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 The facial emotion recognition by the machine is a challenging task. From 

decades, researchers applied different methods to classify facial emotion into 

the different classes. The expansion of artificial intelligence in a form of deep 

convolutional neural network (CNN) changed the direction of the research. 

The facial emotion recognition using deep CNN is powerful in terms of taking 

bulk input images for processing and classify with high accuracy. It has been 

noticed in a few cases the classification model does not judge the facial 

images into appropriate classes due to the influence of noises. So, it is highly 

recommended to apply a noiseless image to the facial emotion recognition 

model for classification. We adopted a mechanism and proposed a model for 

classifying facial image into one of the seven classes with high accuracy. The 

images are smoothed before applying to the model by different smoothing 

process as part of image preprocessing. We claim facial emotion recognition 

with image smoothing by different filters or a mixture of filter are more robust 

than without preprocessing. The detail is explained in the subsequent sections. 
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1. INTRODUCTION 

Image is a set of pixels, represented by the function 𝑓(𝑥, 𝑦) such that, 𝑥 ∈ 𝑑𝑜𝑚𝑎𝑖𝑛(𝑥 − 𝑎𝑥𝑖𝑠) and 

𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒(𝑦 − 𝑎𝑥𝑖𝑠) of an image having the scalar quantity, is equivalent to the amount of energy radiated 

from the place image is taken. Suppose 𝑓(𝑎, 𝑏) designates an image of continuous variables which is 

converted into digital image in a form of 𝑓(𝑥, 𝑦) where 𝑥 ∈ {0,1,2, . . , M − 1} and 𝑦 ∈ {0,1,2, . . , N − 1} Here 

M, N are the length and breadth of the digital image. Following is the matrix representation of above image 

definition in (1): 
 

𝑓(𝑥, 𝑦) = (
𝑓(0,0) ⋯ 𝑓(0, 𝑀 − 1)

⋮ ⋱ ⋮
𝑓(𝑁 − 1,0) ⋯ 𝑓(𝑁 − 1, 𝑀 − 1)

) (1) 

 

Here, each of 𝑓(𝑥𝑖 , 𝑦𝑖) represents spatially to a pixel of(𝑥𝑖 , 𝑦𝑖). For every pixel (𝑥𝑖 , 𝑦𝑗) such that 

0 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑁. The four neighboring pixels of any of the pixels (𝑥𝑖 , 𝑦𝑗) are represented by 

https://creativecommons.org/licenses/by-sa/4.0/
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(𝑥𝑖+1, 𝑦𝑗), (𝑥𝑖−1, 𝑦𝑗), (𝑥𝑖 , 𝑦𝑗+1), (𝑥𝑖 , 𝑦𝑗−1). Often, the image cannot be analyzed in true sense due to its bad 

quality and amount of the noise present [1]. The corrupted image is presented as (2): 
 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (2) 
 

where 𝑓(𝑥, 𝑦): Noiseless image and 𝜂(𝑥, 𝑦): Noises present in the image.  

The presence of noise corrupts partially or in a regularly at different portions of the image. As a 

result, the image knowledge extraction may not be in a true sense. For recovery, the quality of the image 

from the noise image filtering is used. According to [2] there are several filters like average, median, 

gaussian, and bilateral are used to smooth the image. In this situation the convolution is used and is 

represented by operator ⊛ applied on 𝑓(𝑥, 𝑦) with the impulse response of 𝑔(𝑥, 𝑦) create smooth image 

ℎ(𝑥, 𝑦) explained as (3). 
 

ℎ(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ⊛ 𝑔(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑥′, 𝑦′)𝑔(𝑥 − 𝑥′, 𝑦 − 𝑦′)𝑑𝑥′𝑑𝑦′
+∞

−∞

+∞

−∞
 (3) 

 

ℎ[𝑖, 𝑗] = 𝑓[𝑖, 𝑗] ⊛ 𝑔[𝑖, 𝑗] (4) 
 

The human face represents some sensible information which changes from time to time [3] with 

external or internal influence. In this article we have demonstrated the facial emotion recognition model by 

applying artificial intelligence. The input to this model is filtered by different filters as a part of image 

preprocessing that lead by higher accuracy compared without smoothing. The facial emotion recognition 

begins from Darwin, [4] said there are 40 human expressions curves a human face poses after perceiving 

inputs from the environment. The action units [5], [6] of the face are the fundamental unit of the expression 

which contain sensitive information of expression. Convolutional neural network (CNN) consist of 

convolutional layer, pooling layer and fully connected network [7] is the most interesting tool and 

technology that, produces promising result [8] for any high-level scientific computation [9], [10]. 

Convolutional neural networks are not only for facial emotion recognition that we applied in the under 

described research, but also in several classifications such as human disease classification [11], [12], and 

plant disease classification [13]. Before deep CNN quite popular, the image classification uses a different 

machine learning algorithms and methods to classify in applications like brain tumor [14], [15], Plant 

disease [16], [17] and other [18], [19]. 

We have adopted a deep CNN in our research. The input to the architecture is preprocessed facial 

image which is filtered by various filters [20] as a result the quality of the image is enhanced. Filters have 

different measures for smoothing the image by removing impulse noise as per the function it uses. The 

convolutional neural network accepts smoothed image and train an artificial intelligence model for facial 

emotion recognition that is either happy, sad, fear, disgust, neutral, surprise and angry. In the general 

complexity of the model increases and accuracy decreases as number of the classes increases that are more 

challenging. We claim our model stood well for a wide variety of emotion classification with high 

accuracy. 

The primary input to facial emotion recognition model is an image. The training of the model is 

influenced depending on the amount of noises are in the images. It is believed that the smoothed image is 

more robust than not. The filters that smooth images are average, median, gaussian and bilateral each filter 

have its own pros and cons. However, most of them cannot well recover a heavy noise corrupted image 

with noise density above 70% to preserve the detailed information of an image [21]. The median filter and 

its different variants are extensively used [22] to reduce the impulse noise from grayscale images and the 

performance is increased. Averaging the pixel intensities with respect to the size of the filter is a common 

method for smoothing the image, but fuzzy averaging [23] reduces impulses in a large way. Identify the 

pixels belonging to the borders, then apply a reduced smoothing and applying more intense smoothing to 

the remaining pixels produced a standard result [24] in the ultrasound image application. 

The median filtering is a good choice of noise reduction. An improved median filtering algorithm 

[25] uses the correlation of the image to process the features of the filtering mask over the image. Median 

filtering based on combined features of different image that, consist of joint conditional probability density 

functions, principal component analysis is used to reduce the dimension is performing on the uncompressed 

image datasets. A new proposed method [26] uses a median filter using prior information to capture natural 

pixels for restoration, this method restores corrupted images with 99% level of salt-and-pepper impulse 

noise. Switching among the median and mean [27] by detecting a filter is a proved method of smoothing. 

Gaussian function used for gaussian blur [28], is a kind of normal distribution. The original pixel 

having the highest intensity is replaced by maximum gaussian weight and proportionally the lower intensity 

https://www.sciencedirect.com/topics/engineering/probability-density-function
https://www.sciencedirect.com/topics/engineering/probability-density-function
https://www.sciencedirect.com/topics/computer-science/dimensionality
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is replaced by low gaussian weight. The review article [29] is a good collection of gaussian filers used in 

different applications and explained the advantages of this filter with respect to others. 

The noise reduction along with preserving edge information [30] smoothing achieves using the 

[31] bilateral filter. Here the intensity of each of the pixel is substituted by a weighted average of an 

intensity calculated from the nearby pixels. The framework for image denoising [32] and suppresses mixed 

noise in color images [33] are a few of the advance example using the bilateral filter. The remaining of the 

paper is organized into the sections as: Section 2: Research method, section 3: Result and discussion and 

section 4: Conclusion. 
 

 

2. RESEARCH METHOD  

2.1.  Dataset description 

The renowned datasets FER2013 and CK48+ datasets are used for experimentation in the 

proposed model. CK48+, Fer2013 datasets consists of 3540, 35887 images related to seven different facial 

expressions such as happy, angry, sad, surprise, neutral, disgust, and fear, respectively. All the images are 

normalized, standardized by using standardization and normalization techniques, all the images are resized 

into a fixed dimension of 48X48 to maintain uniformity. 
 

2.2.  Filter description 

The basic focus of our research is to observe facial emotion classification and its accuracy 

achievements for smoothed input images. The images undergone through different smoothing process and 

observation is tabulated in experimental section. For smoothing the images, a hybrid smoothing filter is 

proposed which is formed by the combination of average, median, gaussian, bilateral filters and their 

performances are compared. The equations used in each of the filters are as mentioned is: average filtering 

in (5), median filtering in (6), gaussian in (7) for 1D and in (8) for 2D, bilateral in (9), 
 

𝐼𝑚𝑔(𝑥, 𝑦) = ∑  

1

𝑗=−1

∑ 1 ∗ 

1

𝑖=−1

𝐼𝑚𝑔𝐴𝑐𝑡  (𝑥 + 𝑖, 𝑦 + 𝑗) 

𝐼𝑚𝑔𝑛𝑜𝑟𝑚(𝑥,𝑦) =  
1

∑ ∑  1
𝑖=−1

1
𝑗=−1

𝐼𝑚𝑔(𝑥, 𝑦) (5) 

 

𝐼𝑚𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼𝑚𝑔𝑎𝑐𝑡((𝑥 + 𝑖, 𝑦 + 𝑗)|(𝑖, 𝑗 ∈ 𝑅))} (6) 
 

𝐺(𝑥) =
1

√2𝜋𝜎2
𝑒

−𝑥2

2𝜎2  (7) 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)

2𝜎2  (8) 

 

𝐼𝑚𝑔 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 =
1

 𝑊𝑡  
∑  𝐼𝑚𝑔(𝑥𝑖)𝑓𝑟𝑎𝑛𝑔𝑒(𝑚𝑜𝑑(𝐼𝑚𝑔(𝑥𝑖) − 𝐼𝑚𝑔(𝑥))𝐺𝑥(𝑚𝑜𝑑(𝑥𝑖 − 𝑥))  

𝑊𝑡 =  ∑ 𝑓𝑟𝑎𝑛𝑔𝑒(𝑚𝑜𝑑(𝐼𝑚𝑔(𝑥𝑖) − 𝐼𝑚𝑔(𝑥))𝐺𝑥(𝑚𝑜𝑑(𝑥𝑖 − 𝑥)) (9) 

 

2.3.  Model description 

In the devised model a facial emotion recognition image dataset is taken and is converted to a 

hybrid image set by applying various smoothing techniques. 

Step 1: Initially, n random images from the image set is selected by using 𝑟𝑎𝑛𝑑𝑆𝑒𝑙𝑒𝑐𝑡 function proposed in 

the algorithm. 

Step 2: Average filtering is applied on the randomly selected images and the resulted images are stored in 

hybrid image set, the random images selected are removed from the original image set.  

Step 3: The same process is repeated by using median, gaussian, and bilateral filters and a hybrid image set 

is formed from different filtered images. 

Step 4: Assign labels to the resulted hybrid image set  

Step 5: Divide the hybrid image set in the ratio of 80:15 for training and testing purpose 

Step 6: Train the proposed CNN model with selected images for training and evaluate with the images 

selected for testing for training and evaluation. 
 

2.3.1. Algorithm 

The stages in the algorithm illustrate the process in evaluating a face picture as an input into an 

emotion class. The algorithm uses three functions: hybrid filtering, randSelect, and FacEmoRec. The 
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hybrid filtering function chooses pictures that are filtered using average, median, bilateral, and gaussian 

methods. FacEmoRec classifies photos based on emotion using the randSelect function, which randomly 

picks photos from the original dataset on which filtering should be done. 
 

Algorithm 1 
Input:Image Set Consisting of Seven Different Facial Expressions 

Output:Hybrid Image Set After Applying Differnt Filtering Techniques 

Hybrid Filtering Alg(Image Set[ ]) 

HybridImgSt[ ]={ϕ} 

Begin 

if len(ImageSet[ ]≠ ∅) then // 

Beginif 

                 for all the images in ImageSet 

resize(ImageSet[ ],48,48)//Resizes all images into size of 

48X48 

    Normalize(ImageSet[ ])//Normalizies all the images 

l=len(ImageSet[ ])  

while(l>0) 

Beginloop 

     imgi[ ]=randSelect(ImageSet[ ],l) 

     imgfi[ ]=AvgFilter(imgi[ ],(3,3))  

HybridImgSt[ ]=HybridImgSt[ ]∪ imgfi[ ] 

ImageSet=ImageSet-imgi[ ] 

l=l-len(imgi[ ]) 

imgj[ ]=randSelect(ImageSet[ ],l) 

imgfj[ ]=MedianFilter(imgj[ ],(3,3)) 

HybridImgSt[ ]=HybridImgSt[ ]∪ imgfj[ ] 

ImageSet=ImageSet-imgj[ ] 

l=l-len(imgj[ ]) 

imgk[ ]=randSelect(ImageSet[ ],l) 

imgfk[ ]=GaussianFilter(imgk[ ],(3,3)) 

HybridImgSt[ ]=HybridImgSt[ ]∪ imgfk[ ] 

ImageSet=ImageSet-imgk[ ]    l=l-

len(imgk[ ]) 

imgfl[ ]=BilateralFilter(Imageset[ ],(3,3)) 

HybridImgSt[ ]=HybridImgSt[ ]∪ imgfl[ ] 

ImageSet=ImageSet-ImageSet[ ] 

l=l-len(ImageSet[ ]) 

Endloop 

Endif 

End 

randSelect(ImageSet[ ],l) 

Begin_Function 

do_loop 

n=randInt( ) 

while(n>l ) 

return (rand(Img[n])) 

End_Function 

Input:HybridImgSt Consisting Images of Seven Different Facial Expressions After Filtering 

Output:Classification of Images Based On Expression Type 

FacEmoRec(HybridImgSt)//Emotion Recognizing Model 

Begin 

l=len(HybridImgSt) 

for i in 1 to l 

Begin 

LabImgSt←Label(HybridImgSt[imgi])//Assigns Labels to Images 

TrSt,TsSt←Split(LabImmSt,85,15) 

CNN Model←CNN Model(TrSt) 

Evaluation←CNN Model(TsSt) 

End 

return Classified Emotion// Classified Emotions will be returned 

end 

 

2.3.2. Flow chart for the proposed model 

Figure 1 describes the application of different filters, average, median, gaussian, and bilateral to 

the image dataset consist of finite images. All images passed through different filters are equal to the total 

number of images in the actual dataset. The filtered images are applied to the model for training and 

evaluation. 
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Figure 1. Develop a model with a hybrid dataset whose performance is measured through a proper 

evaluation plan 

 

 

3. RESULTS AND DISCUSSION 

High computation speeds in terms of graphical processing unit (GPU), central processing unit 

(CPU) and memory are required to build a hybrid image filter algorithm and to build a CNN model for 

evaluating the performances of the hybrid image filter dataset. We took the support of Google Colab cloud 

service support for developing the above-mentioned models. The configuration of the cloud service used is 

described as: 

Frequency of CPU: 2.30 GHz, GPU Used: NIVIDIA (12GB), Size of Disk Space Supported:  

25 GB, Editor Used: Jupiter Notebook. CK48+, Fer2013 datasets that consists of 3540, 35887 images 

related to seven different facial expressions such as happy, angry, sad, surprise, neutral, disgust, and fear 

are considered for experimentation. Average, median, gaussian, bilateral and the proposed filter hybrid 

filters are considered for filtering the datasets and the resulted images are given for a CNN model for 

evaluation. It is observed that the images that were considered as inputs to the CNN model after applying 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 4, December 2021:  889 - 900 

894 

filtering produced better results when compared to the images where filtering is not applied produced better 

results when compared to the images where filtering is not applied. Figure 2 represents accuracy and loss 

comparisons that are obtained from the model without filtering and with average and median filtering 

techniques applied to CK48+ dataset. Figure 2(a) represents train and test loss comparisons without 

filtering, Figure 2(b) represents train and loss comparisons when Average filtering is applied and  

Figure 2(c) represents train and test loss applied when median filtering is applied on CK48+ dataset.  

Figure 3 represents accuracy and loss comparisons that are obtained from the model with gaussian, bilateral 

and proposed hybrid filtering techniques applied to CK48+ dataset. Figure 3(a) represents train and test loss 

comparisons of gaussian filtering, Figure 3(b) represents train and loss comparisons when bilateral filtering 

is applied and Figure 3(c) represents train and test loss applied when hybrid filtering is applied on CK48+ 

dataset. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 2. Performance measures without filtering and applying average and mean filtering on CK48+ 

dataset; (a) performance measures without applying filtering on CK48+ dataset, (b) performance measures 

after applying average filtering on CK48+ data set and (c) performance measures after applying median 

filtering on CK48+ dataset 
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(a) 

 
(b) 

 

 
(c) 

 

Figure 3. Performance measures after applying gaussian, bilateral and hybrid filtering on CK48+ dataset; 

(a) performance measures after applying gaussian filtering on CK48+ dataset, (b) performance measures 

after applying bilateral filtering on CK48+ dataset and (c) performance measures after applying hybrid 

filtering on CK48+ dataset 

 

 

The Figure 4 represents accuracy and loss comparisons that are obtained from the model without 

filtering and with average and median filtering techniques applied to FER2013 dataset. Figure 4(a) 

represents train and test loss comparisons without filtering, Figure 4(b) represents train and loss 

comparisons when Average filtering is applied and Figure 4(c) represents train and test loss applied when 

median filtering is applied on FER2013 dataset. Figure 5 represents accuracy and loss comparisons that are 

obtained from the model with gaussian, bilateral and proposed hybrid filtering techniques applied to 
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FER2013 dataset. Figure 5(a) represents train and test loss comparisons of gaussian filtering, Figure 5(b) 

represents train and loss comparisons when bilateral filtering is applied and Figure 5(c) represents train and 

test loss applied when hybrid filtering is applied on FER2013 dataset. Table 1 expresses the performance 

comparative analysis of train and test accuracy, loss and time taken for each epoch execution of the model 

with filtering and without filtering compared to the proposed hybrid filtering technique applied on 

FER2013 dataset. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 4. Performance measures without filtering and applying average and mean filtering on FER2013 

dataset; (a) performance measures without applying filtering on FER2013 data set, (b) performance 

measures after applying average filtering on FER2013 data set and (c) performance measures after applying 

median filtering on FER2013 dataset 
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Table 2 expresses the performance comparative analysis of train and test accuracy, loss and time 

taken for each epoch execution of the model with filtering and without filtering compared to the proposed 

hybrid filtering technique applied on CK48+ dataset. Figure 6 is a bar chart of accuracy levels that are 

obtained from the model with filtering and without filtering compared to the proposed Hybrid filtering 

technique applied on CK48+ and FER2013 datasets. Figure 7 is a bar chart of loss levels that are obtained 

from the model with filtering and without filtering compared to the proposed hybrid filtering technique 

applied on CK48+ and FER2013 datasets. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 5. Performance measures after applying gaussian, bilateral and hybrid filtering on FER2013 dataset, 

(a) performance measures after applying gaussian filtering on FER2013 data set, (b) performance measures 

after applying bilateral filtering on FER2013 data set and (c) performance measures after applying hybrid 

filtering on FER2013 dataset 
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Table 1. FER2013 performance comparative analysis using various filters 
FER-2013 

S.No Type of filtering applied Train Accuracy Test Accuracy Train loss Test loss Exec time per epoch 

1 Average Filter 86.2 61.89 0.383 1.201 17 Sec 
2 Median Filter 85.81 62.54 0.934 1.169 16 Sec 

3 Gaussian Filter 86.34 62.67 0.381 1.193 16 Sec 

4 Bilateral Filter 84.34 61.65 0.434 1.193 12 Sec 
5 Hybrid Filter 85.66 63.37 0.400 1.178 10 Sec 

6 Without Filtering 86.21 61.57 0.382 1.118 17 Sec 

 

 

Table 2. CK48+ performance comparative analysis using various filters 
CK 48+ 

S.No Type of filtering applied Train accuracy Test accuracy Train loss Test loss Exec time per epoch 

1 Average Filter 78.39 74.76 0.525 0.470 1 Sec 

2 Median Filter 77.3 77.59 0.464 0.474 2 Sec 
3 Gaussian Filter 77.37 75.71 0.467 0.491 1 Sec 

4 Bilateral Filter 77.7 74.95 0.473 0.478 1 Sec 

5 Hybrid Filter 79.59 78.72 0.438 0.491 1 Sec 
6 Without Filtering 65.2 69.68 0.701 0.605 1 Sec 

 

 

 
 

Figure 6. Accuracy comparisons after applying various filters on CK48+ and FER2013 datasets 
 

 

 
 

Figure 7. Loss comparisons after applying various filters on CK48+ and FER2013 datasets 
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4. CONCLUSION 

The research described in this article is a robust deep convolutional neural network (CNN) model 

for facial emotion recognition into one of the seven classes. In this proposed model the input is a mixture of 

smoothed images produced by different smoothing filters. The model resulted in reasonable performance in 

terms of accuracy, loss on the test dataset trained using CK48+ and FER 2013 mixed smoothed images. This 

can be extended to find out most suitable filter for an image which may further increase the accuracy level 
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