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 The Merkle-Hellman (MH) cryptosystem is one of the earliest public key 

cryptosystems, which is introduced by Ralph Merkle and Martin Hellman in 

1978 based on an NP-hard problem, known as the subset-sum problem. 

Furthermore, ant colony optimization (ACO) is one of the most nature-

inspired meta-heuristic optimization, which simulates the social behaviour of 

ant colonies. ACO has demonstrated excellent performance in solving a wide 

variety of complex problems. In this paper, we present a novel ant colony 

optimization (ACO) based attack for cryptanalysis of MH cipher algorithm, 

where two different search techniques are used. Moreover, experimental 

study is included, showing the effectiveness of the proposed attacking 

scheme. The results show that ACO based attack is more suitable than many 

other algorithms like genetic algorithm (GA) and particle swarm 

optimization (PSO). 
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1. INTRODUCTION 

Security and privacy protection of data is a great challenge in communication networks and 

computer systems. Cryptology is one of the most significant techniques for achieving information security 

covering two mutually unified subfields; cryptography and cryptanalysis. Cryptography is the study of 

building new powerful and efficient encryption and decryption algorithms using some mathematical 

problems as the theoretical basis. Cryptanalysis is the art of deciphering communications that are secured by 

cryptography; that is, finding, exploiting, and correcting weaknesses in cryptographic systems. The main 

challenge in cryptanalysis is to recover the plaintext or the key used for encryption. 

It is become a common practice to use metaheuristics in cryptanalysis field. More recently, nature 

inspired metaheuristic algorithms have been used in cryptanalysis of many cipher. Especially, Ant colony 

optimization which is a promising approach that usually achieves considerably high performance in wide 

variety of problems. 

In our previous work [1], we have proposed a new evolutionary way to attack Merkel-Hellman 

(MH) cryptosystem using ant colony optimization. We have modelled the cryptanalysis problem to a 

combinatorial problem in order to apply ACO metaheuristic, and the whole algorithm called MH-ACO was 

presented. In this paper, we intend to extend this algorithm by proposing two others approach which differ in 

the solution construction step, pheromone management rules and heuristic value. For the convenience of 

https://creativecommons.org/licenses/by-sa/4.0/
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description, we name them MH-BACO and MH-MACO. We will investigate their relative strengths and 

weaknesses by experimentation, concluding that MH-MACO approach is robust and efficient when 

compared to others attacks. 

Many researchers have tried to attack Merkle-Hellman cipher using metaheuristics. Spillman [2] 

was the first to apply genetic algorithm for breaking the knapsack cipher. This attack is enhanced and re-

implemented by Garg et al. [3], concluding that a high population size, high crossover probability and a low 

mutation probability increases the efficiency of GA attack. Abdul-Halim et al. [4] and Jain and Chaudhari [5] 

use a binary particle swarm optimization to attack Knapsack cryptosystem, they found that binary PSO is 

more efficient than the GA used by Spillman [2], and Garg et al. [3]. Furthermore, Sinha [6] proves that 

differential evolution is a much efficient technique than genetic algorithm for attacking the knapsack cipher. 

a cryptanalytic attack on the knapsack cryptosystem using binary variant of firefly algorithm is done by Palit 

[7] showing that the performance of firefly algorithm is much better than GA in this purpose. 

Recently, Abdel-Basset [8] suggested a whole optimization-based attack using a sigmoid function 

for discretizing the search space, and the results show that the proposed algorithm is an efficient and robust 

for cryptanalysis of the Merkle-Hellman knapsack cryptosystem (MHKC) more than other algorithms. 

Kantour [9] proposed a parallel genetic algorithm for breaking the MHKC, their proposed scheme is 

enhanced with a deliberate cooperation among the search entities (GAs) via the migration operator. We 

mention also many other attacks in [10]-[20]. 

 

 

2. MERKLE-HELLMAN CRYPTOSYSTEM  

In 1978 the famous Merkle and Hellman [21] public key cryptosystem was presented, which 

described an asymmetric cryptosystem based on a concrete case of the knapsack problem, which utilized a 

NP-complete subset sum problem (SSP) for its security. We can describe it is being as given a knapsack of 

volume S units and n items each of volume a1, a2 … an units. We would like to find the number S by 

summing a subset of numbers from the set A= {a1, a2 … an} so: 

 

S = a1x1 +a2x2+… +anxn 

 

An ai item is fitted in the knapsack if the binary variable decision xi is equal to 1, the ai item will not in the 

knapsack xi=0.  

The Merkle-Hellman cipher encrypts a message as a knapsack problem, the plain-text is divided into 

n-bit block. An example of Merkle-Hellman encryption is illustrated in Table 1, using 6 elements sequence: 

1,4,7,11,19 and 27. 

 

 

Table 1. Example of Merkle-Hellman encryption 
Plaintext  Knapsack sequence  Ciphertext 

1 0 1 0 1 1 1,4,7,11,19,27 1+7+19+27= 54 

1 1 0 1 1 0  1,4,7,11,19,27 1+4+11+19 = 35 
0 0 1 0 0 1  1,4,7,11,19,27 11+27 = 38 

 

 

However, if the A set is a super-increasing sequence, meaning that: Each ai element of the sequence 

fulfils the condition: 𝑎𝑖 > ∑ 𝑎𝑗
𝑖−1
𝑗=1  And i ϵ {2… n}. 

In this concrete case, the knapsack is called an easy knapsack that can be solved is being as: 

 

xn = {
1 𝑖𝑓 𝑆 ≥ 𝑎𝑛 
0 𝑖𝑓 𝑆 < 𝑎𝑛

 And For each j ϵ [0,1,…,n-1] : xj = {
1 𝑖𝑓 𝑆 − ∑ 𝑥𝑘 𝑎𝑘

𝑛
𝑘=𝑗+1 ≥ 𝑎𝑗  

0 𝑖𝑓 𝑆 − ∑ 𝑥𝑘 𝑎𝑘
𝑛
𝑘=𝑗+1 < 𝑎𝑗

 

 

Using this feature, Merkle and Hellman [10] developed they public key cryptosystem, the 

private/public key are a sequence of number for a super-increasing/normal knapsack problem with the same 

solution. Merkle and Hellman suggested that such an easy knapsack be converted into a more complex 

trapdoor knapsack. This transformation involves the following steps: 

1. Select a simple knapsack super-increasing sequence elements A’= (a'1, a'2,… a'n ) 

2. Select an integer value m greater than sum of all elements of super-increasing sequence m >2 a’n. 

3. Select another integer w that the gcd (m, w) =1, that is number m and w are reciprocally prime. 

4. Find w-1 the inverse of the w mod m. 

5. Construct the hard knapsack sequence. 
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A=w x A’ (mod m) i.e. ai=w x a'i (mod m) for each i in {1… n.}. The trapdoor sequence A could be 

published as a public key (encryption key). The private (secret) key for this cipher consists of a simple 

knapsack sequence A’ and the values m, w, w-1. 

 

 

3. ANT COLONY OPTIMIZATION  

The research concept that has been underlined in this paper is applying of meta-heuristic approach 

ant colony optimization to break MH cryptosystem. Ant colony optimization [22] represents a class of 

population-based metaheuristics inspired by the behavior of real ant colonies. These ants are capable to find 

shortest paths between food sources and their nest, using an indirect communication mediated by the 

pheromone trail. 

In a real ant colony, ants explore their environment for the search of food sources; each ant deposes 

a chemical substance called pheromone on his path. Thus, the others ants can smell this pheromone and they 

tend to choose, probabilistically, paths with strong pheromone concentrations. Old paths are less likely to be 

used because of the pheromone evaporation mechanism, allowing forgetting suboptimal path. This simple 

idea is implemented by the ACO methods to resolve and address hard combinatorial problems such as 

traveling salesman problems (TSP), quadratic assignment problems, vehicle routing problems, or constraint 

satisfaction problems. 

The first ACO algorithm, called ant system (AS) introduced by Dorigo et al. [23] was applied to 

travelling salesmen problem (TSP). Other ACO variants where introduced which differ in the solution 

construction procedure and pheromone trails update, including ant colony system (ACS) presented by Dorigo 

and Gambardella [24], and min max ant system (MMAS) given by Stutzle and Hoos [25]. In ant colony 

system (ACS), the algorithm improves over ant system (AS) by an excessive exploitation of the search 

experience accumulated by the ants, using a more aggressive action choice rule explained is being as: 

At each construction step, an ant chooses a random variable q uniformly distributed in [0, 1]. If q is 

less than a fixed parameter q0 such as 0 ≤q0 ≤1, the ant makes the best possible choice as indicated by the 

pheromone trails and the heuristic information, exploiting the past experiences. While with probability 1- q0 

it performs a biased exploration like an ordinary AS. Tuning the parameter q0 allows modulation of these two 

choices (exploiting the current results or exploring new solutions). 

 

 

4. PROPOSED APPROACH  

As mentioned earlier, the problem can be stated is being as: Given an n-elements public key  

A={a1, a2…an} and S the target sum representing the ciphertext, find a particular subset of number from the 

set A such as : S = ∑ aixi
n
i=1  whith xi ϵ {0,1} and i = 1,…,n. 

where 𝑥𝑖 is a binary variable indicating whether or not item i was selected. 

The problem so far is equivalent to a subset sum problem, which is well-known NP-complete. To 

overcome this problem, we propose an ant colony based algorithm, in order to tackle the problem as a 

combinatorial problem. The main procedure of our proposed method is described is being as: All ants 

constructs a solution in each particular round, and then pheromone trails are updated. The algorithm stops 

iterating when the maximum number of rounds is attained or a so good solution is achieved. Furthermore, a 

constructive approach is used to build solutions, each ant start building a feasible solution by iteratively 

adding appropriate components from all the allowed ones in a probabilistic manner until a complete solution 

is obtained. In the following, we will put forward three search space design based on problem feature, called 

MH-ACO proposed in [1], MH-BACO and MH-MACO, in each method we will describe the details about 

the solution construction procedure, then we will define an appropriate heuristic information and strategy to 

update pheromone trails. Next, we will present the used fitness function. Finally, the outline of the whole 

algorithm is presented. 

 

4.1.  MH-ACO procedure 

4.1.1. Solution construction 

At each round, each ant chooses an initial object randomly and then iteratively adds object from a 

set of candidates objects Ni that can be selected without violating resource constraints. Once Ni is empty, a 

solution is constructed. The search space is illustrated in Figure 1. 

ACO algorithms are stochastic algorithms that make probabilistic decision in terms of the artificial 

pheromone trails and the local heuristic information. These two factors are combined to form the so-called 

probabilistic transition rule defined is being as: 
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𝑃(𝑖, 𝑗) = {

𝜏(𝑖,𝑗)𝛼 𝜌(𝑗)𝛽

∑ 𝜏(𝑖,𝑘)𝛼𝑘𝜖𝑁𝑖
𝜌(𝑘)𝛽

 𝑖𝑓 𝑗𝜖 𝑁𝑖

0 , O 𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
  (1) 

 

In ACS, the transition rule is defined is being as  

 

T(i,j)={
𝑚𝑎𝑥𝑙𝜖𝑁𝑖(𝜏(𝑖, 𝑙)

𝛼  𝜌(𝑙)𝛽) , 𝑖𝑓 𝑞 ≤  𝑞0
𝑃(𝑖, 𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

where 𝑃(𝑖, 𝑗) is the probability to select the next object aj within the set of available objects 𝑁𝑖 in the the i-th 

construction step. And q is a random number in range [0,1], q0 is a an exploitation parameter ( 0 ≤q0 ≤1 ). 

The probability P(i,j) is based on two factors. First, the amount of pheromone trail τ(i,j) in the edge 

(i,j). Second the heuristic value ρ(j) representing the attractiveness of the object aj. The parameters α and β 

are used respectively to control the pheromone effect and the heuristic value. 

 

 

 
 

Figure 1. Search space for MH-ACO 

 

 

4.1.2. Pheromone update 

Once each ant has built a solution in a particular round. The best solution found Sbest is retained, 

which will be used to update the pheromone trails. The pheromones over the edges constituting the tour of 

the best ant is updated using (2), so larger the fitness value, the greater is the amount pheromone deposited. 

 

τi,j = σ × τi,j + Δτi,j(Sbest)  (2) 

 

𝑎𝑛𝑑 ∶  𝛥𝜏𝑖,𝑗(𝑆𝑏𝑒𝑠𝑡) = {
𝑄 × 𝐹(𝑆𝑏𝑒𝑠𝑡) 𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑆𝑏𝑒𝑠𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

where 𝜎 ϵ [0-1] is the evaporation rate. However, pheromone evaporation is a natural phenomenon that 

ensures that old pheromone should not have too strong influence on the future.  

Q is some constant, and F is the fitness function used to evaluate each constructed solution (defined 

in the section 4.4). To update pheromone trail based on the best solution Sbest , we have to lay pheromone on 

all pairs (ai, aj) of each different objects of Sbest . So, the strategy is to increase the desirability of choosing 

together two objects of Sbest. 

 

4.1.3. Heuristic value 

The possibility of using heuristic information ρ is important because it improve exploitation of the 

search space. In our ACO algorithm, we have used a dynamic heuristic information that depends on the 

partial solution constructed and therefore has to be computed at each time when the ant need to make a 

choice. The transition probability in (1) needs a heuristic value calculation method from the problem domain 

as an efficient search methodology. In our approach, the heuristic value is defined is being as: 

Let Si be the set of the selected objects at the i-th construction step, the heuristic value ρ(j) for a 

candidate object j is given is being as (3): 

 

𝜌(𝑗) = 
𝑎𝑗

𝑆𝑐
 where 𝑆𝑐 = 𝑆 − ∑ 𝑎𝑘𝑘∈𝑆𝑖

 (3) 
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Sc is called the current knapsack capacity; Sc is calculated at each step by subtracting all the selected 

object in the partial solution Si from the target sum 𝑆. 

 

4.2.  MH-BACO procedure 

4.2.1. Solution construction 

In this variant (named binary ant colony optimization), we have modelled the search space to a n+1 

nodes graph. Every node ai is linked to the next node ai+1 by two different edges, the first edge is equal to 0 

and the second edge is equal to 1 as explained in Figure 2. 

 

 

 
 

Figure 2. Search space for MH-BACO 

 

 

In a particular tour, each ant constructs a feasible solution considered as a candidate key, it will 

consist of a path from the first node a0 to the last node an, through the edge 0 or 1 between each 2 nodes ai 

and ai+1. The probabilistic transition rule in this case is defined is being as (4): 

 

𝑃(𝑖, 𝑗) =
𝜏(𝑖,𝑗)𝛼 𝜌(𝑗)𝛽

𝜏(𝑖,0)𝛼𝜌(0)𝛽+𝜏(𝑖,1)𝛼𝜌(1)𝛽
 𝑤ℎ𝑖𝑡ℎ 𝑗𝜖{0,1} (4) 

 

In this approach, ants have a limited view towards objects. In fact, in each iteration ants can only 

move to the next object in the search space as shown in the Figure 2. However, they can decide to select or 

not this object. 

 

4.2.2. Pheromone update 

The pheromone strategy used in this method is the same used in MH-ACO. More formally, the 

pheromone values are updated is being as (5): 

 

𝜏𝑖,𝑗 = 𝜎 × 𝜏𝑖,𝑗 + 𝛥𝜏𝑖,𝑗(𝑆𝑏𝑒𝑠𝑡)  (5) 

 

𝑎𝑛𝑑 ∶  𝛥𝜏𝑖,𝑗(𝑆𝑏𝑒𝑠𝑡) = {
𝑄 × 𝐹(𝑆𝑏𝑒𝑠𝑡) 𝑖𝑓 𝑒𝑑𝑔𝑒(𝑖, 𝑗) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑆𝑏𝑒𝑠𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

where Δ𝜏𝑖,𝑗 is the amount of pheromone deposited on the edges between each two objects contained in the 

best solution Sbest, the value of Δ𝜏𝑖,𝑗is proportional to the best solution quality.  

 

4.2.3. Heuristic value 

The heuristic value used in MH-BACO is defined is being as: Let Si be the set of the selected objects 

at the i-th construction step, the heuristic value ρ(0) (which means that the object is not selected) and ρ(1) 
(which means that the object is not selected) is given is being as (6): 

 

𝜌(0) =  
aj

Sc
 , ρ(1) =  

Sc

aj
 (6) 

 

With 𝑆𝑐 = 𝑆 − ∑ 𝑎𝑘𝑘∈𝑆𝑖
 called current knapsack capacity. 

 

4.3.  MH-MACO procedure 

4.3.1. Solution construction 

Named modified MH-MACO, it combine the advantages of the two previous strategies. First, by 

giving to ants a wide view of objects. Thus, each ant can make a choice to move to any object (according  

to 7). Second, ants decide whether to select (it will be fitted in the partial solution under construction) or not 

the visited object. The search space is defined as a fully connected graph like MH-ACO, where nodes 
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represent objects of the Knapsack. Similar to MH-BACO algorithm, there are two sub-edges between each 2 

objects in the graph, one for selecting and the other for deselecting the corresponding object, as illustrated in 

Figure 3.  

 

 

 
 

Figure 3. Search space for MH-MACO 

 

 

In each round, each ant can decide whether to select an object or not. If an ant chooses sub-edge 1 

(or 0) of object Oi, it means the object is selected (or deselected) by that ant. Note that, ants are only allowed 

to select one of the sub-edge (0 or 1) of each node. Based on the (7), an ant choose its next path and the 

process continues until its visits all objects. At the end of each cycle. Each ant built a solution in the form of 

n-bit vector, where 1 means selecting and 0 means deselecting the corresponding object. 

The probabilistic function of transition, denoting the probability of an ant at node ai to choose the 

path p (0 or 1) to reach the node aj , is defined is being as (7): 

 

P(i, j, p) = {

τ(i,j,p)α ρ(j,p)β

∑ ∑ τ(i,k,j)α ρ(k,l)lϵ[0.1]
β

kϵNi

 if jϵ Ni 

0 Otherwise 

  (7) 

 

where Ni is the set of objects not yet visited. Two parameters are used to calculate the probability of moving 

from a state i to another state j; first, the amount of pheromone trail τ(i, j, p) which reflects the potential tend 

for ants to select (p=1) or deselect (p=0) the object aj. And second, the heuristic value ρ(j, p) representing the 

attractiveness of the (de)selection the object aj. 

 

4.3.2. Pheromone update 

The pheromone update is intended to make solution components belonging to good solutions more 

desirable for the following iterations. It consists to increases the level of the pheromone of solution 

components that are associated with the best solution obtained in each cycle. More explicitly, the pheromone 

values are updated is being as (8): 

 

𝜏𝑖,𝑗,𝑝 = 𝜎 × 𝜏𝑖,𝑗,𝑝 + 𝛥𝜏𝑖,𝑗,𝑝 (𝑆𝑏𝑒𝑠𝑡)  (8) 

 

where: 

 

𝛥𝜏𝑖,𝑗,𝑝(𝑆𝑏𝑒𝑠𝑡) = {
𝑄 × 𝐹(𝑆𝑏𝑒𝑠𝑡) 𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗, 𝑝) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑆𝑏𝑒𝑠𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝛥𝜏𝑖,𝑗 is the amount of pheromone deposited on the edges between each two objects contained in the 

best solution 𝑆𝑏𝑒𝑠𝑡, the value of 𝛥𝜏𝑖,𝑗,𝑝 is proportional to the best solution quality.  

 

4.3.3. Heuristic value 

Like MH-BACO procedure, the heuristic value used in this model is defined as: 

 

𝜌(j, 0) =  
𝑎𝑗

𝑆𝑐
 , 𝜌(j, 1) =  

𝑆𝑐

𝑎𝑗
  (9) 
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with 𝑆𝑐 = 𝑆 − ∑ 𝑎𝑘𝑘∈𝑆𝑖
 

 

4.4.  Fitness function  

The fitness function a key component in the success a research algorithm, allowing a relevant 

qualification of the candidats solutions. An efficient fitness function helps the search algorithm in exploring 

the search space more efficiently towards promising solutions.  

Let M={m1,m2,…,mn} and mi ϵ{0,1} be an arbitrary solution, the fitness function used in this paper is 

that proposed by Spillman [2] is being as (10): 

 

F =

{
 

 1 − (
|Target−Sum|

Target
)

1

2
 if Sum ≤ Target

1 − (
|Target−Sum|

MaxDiff
)

1

6
 if Sum > Target

 (10) 

 

With Sum =∑ ajmj
n
j=1  , Full Sum =∑ aj

n
j=1  and Max Diff = max {Target, Full Sum-Target}. The 

Target is the Ciphertext value. A fitness value of 1 means that the correct solution has been found. 

 

4.5.  Proposed algorithm 

Figure 4 shows the Merkle-Hellman cryptosystem and its cryptanalysis by our based-ACO 

algorithm. The input to the algorithm is the ciphertext and the public key. The task of MH-ACO algorithm is 

to recover the plaintext. 

 

 

 
 

Figure 4. Layout of MH cipher and our attack algorithm 

 

 

We will explain the main steps of our proposed algorithm in the following subsections: 

Outline of ACO Algorithm: 

 

Input: Public Key and Cipher text. 

Perform initialization of all parameters of ACO 

repeat 

for each ants N do 

Construct candidate key using the specific probabilistic transition rule 

Evaluate the generated candidate key using the FF according to (3) 

End for  

Update best key information and pheromone values following the specific rules. 

until: The algorithm reach the termination condition 

Output: The best Key. 

 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

In this paper, a series of experiments have been conducted to evaluate the effectiveness of the 

proposed methods. We have implemented our algorithm with C++ language. All experiments were 

performed on an Intel Core i7-4712MQ CPU processor (2.30 GHz and 4 GB RAM). The purpose of this 

section is threefold: (1) to investigate the performance of different schemes designed for MH cryptanalysis, 
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(2) to study the settings of related parameters, and (3) to evaluate the performance of MH-MACO by 

comparing it with some existing algorithms. 

 

5.1.  Performances study 

In order to evaluate the performance of the three proposed strategies (MH-ACO, MH-BACO and 

MH-MACO), we apply the same parameters value is being as: We have set α to 1.2, β to 1 and σ to 0.95 

(where α, β and σ are weight of pheromone, heuristic value and evaporation rate respectively). The number 

of ants N where set to 15 and q0 to 0.8. To make an overall comparison, the ‘MACRO’ word is used. Table 2 

shows the result of encoding the ‘MACRO’ word using Merkle-Hellman algorithm with 15 elements 

sequence is being as: 

 Private Key: (1, 3, 7, 13, 26, 65, 119, 267, 504, 1007, 2013, 4027, 8053, 16107, 32213). 

 Public Key: (21031, 63093, 16371, 11711, 23422, 58555, 16615,54322, 1098, 46588, 6722, 34475, 

47919, 51446, 16438). 

 m=65423, w=21031, w-1=5363. 

 

 

Table 2. MH encryption of the word ‘MACRO’ 
Character ASCII Code Target sum (ciphertext) 

M 10110010 65728 

A 10000010 37646 

C 11000010 100739 
R 01001010 103130 

O 11110010 128821 

 

 

Table 3 summarizes the results of 100 runs for the cryptanalysis of the message ‘MACRO’ using 

MH-ACO, MH-BACO and MH-MACO algorithms, the number of key searched before locating the reel one 

is recorded in the Table. It can be seen from the results that MH-MACO performs better than MH-ACO, 

MH-BACO, it can break the message after reaching only 437 keys, while MH-ACO, MH-BACO requires 

563 and 645 key respectively. In Table 4, we illustrates the average search space (ASS) and the success rate 

(SR) for each model, a maximal success rate (SR) is obtained for the 3 algorithms. 

 

 

Table 3. Number of keys searched to break MH cryptosystem  

 
Number of Key Searched 

Character MH-ACO MH-BACO MH-MACO 

M 555 640 435 
A 580 613 385 

C 620 750 566 

R 510 575 322 

O 550 692 478 

Average 563 654 437 

 

 

Table 4. Comparison of cryptanalytic results of different approaches 
Character MH-ACO MH-BACO MH-MACO 

 ASS SR (%) ASS SR (%) ASS SR (%) 

M 1.5% 100 1.9 100 1.3 100 
A 1.8 100 1.8 100 1.1 100 

C 3.1 100 2.2 100 1.7 100 

R 1.3 100 1.7 100 0.9 100 
O 1.6 100 2.1 100 1.4 100 

Average 1.8 100 2.0 100 1.3 100 

 

 

The second part of the performances analysis is to compare our models with different value of n 

(number of element in the knapsack). Comparison results are illustrated in Table 5. As we can observe,  

MH-MACO algorithm achieves a higher success rate when the capacity of the knapsack is increasing, 

reaching 85% and 57% for n equal to 25 and 40 respectively. And exploring a lower average search space. 

The most characteristics of MH-MACO search technique are explained in: 

The first one is that MH-MACO allows ants to explore all objects, while in MH-ACO algorithm, 

exploration is no longer posible when a stopping criterion is met. Therefore, ants do not have the ability to 

observe all objects to make a choice. In MH-MACO algorithm ants have the possibility to select or not visited 
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elements. Unlike MH-ACO algorithm, where every visited object by the ant is immediately selected. Finally, 

the main advantage of MH_MACO over MH_BACO is that each ant has a broad view to objects to be 

visited, at the same time with the opportunity of selection or not. However, in MH_BACO ants moves with a 

limited view, ants could only choose whether or not to select the next object. 
 

 

Table 5. Comparison results whith diffent values of n. 

 
MH-ACO MH-BACO MH-MACO 

n ASS SR (%) ASS SR (%) ASS SR (%) 

10 35 100 42 100 19 100 

15 1.8 100 2.0 100 1.3 100 

25 1.2 78 2.7 52 1.8 85 
40 0.006 36 0.005 41 0.003 57 

 

 

5.2.  Parametric sensitivity analysis 

The following experiments consist of studying the impact of q0 parameter (which determines the 

relative importance of exploitation versus exploration) in MH-MACO model. We ran our algorithm for the 

word ‘MACRO’ with different values of q0. For the others parameters , we have set α to 1.2, β to 1 and σ to 

0.95. The number of ants N where set 15. 

In Figure 5 we report the Fitness value evolution through the number of cycle, as we can observe, 

when q0 is equal to 1, an early stagnation of the search, the system has ceased to explore new possibilities and 

no better solution is likely to be found anymore. This undesirable behavior is due to an excessive 

exploitation. Whereas, with q0 equal to 0, the transition rule is reduced to a pure ant system without any 

exploitation, in this case the convergence into the best solution is more delayed (reached after 50 cycle). The 

best performance results are obtained when alternating both exploration and exploitation (q0 =0.8), the correct 

key is located after only 29 cycles. 
 

 

 
 

Figure 5. Fitness value evolution for different values of q0 
 

 

5.3.  Comparison with others attacks 
The performance of the MH-MACO Algorithm is measured and compared with the GA that is used 

by Spillman [2] and PSO used by Jain and Chaudhari [5]. The number of ants used for this purpose is N=15 

allowing the best search space rate. For the word ‘MACRO’ the comparison results are illustrated in Table 6. 
 

 

Table 6. Comparison of cryptanalytic results obtained BPSO, GA and MH-MACO  
Character PSO IGA MH-MACO 

 ASS SR (%) ASS SR (%) ASS SR (%) 

M 20.94 100 2 100 1.3 100 

A 19.62 100 0.2 100 1.1 100 
C 50.45 100 6 100 1.7 100 

R 37.13 100 1.0 100 0.9 100 

O 57.39 100 0.1 100 1.4 100 
Average 53.10 100 1.9 100 1.3 100 
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As we can see the average search space (ASS) obtained with MH-MACO algorithm is mush better 

than PSO for all letters ‘MACRO’. Comparing with GA results, as we can see the performances of our 

algorithm is so close to GA results with an ASS equal to 1.3 for MH-MACO and 1.9 for GA. Also, the 

percentage of success rate (SR) obtained is maximal. 

 

 

6. CONCLUSION 

In this paper, we introduced a novel search procedure based on the ant colony optimization 

metaheuristic, for cryptanalysis of Merkle-Hellmen public key cryptosystem. We have defined the essential 

components of our algorithm such as solution construction, heuristic value, fitness function and the strategy 

to update pheromone trails. In order to evaluate the effectiveness of our algorithm, a set of experiments were 

performed that confirmed the robustness of our model. The best results are those obtained with the MH-

MACO procedure, which is characterised by a broad view to objects to be visited, with the opportunity of 

selection or deselection of objects. The fitness function used in this paper is that proposed by Spillman, 

which still needs improvement in future work to perform cryptanalysis more efficiently, especially the 

possibility of using specifics elements extracted from the problem being treated. We hope also to hybridize 

our algorithm with a local search technique, in order to improve the convergence speed and success 

probability of our algorithm; especially for high dimension cryptanalysis problem. 
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