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 Cardiovascular diseases remain the leading cause of death, taking an 
estimated 17.9 million lives each year and representing 31% of all global 

deaths. The patient records including blood reports, cardiac echo reports, and 
physician’s notes can be used to perform feature analysis and to accurately 
classify heart disease patients. In this paper, an incremental deep learning 
model was developed and trained with stochastic gradient descent using 
feedforward neural networks. The chi-square test and the dropout 
regularization have been incorporated into the model to improve the 
generalization capabilities and the performance of the heart disease patients' 
classification model. The impact of the learning rate and the depth of neural 
networks on the performance were explored. The hyperbolic tangent, the 

rectifier linear unit, the Maxout, and the exponential rectifier linear unit were 
used as activation functions for the hidden and the output layer neurons. To 
avoid over-optimistic results, the performance of the proposed model was 
evaluated using balanced accuracy and the overall predictive value in 
addition to the accuracy, sensitivity, and specificity. The obtained results are 
promising, and the proposed model can be applied to a larger dataset and 
used by physicians to accurately classify heart disease patients. 
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1. INTRODUCTION 

Cardiovascular diseases are the most common underlying cause of death in the world, and the 

morbidity and mortality are still on the rise [1]. It has been estimated that, by 2030, more than 40% of US 

adults or 116 million people will have one or more forms of cardiovascular diseases. The direct medical costs 

related to the cardiovascular diseases are expected to triple, from $273 billion to $818 billion, however, the 

indirect costs due to lost productivity are estimated to increase from $172 billion to $276 billion [2]. It is 

critical to develop preventive intervention strategies to limit the progression of cardiovascular disease and to 

minimize the associated direct and indirect costs. 

Modeling survival patients with heart failure remains a constant problem nowadays in terms of 

identifying the significant factors along with achieving high classification accuracy. However, the increasing 
availability of electronic data presents a major opportunity to implement robust models. Machine learning 

provides computational intelligence techniques to tackle the issue of analysis and prediction within large 

complex datasets. Machine learning is attracting broad interest in healthcare [3]. When applied to medical 

https://creativecommons.org/licenses/by-sa/4.0/
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records, common predictive models, also known as health forecasting, can be an effective tool for leveraging 

data to make predictions and highlight patients most at risk. Deep learning is one of the most used machine 

learning techniques in the medical field. In a recent study, deep learning was used along with new features 

that were extracted from the x-ray images for tuberculosis detection. The results show that the proposed 

method produced an accuracy of 89.77%, a sensitivity of 90.91%, and a specificity of 88.64% [4]. Another 

study did use a deep learning model called AlexNet based on 9,000 single red blood cell images taken from 

130 patients. The model was used for classifying the abnormalities present in the sickle cell anemia disease to 

give a better insight into managing the concerned patient's life and it achieved a high classification prediction 
accuracy of 95.92% [5]. Neural networks were applied to cancer disease to classify lymph, neck and head, 

and breast cancer that might help clinicians and oncologists in the prediction and prognosis of cancer [6]. For 

heart disease, machine learning techniques can be useful to predict risk at an early stage. Some of the 

techniques used for such prediction problems were the support vector machines (SVM), neural networks, 

decision trees, regression, and naïve bayes classifiers. SVM was identified as the best predictor with 92.1% 

accuracy, followed by neural networks with 91% accuracy, and decision trees showed a lesser accuracy of 

89.6% [7]. 

Other studies based on neural networks and other machine learning methods used data on 

cardiovascular patients collected from the UCI Laboratory, and applying discovery pattern algorithms 

including decision tree, neural networks, rough set, SVM, naive bayes, and compare their accuracy and 

prediction, and achieving an F-measure of 86.8% [8]. Although, other studies were presented in [9-10] that 

trained neural network-based model for classifying the heart disease and to predict accurately abnormalities 
in the heart or it's functioning. Another research in cardiovascular disease prediction used seven classification 

techniques: k-NN, decision tree, naive bayes, logistic regression, support vector machine, neural network 

with vote. The results showed that the heart disease prediction model using neural network with vote 

achieved the best accuracy of 87.4% [11]. To improve models’ effectiveness, recent published studies used 

hybrid models. In [12], the Cleveland database was selected and a hybrid random forest with a linear model 

called HRFLM was used to find significant features and to improve the prediction of cardiovascular disease 

that produced an accuracy of 88.7%. 

In the current study, we developed and fine-tune a machine learning model using different 

techniques. First, we used a multilayer feedforward artificial neural network to build the model, then we 

employed a deep feedforward neural network to improve it. After that, we trained and utilized machine 

learning binary classifiers to build different models using several activation functions. Hyperparameters that 
affect both the regularization and the optimization during the training phase were considered. Different 

evaluation metrics based on confusion matrices were applied to evaluate the performance of the models, and 

additional metrics were suggested to get more accurate classifiers when dealing with an imbalanced dataset. 

To improve classification performance, features selection was applied by using the Chi-squared test to select 

the most pertinent factors. And to avoid overfitting, the dropout regularization technique was used to improve 

the model generalization. 

 

 

2. RESEARCH METHOD 

2.1.  Dataset description 

The current study is based on a dataset containing the medical records of 299 heart failure  
patients [13]. The patients' age ranged between 40 and 95 years old, and they all suffered from a left 

ventricular systolic dysfunction and had previous heart failures that categorize them in class III or class IV of 

the New York Heart Association classification of heart failure stages. The records were collected during the 

follow-up at the Allied Hospital in Faisalabad and at the Faisalabad Institute of Cardiology in Pakistan in 

2015 based on blood reports, cardiac echo reports, and physician’s notes. The dataset contains 299 records, 

each record is characterized by 13 clinical features as presented in Table 1. The death event feature is a 

binary attribute and is the target in our study which indicates if the patient died or survived before the end of 

the follow-up period. The follow-up period was between 4 and 285 days with an average of 130 days. The 

dead patients represent 32.11% (96 patients) and the survived patient represents 67.89% (203 patients). 

The dataset is composed of six dichotomous binary variables: smoking, anemia, sex, high blood 

pressure, diabetes, and the dead event. It also includes seven continuous quantitative variables: creatinine 

phosphokinase, age, serum sodium, ejection fraction, serum creatinine, platelets, and time. The creatinine 
phosphokinase states the level of the creatinine phosphokinase enzyme in the blood. A high level of 

creatinine phosphokinase is indicative of stress or injury to the heart or other muscles. The creatinine 

phosphokinase normal values are 10 to 120 micrograms per liter (mcg/L) [14]. While the serum creatinine 

measures the level of creatinine in the blood and provides an estimate of how well the kidneys function, a 

high level of serum creatinine is indicative of renal dysfunction. The serum creatinine normal values are 0.9 
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to 1.3 milligrams per deciliter (mg/dL) for adult males, and 0.6 to 1.1 mg/dL for adult females [15]. Anemia 

is a condition in which the patient does not have enough healthy red blood cells to carry adequate oxygen to 

the body's tissues. The hospital physician considered a patient having anemia if the hematocrit level is lower 

than 36%. Platelets are blood cells that help the body form clots to stop bleeding. A normal platelet count 

ranges from 150,000 to 450,000 platelets per microliter of blood [16]. Ejection fraction is a measurement of 

the percentage of blood leaving the heart each contraction. An ejection fraction of 55% or higher is 

considered normal [17]. The serum sodium states if a patient has normal levels of sodium in the blood. A low 

sodium level has many causes, including kidney failure and heart failure. A normal sodium level is between 

135 and 145 milliequivalents per liter (mEq/L) [18]. 

 
 

Table 1. Heart failure patients’ dataset description 
Clinical Feature Description Unit Min value Max value 

Creatinine phosphokinase Level of the CPK enzyme in the blood mcg/L 23 7861 

Serum creatinine Level of serum creatinine in the blood mg/dL 0.5 9.4 

Serum sodium Level of serum sodium in the blood mEq/L 113 148 

Ejection fraction Percentage of blood leaving the heart at each 

contraction 

Percentage 14 80 

Platelets Platelets in the blood kiloplatelets/mL 25.1 850 

Age Patient’ age Year 40 95 

Time Follow-up period Day 4 285 

Diabetes If the patient has diabetes Boolean 0 1 

Sex Woman or man Boolean 0 1 

Anemia Decrease of red blood cells or hemoglobin Boolean 0 1 

High blood pressure If the patient has hypertension Boolean 0 1 

Smoking If the patient smokes or not Boolean 0 1 

[target] Death event If the patient deceased during the follow-up period Boolean 0 1 

 

 

2.2.  Feed-forward neural network models 

Classification is a task that requires the use of machine learning algorithms that learn how to assign 

a class label to examples from the problem domain. Binary classification predictive modeling involves 

assigning one of two classes to input examples. In the current study, we employed neural network-based 

models for binary classification. A neural network is comprised of an input layer, one or more hidden layers, 

and an output layer. The input nodes correspond to data sources, the output nodes correspond to the desired 

classes, whereas hidden layers are required for computational purposes. The values at each node are 

estimated through the summation of the multiplications between previous node values and weights of the 

links connected to that node. This value is referred to as the summed activation of the node which is then 

transformed via an activation function and defines the output as h (x)=f(b+Σ wi xi) where h (x) is the result of 
the neuron, x is the input, w is the weight, and b is the bias. 

The activation function is a crucial component of learning that determines the accuracy and the 

computational efficiency of training a model. The simplest activation function is the linear one, where no 

transform is applied. A network comprised of only linear activation functions is very easy to train but cannot 

learn complex mapping functions. In our study, different neural network-based models have been 

implemented to predict survival patients. The hidden layers were trained using non-linear activation functions 

to allow the nodes to learn efficiently complex relationships in the data and provide accurate predictions. The 

four nonlinear activation functions: hyperbolic tangent [19], rectifier linear unit [20], maxout [21], and 

exponential rectifier linear unit [22] have been used to compute the output of the hidden nodes. 

The hyperbolic tangent (tanH) is a continuous nonlinear function that produces outputs in the scale 

of [-1,+1], where f (x)=(ex–e-x)/(ex+e-x). The rectified linear (ReLU) is a piecewise linear function. It is a 
linear function for values greater than zero and nonlinear for negative values. ReLU returns the input 

provided if the input is positive, otherwise, it returns zero where f (x)=max {0, x}. Whereas, the exponential 

linear unit (ELU) is similar to ReLU except for negative values. ELU and ReLU are in identity function for 

positive inputs where f(x)=x. For negative values, ELU becomes smooth slowly until its output equal to -α as 

f(x)=α(ex–1). The maxout activation takes the maximum value over a set of units of the pre-activations and 

sends it forward to the output node. 

In this paper, we developed a feedforward neural network model (FFNN) based on a multilayer 

feedforward artificial neural network. FFNN has an input layer of neurons, only one hidden layer that 

processes the inputs, and an output layer that provides the final output of the model. Each node in one layer is 

connected to every node on the next layer. Thus, information is continuously fed forward from one layer to 

the next layer, from the input nodes, through the hidden nodes, and to the output nodes. The pairs of input 

and output values are fed into the network for many cycles so that the network learns the relationship 
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between the input and output. Our second model is a deep feedforward neural network (DNN) based on a 

multilayer feedforward artificial neural network has an input layer of neurons, two hidden layers that process 

the inputs, and an output layer that provides the final output of the model. DNN is trained with stochastic 

gradient descent using the backpropagation algorithm. The stochastic gradient descent is based on a random 

probability and used to speed up learning by randomly picking out one sample from the dataset at each 

iteration to reduce the computations. stochastic gradient descent is an optimization technique that replaces the 

actual gradient computed from the entire dataset by an estimate thereof computed from a randomly selected 

subset of the dataset. The stochastic gradient descent recursively calculates the gradient of parameters 
starting at the network output layer and moving backward to other layers. The parameters are then updated 

and adjusted in order to reduce the loss function. 

 

2.3.  Hyperparameters selection 

We trained and employed machine learning binary classifiers to build different models using several 

activation functions to the heart failure patients' data. The dataset contains 299 patients who suffered from a 

left ventricular systolic dysfunction, of which 203 survived and 96 died (32.11% negatives and 67.89% 

positives). Training neural networks requires setting hyperparameters that affect both the regularization and 

the optimization in the training phase. The hyperparameters affecting optimization are the learning rate η and 

the momentum coefficient µ. The standard value of µ = 0.9 has been frequently observed to work well in 

practice [23] and was thus kept fixed throughout all experiments. Whereas, the learning rate value was 

explored by performing a grid search in the logarithmic scale between η=1.0E-3 and η=1.0E-7. In Figure 1, 
accuracy is plotted as a function of the learning rate. These experiments were carried out using tanH, ReLU, 

ELU, and Maxout activation functions throughout the feedforward neural network-based model. For very 

small learning rates (η<1.0E−5), the accuracy is maximal. For values bigger than 1.0E-5, the accuracy 

decreases sharply, especially with tanH and ELU. A learning rate of η=1.0E -6 was selected and kept fixed 

for all experiments. The optimum structure for a neural network should be large enough to learn the 

characteristics of the training set and small enough to generalize for the validation set [24]. To prevent 

overfitting, regularization methods should be used [24]. In the current study, the early stopping method has 

been used to stops model training when overfitting starts.  

 

 

 
 

Figure 1. Optimum learning rate η based on models’ accuracy 

 

 

2.4.  Evaluation metrics 

The classification models predict the class of each instance of the dataset by assigning a predicted 

label to each sample. In our binary classification models (died, survived), each sample fall in one of four 
possibilities. True-positive (TP) where the model correctly predicts the positive class and thus, died people 

correctly identified as died. True-negative (TN) where the model correctly predicts the negative class and 

thus, survived people correctly identified as survived. False-negative (FN) where the model incorrectly 

predicts the positive class and thus, died people incorrectly identified as survived. False-positive (FP) where 

the model incorrectly predicts the negative class and thus, survived people incorrectly identified as dead. To 

evaluate the performance of our models, we employed several statistical measures based on confusion 

matrices. We measured the prediction results using accuracy, classification error, precision, sensitivity, and 

specificity [25]. 

Accuracy (Acc) is the ratio between the number of correctly classified samples and the overall 

number of samples. Acc is calculated as Ac=ΣTrue positive+Σ True negative/ΣTotal number of samples. 

Classification error (CE) is the ratio between the number of incorrectly classified sample cases and the 
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overall number of samples. CE is calculated as CE=ΣFalse positive+Σ False negative/ΣTotal number of 

samples. Sensitivity is called also the true positive rate (TPR) and it measures the proportion of actual 

positives that are correctly identified as positives. TPR is calculated as TPR=ΣTP/ΣTP+ΣFN 

Specificity is called also the true negative rate (TNR) and it measures the proportion of actual 

negatives that are correctly identified as negatives. TNR is calculated as TNR=ΣTN/ΣTN+ΣFP 

The positive predictive values (PPV) called also precision and the negative predictive values (NPV) 

are respectively the proportions of positive and negative results. Where PPV is calculated as 

PPV=ΣTP/Σpredicted condition positive. And the predicted condition positive represents the sum of TP and 

FP. Whereas NPV is calculated as NPV=ΣTN/Σ Predicted condition negative. Where the predicted condition 

negative is the summation of TN and FN. 
In the current study, we used an imbalanced dataset where the number of samples in the negative 

class is much larger than the number of samples in the positive class, with 67.89% negatives and 32.11% 

positives. However, when the dataset is imbalanced, some statistical rates can show overoptimistic and 

exaggerated results on the majority class, especially the accuracy. Thus, to overcome the class imbalanced 

dataset issue, we used additional metrics that produce a high rate only if the model was able to correctly 

predict both, positive samples and negative ones. The balanced accuracy (BAcc) and the overall predictive 

value (OPV) provide useful insights into the classifier’s behavior without being affected by the imbalanced 

dataset issue [26-27]. BACC is calculated as: BAcc=(TPR+TNR)/2. Whereas OPV is calculated as 

OPV=(PPV+NPV)/2. Thus, a classification model with the highest balanced accuracy, the highest overall 

predictive value, and the lowest classification error is considered to be the most accurate classifier. 

 
 

3. EXPERIMENT DESIGN AND RESULTS 

In the current study, we employed two network architectures to build the models. The first model is 

based on a feedforward neural network (FFNN) and includes one input layer, one hidden layer, and one 

output layer. The second model is a deep feedforward neural network (DNN) that includes one input layer, 

two hidden layers, and one output layer and was trained with stochastic gradient descent using 

backpropagation. For both models, we trained the binary classifiers on a training set containing 80% of 

randomly selected data samples and test them on the testing set containing the remaining 20% data samples. 

Since activation functions can perform differently on different datasets the choice of function to use for the 

hidden neurons becomes challenging. For all the classifiers, we repeated the experiment execution using the 

four nonlinear activation functions (tanH, ReLU, ELU, Maxout) and recorded the results for accuracy, 

balanced accuracy, classification error, sensitivity, specificity, and the overall predictive value. We then 
make the choice to rank the results obtained on the testing sets based on the balanced accuracy first, then 

based on the overall predictive value. This choice will be discussed in the following paragraph. The overall 

adopted process in the current study is depicted in Figure 2. 

 

 

 
 

Figure 2. Adopted process  

 

 

3.1.  Results of feedforward neural network and deep neural network 

After training the feedforward neural network (FFNN) model with different activation functions, the 

networks were finally evaluated on the testing data, obtaining the classification results displayed in Table 2. 

As mentioned earlier, we prefer to focus on the results obtained by the balanced accuracy and by the overall 

predictive value. These two metrics generate high scores only if the classifier was able to properly predict the 
positive data instances as well as the negative data instances. The two rankings we employed show 

interesting aspects. First, the top classifier changes when we consider the ranking based on balanced 

accuracy, or overall predictive value. In fact, the top-performing activation function based on the balanced 
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accuracy is tanH (82.62%), while based on the overall predictive value ranking the best classifier resulted in 

being Maxout (83.34%). ReLU is ranked fourth in the balanced accuracy ranking and in the overall 

predictive value ranking, whereas ELU is ranked third.  

The classification results of the deep neural network (DNN) model measured in terms of a set of 

evaluation metrics are shown in Table 3. The network using Maxout as activation function did quite well 

both on the recall (TP rate=71.43%) and on the specificity (TN rate=86.67%) and was ranked first in terms of 

balanced accuracy (79.05%). In terms of overall predictive value, tanH classifier is top ranked (85.88%). 

ELU is the top performing in the accuracy ranking with an excellent score for specificity (TN rate=93.33%) 
but only a moderate score on recall (TP rate=64.29%). It is also noticed that ELU is performing much better 

than ReLU in terms of prediction and accuracy. This can be interpreted by the fact that ReLU for a set of 

inputs, the network cannot perform backpropagation and cannot learn anymore. 

 

 

Table 2. FFNN model classification results on the testing data trained with different activation functions 
Activation 

Function 

Accuracy Classification 

Error 

Negative 

predictive 

value 

Positive 

predictive 

value 

Overall 

predictive 

value 

TN rate TP rate Balanced 

accuracy 

tanH 84.09% 15.91% 89.66% 73.33% 81.50% 86.67% 78.57% 82.62% 

ReLU 77.27% 22.73% 79.41% 70.00% 74.71% 90.00% 50.00% 70.00% 

Maxout 84.09% 15.91% 84.85% 81.82% 83.34% 93.33% 64.29% 78.81% 

ELU 79.55% 20.45% 83.87% 69.23% 76.55% 86.67% 64.29% 75.48% 

 

 

The results obtained from FFNN and DNN models showed that DNN outperformed FFNN for the 

classification of patients for most of the activation functions. Using deep learning, ELU-based network 

overall prediction and tanH-based network balanced overall prediction have been increased respectively by 

6.79% and 4.38%. It can be noticed also that because of the class imbalance of the dataset (203 negative 

samples and 96 positive samples), prediction scores on the true negative rate are much better than the true 

positive rate. These results happen because the neural networks were well trained with large negative 

samples, and consequently, they can efficiently recognize them. 

 

 

Table 3. DNN model classification results on the testing data trained with different activation functions 
Activation 

Function 

Accuracy Classification 

Error 

Negative 

predictive 

value 

Positive 

predictive 

value 

Overall 

predictive 

value 

TN rate  TP rate Balanced 

accuracy 

tanH 84.09% 15.91% 82.86% 88.89% 85.88% 96.67% 57.14% 76.91% 

ReLU 77.27% 22.73% 88.46% 61.11% 74.79% 76.67% 78.57% 77.62% 

Maxout 81.82% 18.18% 86.67% 71.43% 79.05% 86.67% 71.43% 79.05% 

ELU 84.09% 15.91% 84.85% 81.82% 83.34% 93.33% 64.29% 78.81% 

 

 

3.2.  Deep neural network model enhancement using feature selection  

The motivation for applying feature selection is not only to reduce the dimension of the input layer 

but also to eliminate the least effective and correlated features, and to remove some interconnections or 

eliminate some hidden layer neurons to improve generalization capabilities, and thus achieve an improved 
performance. Feature selection is the process of identifying and extracting the most relevant attributes prior 

to applying any machine learning techniques on dataset samples. Applying machine learning algorithms on a 

large number of irrelevant attributes increases exponentially the training time and the risk of overfitting. The 

feature selection reduces the training time, so the models train faster, and with less redundant data that give a 

boost to the model performance. In our study, the Chi-squared test [28-29] has been used to select the most 

pertinent attributes. This metric determines if a distribution of observed frequencies differs from the 

theoretical expected frequencies. The chi-square score statistic is calculated as X2=Σ[(OF-EF)2/EF] 

where X2 is the chi-square statistic, OF is the observed frequency and EF is the expected frequency. This 

metric measures the weights of the dataset attributes with respect to the target attribute. We calculated Chi-

square between each feature and the target died event, and we selected four attributes with the best Chi-

square scores as shown in Figure 3. The attributes with higher weight are considered more relevant to predict 

survival patients. Thus, ejection fraction, serum creatinine, age, and serum sodium are the selected attributes. 
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Figure 3. Normalized attribute weights using Chi-squared test with respect to the target feature 

 

 

Incorporating the feature selection process in our deep neural network model (FS_DNN), allowed us 

to improve the prediction of survival and get better classification performance as shown in Table 4. 

 
 

Table 4. FS_DNN Classification results on the testing data trained with different activation functions 
Activation 

Function 

Accuracy Classification 

Error 

Negative 

predictive 

value 

Positive 

predictive 

value 

Overall 

predictive 

value 

TN rate  TP rate Balanced 

accuracy 

tanH 86.36% 13.64% 92.86% 75.00% 83.93% 86.67% 85.71% 86.19% 

ReLU 88.64% 11.36% 90.32% 84.62% 87.47% 93.33% 78.57% 85.95% 

Maxout 86.36% 13.64% 87.5% 83.33% 85.42% 93.33% 71.43% 82.38% 

ELU 93.18% 6.82% 93.55% 92.31% 92.93% 96.67% 85.71% 91.19% 

 

 

It has been shown that the exponential linear unit (ELU) outperformed other activation functions. 

Thus, the overall prediction value has reached a high score of 92.93% with a performance increase of 7% 

compared to the DNN model. And based on the balanced accuracy, FS_DNN scored 91.19% with a 

performance increase of 12%.  

 

3.3.  Deep neural network model enhancement using dropout regularization 

Deep architecture networks are more severely affected by overfitting and benefits more from 
regularization. The dropout regularization technique was applied to the proposed model and it was achieved 

by frizzing each unit in the hidden layer of the network at each training iteration which expands the training 

process time, as a large number of the parameters are disactivated at each iteration. Dropout probability was 

set to the recommended value of 0.5 [30-31]. With dropout technique, the networks learned more slowly, 

since parameters are updated less frequently, and parameters receive smaller gradients. As shown in Table 5, 

the dropout technique did enhance the balanced accuracy scores for the three networks that used tanH 

(enhanced by 5.24%), ReLU (enhanced by 3.82%), and Maxout (enhanced by 2.14%), and achieved the 

highest score of 91.43% compared to all previously trained models. However, the ELU-based network 

balanced accuracy decreased by 5% when using dropout regularization. Regarding the overall predictive 

value, the dropout technique did improve slightly the tanH-based network and the ELU-based network with 

the highest score of 94.12%.  

The results obtained from our models are more accurate and efficient than [32]. From the results 
published in [32], the top accuracy was achieved by Random Forests (74%), followed by Gradient Boosting 

(73.8%), followed by Decision Trees (73.7%), followed by Neural networks (68%). The classification results 

showed that our model outperformed all the other existing methods and achieve an overall predictive value of 

94.12%. 
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Table 5. Classification results on the testing data for the FS_DNN model using dropout regularization  
Activation 

Function 

Accuracy Classification 

Error 

Negative 

predictive 

value 

Positive 

predictive 

value 

Overall 

predictive 

value 

TN rate  TP rate Balanced 

accuracy 

tanH 90.91% 9.09% 96.43% 81.25% 88.84% 90.00% 92.86% 91.43% 

ReLU 88.64% 11.36% 96.30% 76.47% 86.39% 86.67% 92.86% 89.77% 

Maxout 84.09% 15.91% 92.59% 70.59% 81.59% 83.33% 85.71% 84.52% 

ELU 90.91% 9.09% 88.24% 100% 94.12% 100% 71.43% 85.72% 

 

 

4. CONCLUSION 

The current research study investigates the performance of the classification of heart disease 

patients. The impact of the learning rate on the accuracy of shallow neural networks was explored, and 

different activation functions were investigated for the first time for heart disease classification problems. 

These functions are the hyperbolic tangent, the rectifier linear unit, the maxout, and the exponential rectifier 

linear unit. The impact of the depth of neural networks on the accuracy was investigated. A comparison 

between a feed-forward network classifier accuracy and a deep feed-forward network classifier accuracy was 

carried out. An intelligent deep learning model was developed and trained with stochastic gradient descent 

using the backpropagation algorithm. The dropout regularization and the chi-square test have been 

incorporated into the model to improve the classification accuracy of heart disease patients. The performance 

of the proposed deep neural network model was evaluated using the balanced accuracy and the overall 
predictive value metrics that provide useful insights into the classifier’s behavior without being affected by 

the imbalanced dataset. We suggest all the researchers dealing with imbalanced datasets to evaluate their 

binary classification predictions through balanced accuracy and the overall prediction value in addition to the 

accuracy, sensitivity, and specificity. 

Incorporating the feature selection process, allowed the proposed model to eliminate the least 

effective and the most correlated data and improved the model generalization capabilities. The overall 

prediction value was enhanced by 7%, and the balanced accuracy was enhanced by 12% compared to the 

deep neural network model. The performance was further slightly enhanced after integrating the dropout 

regularization technique that was used to prevent the model from overfitting and thus improve the 

classification performance especially for networks trained using tanH, ReLU, and Maxout activation 

functions. The proposed model achieves a balanced accuracy of 91.43% and a high overall predictive value 

of 94.12%. Therefore, the proposed model has the potential to generate a knowledge-rich environment that 
can significantly help to enhance the quality of clinical decisions by accurately predict the survival of 

cardiovascular patients. The obtained results are promising, and the proposed model can be applied to a 

larger dataset and used by physicians to accurately classify heart disease patients. Obviously, using deep 

feedforward neural networks for heart disease patient’s classification is just one example of the successful 

applications of deep learning-based models to a real-world problem  
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