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 The brain-computer-interfaces (BCI) can also be referred towards a mind-

machine interface that can provide a non-muscular communication channel in 

between the computer device and human brain. To measure the brain activity, 

electroencephalography (EEG) has been widely utilized in the applications of 

BCI to work system in real-time. It has been analyzed that the identification 

probability performed with other methodologies do not provide optimal 

classification accuracy. Therefore, it is required to focus on the process of 

feature extraction to achieve maximum classification accuracy. In this paper, a 

novel process of data-driven spatial has been proposed to improve the 

detection of steady state visually evoked potentials (SSVEPs) at BCI. Here, 

EACA has been proposed, which can develop the reproducibility of SSVEP 

across many trails. Further this can be utilized to improve the SSVEP from a 

noisy data signal by eliminating the activities of EEG background. In the 

simulation process, the SSVEP dataset recorded from given 11 subjects are 

considered. To validate the performance, the state-of-art method is considered 

to compare with the EDCA based proposed approach. 
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1. INTRODUCTION 

The technical advancement in biomedical and neuroscience has enabled the direct communication 

channel among computers and the human brain. In the brain, the electrical activity is produced by the help of 

neuronal postsynaptic membrane polarity changes which can be monitored to recognize patient intentions [1]. 

Brain-computer-interfaces (BCIs) can give a novel communication channel to the humans and have received 

huge attention. The BCIs use signals, which is generated by the central-nervous system and primary target is 

severe neuromuscular disorders (such as spinal cord injury, amyotrophic lateral sclerosis, cerebral palsy, and 

brain-stem stroke). The advanced BCI methods provide healthy people with alternative way of 

communication, control, and security [2]-[4]. Hence, these methods have evolved promising in the 

applications of body area network [5]-[8]. In order to measure the activity of the brain, the 

electroencephalography (EEG) is widely employed in the applications of BCI due to its higher activity as it is 

necessary for BCIs to work as the system in real-time [9]. Additionally, the devices of EEG are portable and 

inexpensive. 

In general, the steady state visual evoked potential (SSVEP) signal is like sinusoidal waveforms and 

appear at a similar fundamental frequency as that of stimulus and its harmonics [10]. Anyways, the 

https://creativecommons.org/licenses/by-sa/4.0/
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oscillations are spontaneous and are unrelated to stimulation and exist in EEG recordings. Thus, an algorithm 

of robust detection is needed to construct the system of reliable BCI. In last few decades, several algorithms 

have been introduced for SSVEP [11]-[17]. The power spectral density analysis (PSDA) approach can be 

considered since the features of distinctive SSVEPs can be observed in the domain of frequency [11]. 

Anyways, PSDA is known to be susceptible to noise and the long durations are required to maximize the 

signal to noise ratio (SNR). A canonical correlation analysis (CCA), multivariable statistical method (MSM) 

[12], [14] exploits the multiple channels of covariance information to improve the SNR and give much better 

recognition accuracy compared to the PSDA. In the SSVEP identification research, high robustness, simple 

implementation, and good performance have made the CCA attractive. On the other side, the CCA is 

insufficient to remove the information of discrimination that is embedded in harmonic features of filter-bank 

canonical correlation analysis (FBCCA) and SSVEPs are introduced to manage this problem [15]. FBCCA 

uses distinct spectral properties of more than one harmonic frequency and neglects correlation information 

among SSVEP responses at various frequencies [16]. Moreover, these methods neither consider all stimuli 

bandwidth nor fully maximize SSVEP potential based on BCIs. Hence, it is essential to utilize the SSVEP 

model in the identification algorithm. Here, identification probability performed by the help of other 

methodology is analyzed and found that it does not provide optimum classification accuracy. Therefore, it is 

required to focus on the process of feature extraction (FE) to achieve maximum accuracy of classification. In 

this paper, a novel data-driven spatial process is developed to improve the detection of SSVEPs at BCI. 

EACA is proposed that can develop the reproducibility of SSVEP across many trails and can be utilized to 

improve the SSVEP as an SNR data signal by removing the activities of EEG background. The event based 

adaptive component analysis (ACA) is an approach that can remove event features effectively by means of 

maximizing the regeneration at a certain period of the task. Here, two signals are considered: event unrelated 

and event-related signals. Furthermore, EACA filters is introduced to integrate with more than one frequency 

simulation that can develop the EACA version to optimize the process of FE. In the stage of classification, 

the PSD is utilized to achieve a higher magnitude for the stimulation frequency. The performance of the 

proposed model is evaluated by the SSVEP dataset recorded from given 11 subjects [18]. The 11 volunteers 

have contributed while all are present as the staff of “Centre for Research and Technology, Hallas” 

(CERTH). Specifically, 8 of them were males and 3 were females with their ages around 25-39 years. In 

order to estimate the performance, the state-of-art outcomes is utilized and compared with this EDCA based 

proposed approach. 

In the recent years, several researchers have focused on developing an EEG based BCI for medical 

applications in order to maximize the life quality. Moreover, the BCI can be used in the field of 

entertainment, gaming, and marketing to provide the users with some extra-personalized experiences; both 

the non-medical and medical application need the capability to interpret user's emotional experience and 

multimedia-induced perception. The BCI process allows to collaborate with various application through 

direct connection at brain and output devices by brain signals. A variety of technologies can be used to 

acquire the brain signal such as electrocorticography (‘ECoG’), magnetoencephalography (‘MEG’), functional 

near-infrared spectroscopy (‘fNIRS’), electroencephalography, functional magnetic-resonance imaging 

(‘fMRI’) and so on. Amongst these, EEG is a most extensively used technique due to the high-temporal 

resolution and economic efficiency. Yet, the predictable EEG based BCIs are very uncomfortable for 

practical application as it contains several numbers of EEG electrodes and wearing EEG-cap calls for skilled 

assistants. Therefore, ear-EEG-BCIs has been in research for convenient BCI, where the ear-EEG can be 

separated into the measuring EEG signals that are observed around the ‘outer ear’ or the ‘in ear’. The study 

of ear-EEG-BCI research generally targets the auditory/visual stimuli system or at the drowsiness detection 

scheme. It has been observed that there are very less studies that used motor-imagery detection approach 

based on the ear-EEG. Motor-imagery detection is the normally used model in the BCI due to its 

characteristics which does not depends on any external stimuli and also motor-imagery associated with the 

ear-EEG can provide a useful BCI applications to the real-world. Therefore, Kim et al. [19] has discussed 

about the investigation feasibility of motor-imagery classification based on ear-around-EEG signals. BCI can 

also be referred towards a brain-machine interface (‘BMI’), or mind-machine interface (‘MMI’) that can 

provide a non-muscular communication channel in between the computer device and human brain. The 

progression in computer interface and low-cost electronics with the requirement to serve suffering people 

from such neuromuscular disabilities is a novel field of research that has emerged like the different brain 

function. The EEG is an electrically active signal generated by the brain and that is recorded from surface of 

the scalp through electrodes. The researchers mainly depend on EEG in order to characterize the activity of 

brain, as this is recorded noninvasively through portable equipment. EEG or the activity of brain generally is 

used in real time to regulate external devices by a broad BCI system. However, in [20], a typical BCI 

structure is proposed that generally consists of an approach of data acquisition, pre-processing step at the 

acquired signals, feature extraction method, features classification, post-processing method for output 
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classifier, and lastly the device controller and control interface. In the post-processing step, the output signals 

are usually translated into suitable commands to control the output devices, by several applications like as 

video games, robotic arms, and wheelchair. 

The appropriate classification of EEG signals is essential for the improvement of consistent motor 

imagery (MI) BCI system. Qureshi et al. [21], publicly accessible BCI Competition-IV (dataset IIa) is 

utilized. Additionally, the difficulty in binary classification of motor imagery EEG signal data through using 

sigmoid initiation function is addressed that depends upon the extreme learning machine (ELM). Thus, it 

specifies the need for a novel approach of extracting features from captured EEG signal by applying the 

independent component analysis (ICA) over a period of series data. This further transforms an ICA epoch 

series data into the Fourier domain process and then used to extract the information of phase from using 

Fourier spectrum. Therefore, the information of phase is further used to compute the increased cross-

correlation matrix connectivity. Also, the upper diagonal matrix is further useful in order to serve the basic 

feature at the classification framework of ELM. Emotions are the significant features that helps in the 

interaction among different people and thereby play an important role in the human life. It motivates the 

human to respond to the stimuli in the environment which helps in the improvement of the communication 

and the decision-making. The automatic-emotion recognition is an interesting area from the past decade, due 

to the increasing BCI in the interaction between user and computer. The emotion-recognition can be carried 

out from the facial-expressions, gestures, the speech as well as text. These can be recorded in many ways like 

electroencephalography (‘EEG’), magnetic resonance imaging (‘MRI’), and positron emission tomography 

(‘PET’). Few emotional states namely the fear, sad, happy, frustrated and pleasant’ feature extraction and 

classification are done from the inner-emotion EEG signals in [22]. Yıldırım and Varol [23] discussed the 

emotional-recognition by using the EEG signals and the brain-computer-interface studies. EEG provides the 

monitoring of the electrical activities of the brain. BCI can convert the electrical signals that is produced by 

the brain to the signals that can be interpreted by the computer or any other electronic systems. The aim of 

this is to produce the results developed by the computer-system and compared to response in the body from 

the signals that are sent from the brain. The emotions are psychophysiological changes in the moods of the 

person that will emerge by the interactions with the bio-chemical and the environmental effects. There are 

various on-going researches on the emotion recognition [24]. Some of the researches include the voice-

recognition, and the recognition with the mimics. The facial expression or the tone of the voice might not 

always represent the feelings. Extra factors are also used which include the skin-conductivity, the changes in 

the skin due to temperature, the blood-pressure, and the heart-beat for the estimation of emotions. Thus BCI-

research is significant in the recent years and still a new topic in the research field. 

 

 

2. RESEARCH METHOD  

2.1.  Target detection methodology 

Here, a novel data-driven spatial method of approach is used for optimized SSVEPs detection. The 

EACA based method is represented with distinct data standardization to identify target identification and to 

improve the SS-VEP SNR data signal via removing the activities of EEG background. Furthermore, the 

proposed model of EACA filters integrate with more than one frequency simulation that can improve the 

EACA version to optimize the process of feature extraction. Figure 1 shows the system diagram of an 

SSVEP-based BCI. Each standardization data at ath detection and single trial test data is represented in terms 

of 4-dimensional tensor as (1). 

 

𝐵 = (𝐵)𝑎𝑐𝑧𝑦 ∈ 𝐻𝐸𝑑×𝐸𝑓×𝐸𝑔×𝐸𝑘 (1) 

 

Whereas, the 2-dimensional tensor is given as (2): 

 

𝐵 ∈ 𝐻𝐸𝑓×𝐸𝑔  (2) 

 

The detection index is represented by 𝑄, 𝐸𝑑 will represent the number of detections, 𝑐 shows channel 

index, 𝐸𝑓  shows channel number, 𝑧 indicates the index of sample point and 𝐸𝑔 is number of sampling point in 

each trail. 𝐸𝑘  is the number of training trails and 𝑦 indicates the index of training trail. The target detection 

has 𝐵 inputs and allocates to 𝐸𝑑  classes with 𝐾𝑒 stimulation frequency. Then 𝐽𝑒  can be written as (3): 

 

𝐽𝑒 ∈ {𝐽1, 𝐽2, 𝐽3, . . . . , 𝐽𝐸𝑑
} (3) 

 

The filter bank analysis is applied to decompose SS-VEP into components of sub-band, therefore 

the information of independent component present at the component of harmonics will be removed more 
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effectively [24]. In accordance with the paper [24], the upper and lower cut-off frequencies of 𝑙 − 𝑡ℎ sum-

band is set to 90 Hz and 𝑙 × 8 Hz, respectively. Thereafter, 𝑙 − 𝑡ℎ pass-band ripple filter with zero phase is 

applied that depends on infinite impulse response (IIR) system. For this, the training and testing data can be 

given as (4): 
 

𝐵(𝑙) ∈ 𝐻𝐸𝑑×𝐸𝑓×𝐸𝑔×𝐸𝑘 

𝐵(𝑙) ∈ 𝐻𝐸𝑓×𝐸𝑔 
(4) 

 

In order to match the template based on target identification framework, the feature values 

dependent correlation values for 𝑎 − 𝑡ℎ detection and 𝑙 − 𝑡ℎ sub-band can be computed through, 

 

𝑚𝑎
𝑙 = 𝐽(𝐵(𝑙), 𝐵(𝑙)) (5) 

 

Moreover, the weighted sum of squares of the collective values of correlation conforming to all consider sub-

band components that can be computed as the features at target detection is given by (6): 

 

𝑁𝑎 = ∑ 𝑄(𝑙) × (𝑚𝑎
𝑙 )2

𝑃𝑙

𝑙=1

 (6) 

 

where total number of ‘sub-bands’ is represent by 𝑃𝑙  and value of 𝑄(𝑙) can be computed as (7): 

 

𝑄(𝑙) =
1

𝑙5 4⁄
+

1

4
 (7) 

 

The targeted class (𝐾𝑟) can be acknowledged through by (8): 

 

𝑟 = arg𝑎 max 𝑁𝑎 , 𝑛 = 1, 2, 3, . . . . , 𝐸𝑑  (8) 

 

In the model of SSVEP-BCIs, it is required to obtain the optimized FE method 𝐽(. ) to improve the accuracy 

of target detection. 

 

 

 
 

Figure 1. System diagram of an SSVEP-based BCI 

 

 

2.2.  Proposed EACA based approach 

The event-based ACA is an approach that can remove the components of the event occurred via 

maximizing regeneration at a certain time. There are two types of signals; event related and unrelated signals 

(𝑈(𝑡) ∈ 𝐻 and 𝑉(𝑡) ∈ 𝐻). A linear generative prototype of computed multi-channel EEG signal 𝑅(𝑡) ∈ 𝐻𝐸𝑓  

is presented as (9). 

 

𝑅𝑐(𝑡) = 𝑄1,𝑐 𝑈(𝑡) + 𝑄2,𝑐 𝑉(𝑡), and 𝑐 = 1, 2, 3, . . . . , 𝐸𝑓 (9) 

 

where c denotes the channel index, 𝑄1,𝑐  and 𝑄2,𝑐  shows the mixing component and project the signals source 

to EEG signals. However, the difficulty arises at discarding the event associated component from detected 

signal summation 𝑅(𝑡). 
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𝑀(𝑡) = ∑ 𝑅𝑐(𝑡) 𝑋𝑐

𝐸𝑓

𝑐=1

 (10) 

 

𝑀(𝑡) = ∑  (𝑄1,𝑐𝑈(𝑡) 𝑋𝑐 + 𝑄2,𝑐𝑉(𝑡) 𝑋𝑐)

𝐸𝑓

𝑐=1

 (11) 

 

Preferably, the solution can be given in such a way where, ∑  𝑄1,𝑐 𝑋𝑐
𝐸𝑓

𝑐=1 = 1 and ∑  𝑄2,𝑐  𝑋𝑐
𝐸𝑓

𝑐=1 =

0 and leads to final outcome 𝑈(𝑡) = 𝑀(𝑡). The difficulty can be minimized by maximization of inter-event 

covariation; yth event of EEG signal and related component of predicted event are denoted 

as 𝑅(𝑦)(𝑡) and 𝑀(𝑦)(𝑡), (𝑦 = 1, 2, 3, . . . . , 𝐸𝑘). Here, 𝑀(𝑦)(𝑡) epoch is stable where 𝑡 ∈ [𝑡𝑦 , 𝑡𝑦 + 𝑇], and ′𝑇′ 

denotes the interval of each task event. The covariation of events 𝑦1 and 𝑦2 at 𝑀(𝑡) are given as (12), (13): 

 

𝑆𝑦1,𝑦2
= Cov (𝑀(𝑦1)(𝑡), 𝑀(𝑦2)(𝑡)) (12) 

 

𝑆𝑦1,𝑦2
= ∑ 𝑋𝑐1

 𝑋𝑐2
 

𝐸𝑓

𝑐1,𝑐2=1

Cov (𝑅𝑐1

(𝑦1)
(𝑡), 𝑅𝑐2

(𝑦2 )(𝑡)) (13) 

 

Also, the combination of all probable events is summed as (14). 

 

∑ 𝑆𝑦1,𝑦2

𝐸𝑘

𝑦1,𝑦2=1
𝑦1≠𝑦2

= ∑ ∑ 𝑋𝑐1
 𝑋𝑐2

 

𝐸𝑓

𝑐1,𝑐2=1

Cov (𝑅𝑐1

(𝑦1)
(𝑡), 𝑅𝑐2

(𝑦2 )(𝑡))  = 𝑋𝑇𝑊𝑋

𝐸𝑘

𝑦1,𝑦2=1
𝑦1≠𝑦2

 (14) 

 

Here, the 𝑊 matrix is given by (15): 

 

𝑊𝑐1,𝑐2
= ∑ Cov (𝑅𝑐1

(𝑦1)
(𝑡), 𝑅𝑐2

(𝑦2 )(𝑡))

𝐸𝑘

𝑦1,𝑦2=1
𝑦1≠𝑦2

 (15) 

 

The 𝑀(𝑡) variance is constrained to get finite solution, 

 

Var(𝑀(𝑡)) = ∑ 𝑋𝑐1
 𝑋𝑐2

 

𝐸𝑓

𝑐1,𝑐2=1

Cov (𝑅𝑐1
(𝑡), 𝑅𝑐2

(𝑡))  =  𝑋𝑇𝐴𝑋 (16) 

 

where 𝑋𝑇𝐴𝑋 = 1 resolves the constrained optimization difficulty as (17): 

 

𝑋̂ = arg𝑋 max
𝑋𝑇𝑊𝑋 

𝑋𝑇𝐴𝑋
 (17) 

 

The coefficient vector is acquired as 
𝑊

𝐴
 Eigen-vector matrix. Also, the Eigen values and Eigen 

vectors are acquired from the matrix 𝐸𝑓 × 𝐸𝑓, where 𝐷 represents the Eigen value of 
𝑊

𝐴
 matrix. It is acquired 

in a down order where the value of cost function is similar to 𝑋̂ Eigen vector and the Eigen-values signifies 

the task consistency among the events. Here, the proposed methodology is also capable to design the spatial 

filters in order to remove EEG background activity at recording process from scalp. The spatial filters for a th, 

simulates the 𝑋𝑎
(𝑙)

∈ 𝐻𝐸𝑓  which is obtained by EACA from an individual standardization data 𝐵𝑎
(𝑙)

 by 

applying the process of filter bank. In (16), Q is computed with concentrated matrix of training trails 𝐵𝑎
(𝑙)

 and 

the correlation coefficient between 𝐵(𝑙) ∈ 𝐻𝐸𝑓×𝐸𝑔  single trail test data and average data in training follow 

through ath visual stimulus and is computed as (18): 
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𝑚𝑎
𝑙 = 𝑁 ((𝐵(𝑙))

𝑇
𝑋𝑎

(𝑙)
, (𝐵̅𝑎

(𝑙)
)

𝑇
𝑋𝑎

(𝑙)
) (18) 

 

where 𝑁 shows the analysis of Pearson correlation between signals. In addition, there are individual 

calibrating data 𝐸𝑑  which corresponds to the visual stimuli and different spatial filter 𝐸𝑑  obtained. Therefore, 

the integration of spatial filter 𝑋(𝑙) ∈ 𝐻𝐸𝑑×𝐸𝑓  is computed as: 

 

𝑋(𝑙) = [𝑋1
(𝑙)

 𝑋2
(𝑙)

 ⋯ 𝑋𝐸𝑑

(𝑙)
] (19) 

 

So, (18) is modified in (20). 

 

𝑚𝑎
𝑙 = 𝑁 ((𝐵(𝑙))

𝑇
𝑋(𝑙), (𝐵̅𝑎

(𝑙)
)

𝑇
𝑋(𝑙)) (20) 

 

where 𝑁 shows the analysis of two-dimensional correlation between signals. After acquisition of 𝑁𝑎 final 

features, it is merged to correlation coefficients. Also, it corresponds to existing sub-band components and 

projected target is detected using (8). 

 

 

3. RESULTS AND DISCUSSION 

In this section, publicly accessible dataset is utilized and the ITR and classification accuracy of EEG 

signal data through EACA based proposed approach is provided. This approach is used to extract features 

and thereafter perform classification of EEG signal. The code simulation has been done in Matlab 2018a 

under a system configuration of Intel-i5 processor and 12 GB RAM with windows 10 operating system. The 

performance of the proposed model is evaluated by the SS-VEP dataset recorded from given 11 subjects [18], 

where 11 volunteers have contributed who are the staff of “Centre for Research and Technology, Hallas” 

(CERTH). Specifically, 8 of them were male and 3 of them were female and their ages around 25-39 years. 

Detailed information is as given in Table 1. 

 

 

Table 1. Subjects’ general information 
Subject ID: Gender Age Net Size Handedness Hair Type 

1 Male 24 Adult Medium Right Regular 

2 Male 37 Adult Small Right Regular 

3 Male 39 Adult Medium Right Thick 

4 Male 31 Adult Medium Right Short 

5 Female 27 Adult Medium Left Thick 

6 Female 28 Adult Medium Right Thick 

7 Male 26 Adult Medium Right Regular 

8 Female 31 Adult Medium Right Thick 

9 Male 29 Adult Medium Right Short 

10 Male 37 Adult Medium Right Regular 

11 Male 25 Adult Medium Right Regular 

 

 

A 22-inches LCD monitor has been considered to display visual detection with pixel resolution of 

1680x1080. The visual simulation experiment was programmed by using the MS Visual Studio 2010 and 

OpenGL, where Nvidia GeForce graphic card (GC) were used to offer the faster speed to accommodate more 

frames in a screen. In addition, vertical synchronization of Nvidia GC was considered to verify receiving 

frames on the screen. The experimental stimulus which was shown on monitor were changing with different 

frequencies such as: 6.66 Hz, 7.50 Hz, 8.57 Hz, 10.00 Hz and 12.00 Hz. The box was wavering with 

specified frequency and was available for five seconds. This is denoted as trial/event with 5-seconds break at 

‘visual stimulation’ between displays and the box flashes again with different frequency. Background screen 

was considered to be black throughout the performed experiment with each session having 23-trials. To 

validate the performance, the state-of-art is considered to compare with the proposed EDCA based proposed 

approach. 

The optimal existing system (OES) result from [25] is considered. Spearman correlation has been 

used to find the monotonic association between features by considering them as sequences. Therefore, it 

discounts the absolute changes between the values and depends upon statistical dependent features. 

Moreover, it can be particularly useful for different subjects and each one has different response for presence 
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or absence of the external stimuli. Lastly, based upon the obtained outcome, the SVM classifier is used with a 

kernel of Spearman correlation, which was chosen to be optimal configuration in [25]. Here, the ITR and 

accuracy are computed by cross-validation process where 90% of the data is used for training and rest 10% 

data for testing. From Figures 2 to 5, sub-band (SB) one and sampling rate of 250 with varying data-length 

from 200 ms to 600 ms has been fixed. Figures 2 and 3 show the average classification accuracy, where 

Figure 2 shows averaged classification accuracy as per trails as a function of data length and Figure 3 shows 

averaged classification accuracy as per subjects as a function of data length. 

 

 

  
 

Figure 2. Averaged classification accuracy as per 

trail across subjects (i.e., w.r.t different data length) 

 

Figure 3. Averaged classification accuracy  

(i.e., w.r.t different data length) 

 

 

  
 

Figure 4. Simulated ITRs as per trails  

(i.e., w.r.t data length) 

 

Figure 5. Simulated ITRs across subjects different 

(i.e., w.r.t different data length) 

 

 

The variations in accuracy can be clearly noted that more than 200ms data length (DL) has always 

good classification accuracy as per trails and subjects. In addition, ITRs are calculated as per trails and 

subjects shown in Figures 4 and 5, where DL varies from 200ms to 600ms is considered with interval of 

100ms. It is analyzed that in maximum number of trails and subjects, the ITRs range at 300ms is much better 

compared to other considered DL. Figures 6 to 9 have DL of 300ms and sampling rate of 250 with varying 

SB from 1 to 5 at interval of 1. Figure 6 shows the averaged classification accuracy as per trails as a function 

of SB and Figure 7 shows the averaged classification accuracy as per subjects as a function of SB. It has been 

analyzed that, when more SB are considered, classification accuracy is higher. Similarly, Figure 8 shows the 

ITRs computation as per trails as a function of SB and Figure 7 shows ITRs computation as per subjects as a 

function of SB. ITRs at more SB provide better results as compared to lower SB. Figures 10 and 11, DL of 

300ms, sampling rate of 250 and SB of 1, shows the averaged classification accuracy and simulated ITRs 

across subjects, where at subject 8 and 2 it is noted that, this classification accuracy is lesser to 90% 

otherwise very good classification accuracy has been achieved. Whereas, ITR at subjects 2, 4 and 8 have 

below 300 ITRs otherwise at every subject the proposed model has performed considerably well. Table 2 

shows results comparison with respect to state-of-art techniques from [25], where classification accuracy of 

decision trees, ensemble approach, linear discriminant analysis (LDA), OES and support vector machine 

(SVM) is shown as per the subject ID. 
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Figure 6. Averaged classification accuracy as per 

trails (i.e., w.r.t different sub-band) 

 

Figure 7. Averaged classification accuracy across 

subjects (i.e., w.r.t different sub-band) 

 

 

 
 

Figure 8. Simulated ITRs as per trails (i.e., w.r.t 

different sub-band) 

 
 

Figure 9. Simulated ITRs across subjects (i.e., w.r.t 

different sub-band) 

 

 

 
 

Figure 10. Averaged classification accuracy across subjects 

 

 

 
 

Figure 11. Simulated ITRs across subject 
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Table 2. Results comparison with respect to state-of-art techniques 

Subject ID 
Accuracy ITR 

Decision Trees Ensemble Approach LDA OES SVM EDCA 

S-1 69.56 91.3 95.65 97.1014 98.55 100 339.2671 

S-2  65.21 82.6 73.04 99.1304 87.82 83.47826 246.9912 

S-3  28.98 34.78 27.53 52.1739 34.78 97.10145 323.5838 
S-4 50 71.73 64.13 78.2609 77.17 90.21739 282.7392 

S-5  24.34 25.21 19.13 27.8261 30.43 92.17391 303.4666 

S-6  50.43 82.6 79.13 97.3913 86.08 100 339.2671 

S-7  58.26 66.95 48.69 89.5652 60 90.43478 304.5032 

S-8 20.28 20.28 23.18 36.2319 31.88 82.6087 280.2642 

S-9  77.39 98.26 98.26 100 100 98.26087 328.7423 

S-10  52.17 86.95 78.26 97.3913 92.17 98.26087 328.7423 

S-11  63.47 82.6 98.26 99.1304 98.26 95.65217 312.955 

Mean 50.91727 67.56909 64.11455 79.47298 72.46727 93.47167 308.2293 

 

 

Moreover, the classification accuracy and ITR results is also shown in the proposed EACA 

approach, where it is clearly seen that in most of subject better outcome has been achieved compared to other 

existing approaches. A more graphical intuitive result is represented in Figure 12 for classification accuracy 

comparison with respect to state-of-art techniques. 

 

 

 
 

Figure 12. Classification accuracy comparison with respect to state-of-art techniques 

 

 

4. CONCLUSION 

The proposed EACA methods have shown great potential to optimize the classification accuracy of 

high-frequency-SSVEPs, also the EACA methods based spatial filtering is applied to decrease the noises of 

other EEG components. This plays significant role in the BCI, clinical applications, and cognitive 

neuroscience field. The publicly available dataset is considered to successfully conduct the experiment, 

where it shows result analysis in terms of different trails and subjects. In addition, the different existing 

methodologies has been considered in order to compare with proposed methodology. It is analyzed that 

EACA approach has got the 93.47% mean classification accuracy from 11-subjects that were considered, 

which is 14.97% and 22.47% more compared to OES and SVM approach, respectively. As per this analysis it 

can concluded that the proposed EACA based approach has performed well for classification result which is 

followed by this feature extraction process. 
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