identify 

false reviews on Amazon.com based on the similarity of the reviews and how much the review content is 

related to the product and to describe some common behavior features of spammers in the spam review. 

According to the observation, it was found that if the similarity of the two reviews is greater than 70%, then 

the second review was identified as a copied review. The  results showed that 54% of mobile phone reviews 

on Amazon.com are copied from existing reviews. Jindal and Liu [7] categorized customer reviews of 

Amazon.com into three types: false opinion, brand review, and non-reviews. They used a classification 

model to detect duplicate reviews and differentiate each review as spam or non-spam. In the analysis, they 

found a large number of duplicate reviews whose similarity scored were close to 90% and were classified as 
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spam. They, then performed manual label training for type 2 (brand review) and type 3 (non-reviews) and 

used classification models such as SVM, decision tree, naïve bayesian, and logistic regression to detect spam. 

Three types of features, characteristics of reviews, characteristics of reviewers, and characteristics of 

products, were used for learning. The result of the experiment showed that the logistic regression is a highly 

effective classification tool which resulted in the AUC value (area under ROC curve) of 98.7% for all spam 

types. 

There are several studies that investigated the spammers’ behavior on various social media 

platforms. Verma, et. al. [12] reported that spammers on Twitter tend to follow numerous users but have only 

a small number of followers. They often continue to create new accounts to avoid being detected. Other 

studies have found that typical spammers may post at a fixed schedule as is indicated by a large number of 

repetitive tweets in a short period of time or a more frequent posting during certain times [13]. The tweet 

content normally contains trendy keyword, latest articles from a website with unrelated messages. Similarity, 

spammers on YouTube repeatedly posted chat messages with emoji, links, promotion, or harmful content to 

direct uesrs to their website. Since YouTube can detect spam based on the text comment and users’ behavior, 

some spammers try to avoid being detected by using several techniques: re-posting someone else’s message 

and including advertising message in their usernames, using unusual Unicode characters that resemble 

English alphabets to compose certain spam words, and using multiple accounts. 

This study, we analyze key features related to users’ behavior characteristics (interarrival time or the 

time between two consecutive chat messages from the same user, polarity score, the duration of time a user 

spent on a live chat, and the number of chat message per user) and chat message characteristics (word count, 

relevant score, and similarity score) to understand the characteristics of users which can be used to identify 

the activity of bots and spammers on YouTube live chat. 

 

 

3. METHODOLOGY 

3.1.  Data collection 

In this study, we collected live chat messages on weather channel HD live stream which featured 

Hurricane IRMA from 8 September 2017 to 9 September 2017. A total of 60,115 chat messages were 

collected during a period of 17.30 hours. Our system tracked the number of viewers and the number of chat 

messages throughout the entire duration of the stream. 

Figure 1 shows both the number of users watching the live streaming content and the number of chat 

messages during 00:00 to 17:30. As expected, as the number of live stream viewers increased, the number of 

chat messages posted on the live chat also increased. When the streaming ended at 17:30, the number of chat 

messages quickly dropped to zero because the live chat was disabled after live streaming ended. 

 

 

 
 

Figure 1. The number of chat messages and the number of users watching during live streaming. 

 

 

3.2.  Feature analysis 

In this section, the differences between normal users and spammers were analyzed by considering 

multiple features to find the features that archive the best classification efficiency and low runtime overhead.  

Chat message characteristics are commonly used as features in many research studies: word count per chat 

message [14], relevance score using bag-of-words [15], polarity score, and similarity of chat message [16]. In 
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addition to the chat message characteristics, we proposed additional behavior-based features which include 

the duration that a user participates in live chat and the interarrival time or the time between two consecutive 

chat messages from the same user. 

 

3.2.1. Number of chat messages per user 

During the period of live streaming, there were a total of 60,115 chat messages from 11,554 users. 

According to our analysis, the majority of the users (46%) left the chat after leaving only one comment. 

Figure 2 shows the number of chat messages of the top 20 users with the highest number of 

comments. By investigating their comments, we could separate these users into 3 types: 

− Chat bot: Chatbot users who monitored the channel and answered common questions. 

− Stop-by users: Users who left just one message. In this case, it was not possible to define the duration 

that a user participated in the live chat. 

− Engaging users: Users who joined the live chat and engaged in interactive communication with others 

about the video topic or non-relevant topic. This type of user may leave spam or an advertising 

message. 

 

 

 
 

Figure 2. Top 20 users with the highest number of chat message 

 

 

3.2.2. Duration of time that each user participates in the live chat 

The time duration, as is displayed in Figure 3, is the amount of time a user participates in live chat. 

Let Tk,t be the time that a user k leaves the first comment in the live chat and Tk,t+Δ be the time of user k’s last 

comment, then time duration (TDk) can be defined as 

 

 (1) 

 

 

 
 

Figure 3. Time duration and number of chat messages of top-20 users during a live chat 
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Figure 3 depicts the duration of time the top 20 users who have the highest number of chat messages 

spent on the live chat. As can be observed, the amount of time users spent on the live chat does not correlate 

with the number of their comments. Hence, this feature, by itself, cannot be used to indicate the interest that a 

user has in the streaming content because it does not imply that a user remains in the live chat throughout the 

entire period: a user may have logged out and logged back in later to provide comments. 

 

3.2.3. Word count per chat message 

Word count is the number of words contained in each message. Figure 4 displays the number of chat 

messages divided by word count. The average word count per message from the collected data was 8 words 

with 7.10 standard deviation. Our result indicated that 63% of the messages contained fewer words than the 

average word count. Also, word count could not be used to identify relevancy between chat messages and 

streaming topics. 

 

 

 
 

Figure 4. Number of chat messages divided by word count 

 

 

3.2.4. Relevance score using bag-of-words 

In this study, we assumed that relevant chat messages would likely contain some content that is 

related to the topic and the content of the live stream. Hence, related words, for example, hurricane, Irma, 

storm, surge, and Florida, were extracted from the live streaming content. The frequency of occurrence of 

such words found in each chat message was used as users’ relevance score (SR). 

Let W be a set of relevant word (bag-of-word), and M be a chat message which consists of a set of 

tokenized word T = {T1, T2, T3, …, TN}, the relevant score of each chat message j can be defined as 

 

 (2) 

 

Where 

 

 
 

For this study, we could classify users into 3 types as shown in Table 1. 

 

 

Table 1. Type of users categorized by relevance score 
Type Description Number of user 

0 Users whose chat messages were not related to the topic of the live stream. 6,551 
1 Users who communicated with other users by specifically mentioning their user names with ‘@’. 203 

2 Users who communicated with others and created chat messages related to the topic. 4,800 

 

 

The results showed that a large number of users (Type 0) posted irrelevant chat messages. However, 

not all messages from Type 0 users could be considered as spam. This is due to the fact that a certain amount 

of messages were part of the on-going conversation which may or may not be related to the streaming 
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content. Messages from these users were similar to that of Type 1 users but without mentioning the recipient 

of the message. Therefore, the relevance score alone cannot be used for classifying spammers. 

 

3.2.5. Interarrival times 

Interarrival time is the time between arrivals of chat messages from the same user on live chat. Let 

tk,n be an arrival time of chat message n from user k at time t and tk,n-1 be an arrival time of previous chat 

message from user k, then the interarrival time of message n from user k (ITk,n) can be defined as   

 

 (3) 

 

Figure 5 shows the probability mass function (PMF) of interarrival time between consecutive chat 

messages for each user type excluding stop-by users or ones that leave only one message on the live chat. 

The number of messages from these stop-by users amounted to 45% of the total number of chat messages. 

For this study, the focus was on Type 2 users who actively engaged in the conversation. According to the 

result, the message interarrival time of type 2 users tended to be longer than that of the other types, i.e., the 

interarrival time of 55% of the messages was on the order of minutes to several minutes. Furthermore, 

interarrival time of 19% of the messages is longer than one hour, which indicated that users might have left 

the live stream and returned later to rejoin the chat. 

 

 

 
 

Figure 5. Probability mass function (PMF) of the message interarrival time 

 

 

3.2.6. The similarity of chat messages 

The similarity of chat message (Sim) is an estimate of the degree of similarity between two chat 

messages from the same user. In this study, we used the result of the calculation of cosine similarity [17] to 

represent the degree of message similarity. Cosine similarity [18-19] is the traditional method used to 

measure the degree of similarity between two vectors, obtained from the cosine angle multiplication. The 

Cosine similarity [8] can be calculated using term frequency and inverse document frequency (TF-IDF) 

formulas. A result is a number that ranges from 0 to 1. The two vectors have no similarities when the value is 

0, while the value of 1 indicates that they are identical. Let Mk,t be a message at time t from user k and Mk,t+Δ 

be the next message from user k at time t+Δ. Let the features of the two messages be denoted by the vectors 

x(Mk,t) and y(Mk,t+Δ), where x(Mk,t) = {x1,x2, …, xn} and y(Mk,t+Δ) = {y1,y2, …, yn }. The cosine similarity 

between the two vectors can be defined as 

 

 (4) 

 

Be assuming that a spam user creates multiple chat messages with the same or similar content, we 

can use this method to classify spams by marking the messages with a cosine similarity of greater than 0.8 as 

spam. 
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Table 2 shows the result of the classification using the similarity of chat messages. Only  1,803 

messages or 3% out of 60,115 chat messages were identified as spam using this method and 19% of the 

messages cannot be classified as either spam or ham (normal). This is because the similarity score is based on 

similarity of messages from the same user. Therefore, only spammers who posted multiple similar messages 

will be detected. 

 

 

Table 2. Classification result using the similarity of chat messages 
Type of chat message Number of chat message 

Spam chat messages 1,803 (3%) 

Normal chat message 46,890 (78%) 

Chat messages that cannot be classified (because users only left one message during the live streaming) 11,422 (19%) 

 

 

According to our observation, this is not an efficient way to classify spam messages because many 

spammers usually alter messages slightly or completely when posting to prevent them from being detected. 

Besides, spammers may also disguised themselves by using multiple usernames. Therefore, this method, by 

itself, can be quite ineffective in such cases. 

 

3.2.7. Polarity score 

SentiStrength [20], SentiWordNet and AFINN are sentiment lexicon classification tools that are 

often used to estimate the strength of positive and negative sentiment of words. These methods can be 

applied to identify the polarity of the comments as being positive, negative, or neutral [17, 21]. 

Figure 6 displays the polarity of the messages as being positive, negative, or neutral. Because the 

streaming content in this study was related to hurricane Irma, many people participated in the live chat to 

express their feeling or concern. While one might anticipate that the streaming about the devastating 

hurricane to contain primarily negative comments, there were quite many encouraging messages from the 

people who did not face the situation directly. These people sent out encouraging messages to the victims. 

Hence, the topic of the streaming content in this case strongly affected the polarity of the message. 

 

 

 
 

Figure 6. The polarity of messages grouped by detection methods 

 

 

4. CLASSIFICATION METHOD AND RESULT 

Based on the live chat dataset and feature selection described in the previous section, we created a 

training dataset that consisted of 7 features: interarrival time (C1), polarity score (C2), duration of times (C3), 

number of chat message per user (C4), word count (M1), relevant score (M2), and similarity score (M3). 

Each message was manually labeled as being relevant or irrelevant. In the experiment, evaluation of the 

classification of user behavior was analyzed with 10-fold cross-validation using 6 different types of 

classifiers [1] that is  naïve bayes [15, 22-24], decision trees [15, 24], random forest [15, 25], k-nearest 

neighbors [26], support vector machine (SVM) [27-28], and artificial neural network (ANN) [29]. The result 

of this classification was analyzed to find suitable features for identifying spam during live streaming. 

Correlation is a popular technique that is often used for finding the association between the two 

features. Table 3 shows the correlation between each feature and the actual result (spam or ham). According 

to the result, none of the features was highly correlated with the actual result. The relevant score (M2) 

exhibited the highest correlation value of 0.25 and could correctly classify 60.03% of the messages on 

average (averaging over the 6 classification techniques). The overall accuracy of a single feature 

classification approach was only 54.93% averaging over different features and classification techniques. 
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These results indicated that none of the features could effectively classify spam messages. Therefore, in order 

to increase the efficiency of classification we had to find a set of features that results in the highest accuracy. 

 

Table 3. Single feature analysis 
No Feature Correlation Average Classification Accuracy 

1 Word count (M1) 0.124992 56.28% 

2 Relevant score (M2) 0.256252 60.03% 

3 Similarity score (M3) -0.009899 52.11% 

4 Interarrival time (C1) 0.100143 54.97% 

5 Polarity score (C2) -0.014852 53.18% 
6 Time duration (C3) 0.131724 55.07% 

7 No of message (C4) 0.140127 53.37% 

 

 

Figure 7 depicts the top 5 of the classification accuracy of the 2-feature approach. The result showed 

that the naïve bay yielded the highest accuracy (66.74%) when using the relevant score (M2) and time 

duration (C3) as classification features. Interestingly, we observed that when M2 is combined with other 

features, the classification accuracy seemed to be higher when compared with the other set of features 

without M2. In addition, the 2-feature approach increased the accuracy by approximately 9% from that of the 

single-feature approach. 

 

 

 
 

Figure 7. Top 5 classification results using 2 features 

 

 

As we increased the number of features from 3-7, we observed similar results, i.e., dominant 

features tend to improve the overall performance of the classifier. As shown in Figures 8-12, M2 and C3 

appeared in the set that yielded the highest accuracy. When using 3 or 4 features, ANN performed slightly 

better than the other classification techniques, followed by SVM and decision tree. However, it can be seen 

from Figures 10-12 that adding more features did not seem to significantly improve the classification 

accuracy. In fact, techniques other than SVM seemed to perform worse when using more than 3 features. 

 

 

 
 

Figure 8. Top 5 classification results using 3 features 
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Figure 9. Top 5 classification results using 4 features 

 

 

 
 

Figure 10. Top 5 classification results using 5 features 

 

 

 
 

Figure 11. Top 5 classification results using 6 features 
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Figure 12. Classification result of combination 7 features 

 

 

According to Figure 13, it can be observed that the ANN and SVM had similar performance. More 

specifically, the accuracy of these two techniques dropped significantly when using 5-7 features. ANN 

performed slightly worse than SVM when the number of features is more than 5. All techniques performed 

equally well when using M2, C3, and C4 as features. Therefore, these three features seem to be an optimal 

choice for classifying spam messages. 

 

 

 
 

Figure 13. Highest classification result of each approach. 

 

 

5. DISCUSSION 

In the real-time streaming scenario where spams need to be filtered out quickly, the processing time 

is an important factor. Processing time, in this case, is composed of the time used for extracting the required 

features from the incoming chat message and the time that the classification engine needs to process and 

output the classification results based on the given set of features. The feature extraction time depends on the 

complexity of the algorithms used for deriving the feature. For example, it takes at most O(n) to find relevant 

keywords in chat messages and compute the relevant score (M2). To find the time duration (C3) a user spent 

in a live chat and the number of chat messages (C4), it takes only O(d). Note that in practice, C3 is the time 

elapsed between the first chat message and the current chat message of a user and C4 is an accumulated 
number of chat messages up to the current one. Each classification technique considered in this study also has 

a different level of complexity. Table 4 shows that ANN is the most time-consuming technique and Decision 

Tree consumes the least amount of time when compared to the other methods. Hence, Decision Tree seems to 

be the best choice for implementation as it has comparable performance to ANN and SVM in terms of 

accuracy using 3 features and it runs much faster than any other classification techniques. 
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Table 4. Processing time (ms) of each classification technique 
Feature Support Vector Machine K-Nearest Naive Bay Decision Tree Random Forest Artificial Neural Network 

1 Feature 12263 1591 85 12 588 6995 

2 Features 12755 992 99 10 785 10258 

3 Features 13461 897 106 18 1058 34362 

4 Features 13767 908 106 29 1456 119366 

5 Features 14464 990 109 40 1664 137092 
6 Features 15161 1138 111 54 1806 137211 

7 Features 15960 1287 103 43 1637 138227 

 

 

6. CONCLUSION 

The objective of this study was to investigate and analyze YouTube viewers’ behavior on live chat. 

The experiment considered users’ behavior and chat message characteristics for classifying spammer. The 

features considered in this study include users’ behavior characteristics (interarrival time or the time between 

two consecutive chat messages from the same user, polarity score, the duration of time a user spent on a live 

chat, and the number of chat message per user) and chat message characteristics (word count, relevant score, 

and similarity score). Our study shows that each feature cannot efficiently be used to classify spams. The best 

combination of features that are suitable for the real-time spam filtering purpose is the relevant score, the 

time the user spent in the live chat, and the number of the user’s chat messages. Given these three features, 

the decision tree seems to be the best choice for spam filtering because it runs much faster than the other 

techniques and has quite a very high accuracy. Note that the results presented in this study are subjective to 

the topic of the live streaming which is about Hurricane Irma. In the future, we plan to further generalize our 

approach to cover multiple types of streaming content. 
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