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 In this paper, the one-diode model of a photovoltaic PV solar cell (PVSC) is 

estimated for an experimental characteristic curves data by using a recently 

proposed version of the particle swarm optimization (PSO) algorithm, which 

is known as the autonomous groups particles swarm optimization (PSOAG). 

This meta-heuristic algorithm is used to identify the model of the PVSC. The 

PSOAG divides the particles into groups and then, uses different functions to 

tune the social and cognitive parameters of these groups. By using these 

groups, the performance of the PSO is improved in terms of convergence rate 

and escaping the local minima/maxima. Six versions of PSOAG algorithms 

were developed in this work. Therefore, nine versions of PSOAG, including 

these six algorithms and three newly developed PSOAG reported previously, 

will be used in this research to cover more social’s behaviors. The results are 

compared to the original PSO and other versions of PSO like conventional 

and asymmetric time-varying accelerated coefficient PSOs, and the improved 

PSO. The result shows that the proposed methods improve the performance 

by up to 14% in terms of root mean squared error and maximum absolute 

error, and by up to 20% in term of convergence rate, when these were 

compared to the best results obtained from the other algorithms.  
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1. INTRODUCTION 

Despite of uncertainty in environmental conditions, solar energy is getting more and more attention 

from researchers due to its characteristics of being economical, low maintenance cost and long-life span. The 

availability of solar irradiance and direct conversion of solar energy into electricity are also the other factors, 

which make photovoltaic systems more desirable than other alternative sources [1]. However, the efficiency 

of PV systems is directly affected by physical changes in the environment such as solar irradiance and 

temperature [2]. For reliable design and exploitation of maximum energy and energy security of PV systems, 

it is critical to devise a comprehensive and accurate mathematical model to predict the behavior of PV solar 

cell (PVSC) module under all environmental conditions [3].  

https://creativecommons.org/licenses/by-sa/4.0/
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Several mathematical models based on electrical equivalent circuits are reported in the literature 

such as one-diode model [4-5], two-diode model [6], multi-diode model [7], 𝑅𝑠-Model, and 𝑅𝑝 model [4-7]. 

The one-diode model is most widely used and cited as it provides good trade-off between accuracy and 

complexity [8]. The one-diode model is governed by five parameters stated as reverse saturation (𝐼𝑑), and 

photo-currents (𝐼𝑝ℎ), diode ideality factor (𝑛), and series (𝑅𝑠) and shunt (𝑅𝑠ℎ) resistances. The two-diode 

model provides more accuracy but also increases the complexity of model and is governed by seven 

parameters [6]. 

The estimation of characteristic parameters concise with real data is the main concern in 

mathematical modeling of PVSC. Unknown parameters can be extracted mainly by two methodologies 

classified as analytical and numerical approaches. In the analytical approach, the information provided by the 

manufacturer or I-V curve data is used to determine the unknown parameters [9]. The manufacturer usually 

provides the data only at standard testing conditions (STC) which made this approach inappropriate to be 

used for changing irradiance and temperature conditions. In addition, the simplifying assumptions considered 

during the formulation of analytical models lead to compromising the accuracy [10]. In order to overcome 

the disadvantages of analytical methods, several non-linear Curve fitting techniques are reported and 

categorized as numerical methods [11]. Numerical methods are further divided in conventional or iterative 

methods and metaheuristic methods. Newton Raphson [12] and Levenberg Marquardt algorithms are 

examples of conventional iterative methods [13-14]. In spite of the efficiency of conventional techniques, 

they converge prematurely around local minima and require continuity and differentiability of the functions. 

In addition, the efficiency of conventional iterative methods depends upon initial positions [15]. 

A wide variety of metaheuristic algorithms is presented in the literature to solve non-linearity 

optimization problems. These optimization techniques include genetic algorithm [15], particle swarm 

optimization (PSO) [16], hybrid particle swarm optimization [17], harmony search [18], differential 

evolution, adaptive differential evolution [19], cat swarm optimization algorithm [20], bacterial foraging 

optimization [21], biogeography-based optimization [22], flower pollination algorithm [23], artificial bee 

colony algorithm [24]. 

Metaheuristic algorithms are able to identify the parameters of a non-linear model in varying 

environmental conditions. PSO is a widely adopted optimization algorithm due to its simplicity and 

inexpensiveness in term of computational cost [25]. On the other hand, it expresses the disadvantage of 

converging to local minima/maxima and slow convergence rate (CR) resulting in low quality estimation of 

parameters [26]. To alleviate these issues, many improved versions have been presented including time 

varying accelerated coefficient PSO (PSOTAC), asymmetrical time varying accelerated coefficient particle 

swarm (PSOM) and autonomous group particle swarm optimization (PSOAG) [27-31]. In PSOTAC, the 

modification in positive acceleration constants are introduced during the optimization to overcome premature 

convergence [27]. The zero velocity particles are reinitializing with random velocity to overcome premature 

convergence [28]. In [29], the author adopted an adjustment strategy of asymmetrical time dependent 

acceleration coefficients to eliminate the local minima problem (PSOM). The improved version of PSOM is 

outlined in [30]. An autonomous group particle swarm optimization (PSOAG) has been developed 
considering the diversity in bird flocking or insect swarming [31]. The mathematical modeling of 

autonomous groups was presented, and results had shown good performance in term of avoiding local 

minima/maxima and convergence speed. Autonomous groups are employed in such a way to give 

independence to diverse particles in order to enhance the performance [31]. 

In this paper, for the first time, a recently developed autonomous group particle swarm optimization 

(PSOAG) [31] is employed to determine the five parameters of one diode model. The particles are divided 

into groups with tuned social and cognitive parameters. In this study, six new versions of PSOAG (PSOAG4 

… PSOAG9) are developed along with three versions presented in [31] are studied. A brief comparison of 

the proposed methods with conventional PSO, PSOTAC [27-28], PSOM [29] and its improved version 

(PSOI) [30] is also included. The paper organization is: section 2 provides the research methodology, and the 

proposed algorithm is proposed in section 3. Results and discussion are presented in section 4. In the end, the 

study is concluded in section 5. The contributions of this work can be summarized as: 

- Developing six new versions of the PSOAG to cover more social behaviours. 

- Applying all versions of PSOAG; the new developed methods in this work, and the previously developed 

methods in [31], to find the parameters of a one diode PV model (ODM) from experimental data.  

- Use statistical tools to examine the methods in terms of how many times the method reached the targets 

(TRT), max-min-mean of conducted iterations (MMM), root mean squared error (RMSE), CR, and 

maximum absolute error (MAE) in the results. 
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2. RESEARCH METHOD  

Several representations were proposed to describe the PVSC. One of the widely used model is the 

SDM represented in Figure 1 and is given in [4-5]. The model represents the PVSC by (1). 

 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 (𝑒
𝑞(𝑉+𝐼𝑅𝑠)

𝑛𝑘𝑇 − 1) −
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
 (1) 

 
 

 
 

Figure 1. One-diode model [4-5] 
 

 

Where 𝑞 is the electron charge, 𝑘 is the boltzmann’s constant, 𝑇 is the temperature in Kelvin, and 𝑉 

is the voltage of the PVSC in (𝑉). The parameters: 𝐼𝑝ℎ , 𝐼𝑑 , 𝑅𝑠 , 𝑅𝑠ℎ and 𝑛 are unknown and are needed to be 

obtained based on the curve of I-V characteristics. Once these parameters are identified, the entire cell 

performance could be predicted, and the maximum power could be achieved. Therefore, several works have 

been conducted to find these parameters as in [25-32]. By rearranging (1), the objective function can be 

obtained as [4-5]: 

 

𝐽 = √
1

𝑁
∑ (𝐼𝑖 − 𝐼𝑝ℎ + 𝐼𝑑 (𝑒

𝑞(𝑉𝑖+𝐼𝑖𝑅𝑠)

𝑛𝑘𝑇 − 1) +
𝑉𝑖+𝐼𝑖𝑅𝑠

𝑅𝑠ℎ
)

2𝑁

𝑖=1

 (2) 

 

Where 𝑁 is the number of data available. The subscript 𝑖 is a counter. The aim is to minimize 𝐽 so 

that the exact five parameters are obtained when 𝐽 =  0. Four well known versions of PSO algorithms; PSO, 

PSOAG1, …, PSOAG3, and six new algorithms; PSOAG4, …, PSOAG9, are used in this work to solve the 

PVSC problem. 
 

2.1.  Introduction to PSO 

Particle swarm optimization is one of the most famous metaheuristic optimization techniques. It 

starts with choosing candidates to be a solution set for the problem, referred to as particles, and then improve 

these particles iteratively to enhance the performance. The particles move within a space trying to find the 

solution in their location; 𝑝𝑏𝑒𝑠𝑡𝑖 , or the best location of the neighborhood with; 𝑔𝑏𝑒𝑠𝑡𝑖 . Each particle 

memorizes its position, and its velocity, which are defined for 𝑛 particles as 𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 … 𝑥𝑖𝑛], and 𝑣𝑖 =
[𝑣𝑖1 𝑣𝑖2 … 𝑣𝑖𝑛], respectively. These are initialized randomly. Then, they are enhanced using [27-31]: 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖

𝑡) (3) 
 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (4) 

 

Where 𝜔 is the inertial weight and it has a value of [0.4,0.9], 𝑐1 and 𝑐2 are the learning coefficient of 

the individual and group best solutions found, respectively, and 𝑟𝑎𝑛𝑑 is a random number in [0,1]. These 

coefficients; 𝜔, 𝑐1 and 𝑐2, are constant in the conventional PSO. However, it has been found that the 

performance becomes better when they are time varying [27-31], this is the essential motivation for 

developing the other versions discussed in this paper.  

 

2.2.  Proposed algorithm-autonomous groups PSO 

In [31], the authors used the fact that the individuals are not quite similar in terms of ability or 

intelligence although they do their duties. Therefore, they divide the swarm into four groups, and each group 

has different learning coefficients 𝑐1 and 𝑐2; several functions are used such as linear, parabolic, quadratic, 

exponential, sinusoidal and logarithmic functions. These groups are called autonomous groups (AG), and the 
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method they represent is called PSOAG. Figure 2 shows the pseudo-code for PSOAG. Table 1 shows the 

coefficients for nine different versions of PSOAG referred to PSOAG1, PSOAG2, … PSOAG9, where the 

first three are derived in [31] and the rest are proposed for the first time in this paper.  
 

 

 
 

Figure 2. Pseudo-code for PSOAG 
 

 

Table 1. Learning coefficients for the PSOAG1, PSOAG2 … PSOAG9 
  Learning Coefficient 

PSOAG# Group 𝑐1 𝑐2 

1 [31] 

1 −2.05𝑆 + 2.55 𝑆 + 1.25 

2 −2.05𝑆 + 2.55 2𝑆3 + 0.5 

3 −2𝑆3 + 2.5 𝑆 + 1.25 

4 −2𝑆3 + 2.5 2𝑆3 + 0.5 

2 [31] 

1 2.5 − 𝑆1 0.5 + 𝑆1 

2 −2𝑆3 + 2.5 2𝑆3 + 0.5 

3 0.5 + 2𝑒−16𝑆2
 2.2 − 2𝑒−16𝑆2

 

4 2.5 + 2𝑆2 − 4𝑆 0.5 − 2𝑆2 + 4𝑆 

3 [31] 

1 −2𝑆1/3 + 1.95 2𝑆1/3 + 0.05 

2 −2𝑆3 + 2.5 2𝑆3 + 0.5 

3 −2𝑆1/3 + 1.95 2𝑆3 + 0.5 

4 −2𝑆3 + 2.5 2𝑆1/3 + 0.05 

4 

1 −2.05𝑆 + 2.55 2.5 − 2𝑆2 + 4𝑆 

2 −2.05𝑆 + 2.55 2.2 − 2𝑒−16𝑆2
 

3 −2𝑆3 + 2.5 2𝑆3 + 0.5 

4 −2𝑆3 + 2.5 0.5 + 𝑆1 

5 

1 −2.05𝑆 + 2.55 𝑆 + 1.25 

2 −2.05𝑆 + 2.55 2𝑆3 + 0.5 

3 −2𝑆3 + 2.5 𝑆 + 1.25 

4 −2𝑆3 + 2.5 2𝑆3 + 0.5 

6 

1 2.5 + 2𝑆2 − 4𝑆 𝑆 + 1.25 

2 0.5 + 2𝑒−16𝑆2
 2𝑆3 + 0.5 

3 −2𝑆3 + 2.5 𝑆 + 1.25 

4 2.5 − 𝑆1 2𝑆3 + 0.5 

7 

1 2.5 − 𝑆1 0.5 − 2𝑆2 + 4𝑆 

2 2.5 − 𝑆1 2.2 − 2𝑒−16𝑆2
 

3 2.5 − 𝑆1 2𝑆3 + 0.5 

4 2.5 − 𝑆1 0.5 + 𝑆1 

8 

1 −2𝑆1/5 + 1.95 2𝑆5 + 0.5 

2 −2𝑆1/5 + 1.95 2𝑆5 + 0.5 

3 −2𝑆5 + 2.5 2𝑆5 + 0.5 

4 −2𝑆5 + 2.5 2𝑆5 + 0.5 

9 

1 𝐹1 𝐹2 

2 −2𝑆1/3 + 1.95 2𝑆4 + 0.5 

3 −2𝑆4 + 2.5 2𝑆4 + 0.5 

4 −2𝑆6 + 2.5 2𝑆6 + 0.5 

 

 

where 𝑆 = 𝑡/𝑇, t is the iteration number compared to the total iterations T 

 

𝑆1 =
2 log(𝑡)

log(𝑇)
, 𝐹1 = 2.5 cos (

𝜋𝑆

2
) 𝑒−16𝑆2

 

 

𝐹2 = 0.5 + 10 sin(𝜋𝑆/2) 𝑒−16𝑆2
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3. RESULTS AND DISCUSSIONS 

To enrich the comparison, the results of three well-known versions of the time-varying accelerated 

coefficient PSO were included; PSOTAC in [27], PSOM in [29], and PSOI in [30]. These algorithms and the 

algorithms mentioned in section 3 were tested using the I-V data reported in [31-32] for 57 mm diameter 

commercial silicon solar cell (R.T.C France) under an irradiation of 1000 W/m2 and a temperature of 33 oC. 

The implementation was conducted in Matlab environment. The simulation was conducted 1000 times, each 

time it lasted for 1000 iterations. The simulation was run for 20, 50, 100, 500, 750 and 1000 particles/Agents. 

A comprehensive comparison is made in terms of present RMSE, MAE of the final iteration, the CR to reach 

RMSE of 1.25% and 2.5%, and the required simulation time. The best ten results arranged in ascending order 

are shown in Table 2. Figure 3 shows the performance of all PSOAGs at population of 250 agents. The CR is 

shown in Figure 4 for all the algorithms at three different agents’ number; 20, 250 and 1000 agents. The best 

candidate was found to be PSOAG8 as it has the fastest CR with minimum MAE and one of the minimum 

RMSE. Figure 5 shows the results of PSOAG8 at different populations; 20, 250 and 1000 agents.  

Increasing the agent/particle number improves the performance as expected from metaheuristic 

techniques. This can be drawn from comparing the performances at 20 agents to 1000 agents. The RMSE and 

MAE are reduced by 70-87% when the population increased. The same was observed for the CRs in Figure 4 

and Table 2, as they were reduced by (up to) 32% and 55% for the convergence to RMSE with values of 0.01 

and 0.02, respectively. Moreover, the stability of the method was improved as well. Based on Figure 5, each 

algorithm gave almost the same results when it was repeated 1000 times with population of 1000 agents; the 

variation box became smaller in Figure 5(c) compared to Figure 5(a)-(b). On the other hand, the 

computational time became significantly large; e.g. for 1000 agents, the required time was almost 28-41 

times the required time for 20 agents and 17-30 times the required time for 250 agents.  

The results showed that dividing the population into groups with different social behaviors 

improved the performance. According to [27, 29-36], some applications required certain symmetric social 

functions, while others required asymmetric social functions. By dividing the population into groups, each 

group could be assigned to a different function. Mixing these functions for the same application improved the 

algorithm performance in terms of stability, CR, RMSE, and MAE. That was because the application could 

rely on its preferred function. 

The results of Table 2 showed that best results for modeling the data listed in [31-32] could be obtained using 

autonomous groups with symmetric and asymmetric power functions as social learning coefficients. This was 

observed by tracking the best performance, which was achieved by PSOAG3 and PSOAG8. These two 

methods showed similar performances in terms of RMSE and MAE when the number of populations was 

high; i.e. above 500 agents. As the population’s size decreased, PSOAG8 became better than PSOAG3, 

where the RMSE and MAE of PSOAG8 were 13.6% and 13.9% smaller than their corresponding values for 

PSOAG3, respectively. On the other hand, PSOAG8 had a CR that was 2-20% faster than PSOAG3 in all 

tests except for the test with population size of 250, where it was slower by up to 5.5%. 

Therefore, if computational time is not important, then PSOAG8 and PSOAG3 with 1000 agents are 

the best candidates. However, if the computational time is important as well as the error, then PSOAG8 with 

250 agents is the best candidate. The choice of 250 agents is illustrated in Figure 5. Without losing 

generality, PSOAG8 gives the best results compared to other techniques; e.g. Figure 3 shows the superiority 

of PSOAG8 among the others for 250 agents. Therefore, it was selected in this work. 

 

 

Table 2. Comparison between all PSO versions in ascending order (only the first 10) 
RMSE IN FINAL SOL MAE IN FINAL SOL CONV <0.02 CONV <0.01 

 Agent Mean  Agent Mean  Agent Mean  Agent Mean 

PSOAG3 1000 0.0132 PSOAG8 1000 0.011 PSOAG8 1000 406.3 PSOAG8 1000 662.6 

PSOAG8 1000 0.0135 PSOAG3 1000 0.011 PSOAG8 750 453.8 PSOAG8 750 705.6 

PSOAG8 750 0.0147 PSOAG8 750 0.012 PSOAG3 1000 487.8 PSO 1000 750.0 
PSOAG3 750 0.0147 PSOAG3 750 0.012 PSOAG7 1000 497.7 PSOAG8 500 757.7 

PSOAG3 500 0.0163 PSOAG3 500 0.014 PSOAG2 1000 510.2 PSO 750 770.7 

PSOAG8 500 0.0169 PSOAG8 500 0.014 PSOTAC 1000 516.4 PSOAG3 1000 776.6 

PSOAG2 1000 0.0174 PSOAG2 1000 0.015 PSOAG8 500 526.3 PSOAG3 750 805.0 

PSOAG7 1000 0.0181 PSOAG7 1000 0.015 PSOAG3 750 537.8 PSOTAC 1000 814.0 
PSOTAC 1000 0.0188 PSOTAC 1000 0.016 PSOAG7 750 546.1 PSOAG2 1000 819.7 

PSOAG8 250 0.0200 PSOAG8 250 0.017 PSOTAC 750 548.1 PSOAG8 250 823.4 

PSOAG7 750 0.0205 PSOAG7 750 0.017 PSOAG2 750 566.5 PSO 500 824.7 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 
(f) 

 

 
(g) 

 

 
(h) 

 

 
(i) 

 
(j) 

 

Figure 3. Comparison between PSO versions at 250 agents, (a) Key Figure to represent the statistical analysis 

graphically, (b) PSOAG1, (c) PSOAG2, (d) PSOAG3, (e) PSOAG4, (f) PSOAG5, (g) PSOAG6, (h) 

PSOAG7, (i) PSOAG8, and (j) PSOAG9 
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Figure 4. Convergence rate of all PSO versions for 20, 250, and 1000 Agents 

 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 5. Comparison between PSOAG8 at different agents’ number, (a) 20, (b) 250, and (c) 1000 Agents 

 

 

4. CONCLUSION 

In this paper, several modified versions of autonomous grouping PSO were proposed. These 

versions were inspired by the diversity of intellectual ability for individuals in their colonies. To evaluate the 

performance of the algorithms, the I-V data was used. The results were compared in terms of RMSE, MAE, 

CR to RMSE values of 0.02 and 0.01, and the simulation time. For better comparisons, these results were 

compared to newly developed methods; i.e. PSOTAC, PSOM and PSOI. The results showed that PSOAG8 

was the best candidate as it had the fastest CR, and one of the minimum RMSE and MAE compared to other 

algorithms. It gave better performance in terms of RMSE and MAE compared to the autonomous particles 

groups for PSO when population was of size 500 or less. These values decreased by up to 14%. Moreover, 

the proposed algorithm showed up to 20% faster CR compared to the autonomous particles groups for PSO 

algorithm. More functions will be explored in the future for the social coefficients’ behavior. 
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