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 In the medical field, technology machinery is needed to solve several 

classification problems. Therefore, this research is useful to solve the 

problem of the medical field by using machine learning. This study discusses 

the classification of pancreatic cancer by using regression logistics and 

random forest. By comparing the accuracy, precision, recall (sensitivity), and 

F1-score of both methods, then we will know which method is better in 

classifying the pancreatic cancer dataset that we get from Al-Islam Hospital, 

Bandung, Indonesia. The results showed that random forest has better 

accuracy than logistic regressions. It can be seen with maximum accuracy of 

logistic regressions 96.48 with 30% data training and random forest 99.38% 

with 20% of data training. 
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1. INTRODUCTION 

One of the main diseases that cause death in the world is cancer [1], [2]. These diseases can attack 

all parts of the body [3]. One of the main causes of cancer-related deaths worldwide is pancreatic cancer. In 

the early stage, the diseases have no showing or symptoms. The most symptoms occur when the diseases in 

the final stage [4]. Pancreatic cancer is cancer that starts in the pancreas. The most common type of 

pancreatic cancer is pancreatic adenocarcinoma [5]. Location of the pancreatic organs behind the stomach. 

The pancreas is about 6 inches long and less than 2 inches wide in adults [6]. There are various treatments for 

pancreatic cancer, such as surgery, chemotherapy, radiation therapy, or a combination of these. The method 

of treatment is chosen based on the extent of cancer [7]. Information technology has an important role in the 

field of medicine. Cancer is a disease that can be detected by machine learning. Data is very useful in the 

medical field. It can be seen from the development of data mining in medical science is increasing rapidly. 

This increase can be seen from the high prediction results, can reduce treatment costs, increase the chances of 

recovery of patients, and decisions to save lives [8], [9]. Classification is a way to identify groups of 

categories to be part of observations [10]. One general classification is the continuous value of the predictive 

attribute. Whereas, ensemble classification is useful for increasing classification accuracy in ensemble 

applications [11]. 
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2. RESEARCH METHOD  

Pancreatic cancer dataset was obtained from Al-Islam Hospital, Bandung, Indonesia. This dataset 

consists of 79 non-cancer and 124 cancer samples with numerical characteristics described by 6 attributes, as 

shown in Table 1. This research uses logistic regressions and random forest for classification. This method is 

evaluated using 3-fold cross-validation, 45-random state, and later compared. Table sample of dataset is 

shown in Table 2. 

 

 

Table 1. Pancreatic cancer dataset variable 
Attributes Description 

Age The number of age patients who are in check 

CA 19-9 The number of cancer antigen units per milliliter of blood 
Hemoglobin The number of hemoglobin gram per deciliter of blood 

Leukocyte The number of leukocyte cell per uL of blood 

Hematocrit Hematocrit or the volume percentage of red blood cells 
Thrombosis The number of thrombosis cell per uL of blood 

 

 

Table 2. Sample of dataset from Al-Islam Hospital, Bandung, Indonesia 

Age 
CA 19-9 < 37 

(U/mL) 
Hemoglobin 13-18 

(g/dL) 
Leukocyt 4000-10000 

(sel/uL) 
Hematokrit 
40-54 (%) 

Thrombosis 150000-450000 
(sel/uL) 

38 34.61 12.1 7600 36.9 244000 

82 35.02 12.1 4900 36.7 253000 
35 35.4 6.3 10100 23.4 496000 

58 35.83 9.8 33500 29.1 467000 

52 36 9.8 7600 29.9 613000 
41 36.03 12.6 3400 38 203000 

40 36.94 11.9 8900 39.8 430000 

51 37.41 6.6 9500 23.5 259000 
64 39.25 11.5 15500 35.3 230000 

 

 

2.1.  Logistic regressions  

In some cases, the natural complement of ordinary linear is logistic regression. This happens when 

each target variable is categorized. Variable Y is a variable target and dependent with two class and variable 

X is a variable predictor and independent, let 𝑔(𝑥) = Pr(𝑋 = 𝑥) = 1 − Pr⁡(𝑋 = 𝑥) the logistic regression 

model has a linear form for Logit with probability as follows [12]-[14]:  

 

𝐿𝑜𝑔𝑖𝑡[⁡𝑔(𝑥)⁡] = log (
𝑔(𝑥)

1−𝑔(𝑥)
) = ⁡𝛼 + 𝛽𝑥⁡, 𝑤ℎ𝑒𝑟𝑒⁡𝑡ℎ𝑒⁡𝑜𝑑𝑑𝑠⁡

𝑔(𝑥)

1−𝑔(𝑥)
  (1) 

 

The form of linear approximation and probability logarithm is derived from Logit. The rate of 

increase or decrease of the Shape g(x) curve is denoted by the parameter β [15]. 

 

2.2.  Random forest  

Random forest is a method developed by Breiman in 2001 [16], [17]. Random forest works when it 

reaches maximum accuracy, a decision tree can be used to avoid overfitting data [18]. The estimation process 

previously carried out by decision tree and CART was enhanced by Breiman, which was started by randomly 

selecting m variables from several independent variables. A decision tree or CART method is a tree that is 

grown without pruning. These trees will be selected with the highest accuracy. The procedure of random 

forest depends on the number of classifications [19]. There are some advantages of random forest [20], such 

as overcoming the problem of excessive compatibility, less sensitive to outlier data, parameters can be easily 

adjusted and therefore eliminate the need for tree pruning, and the importance of variables and accuracy are 

generated automatically. Random forest selected features are in agreement with existing domain knowledge 

(e.g. physiological knowledge Guan et al., 2012) [21]. Flowchart of random forest shown in Figure 1. 

 

2.3.  Confusion matrix  

One of the methods used to calculate accuracy in the concept of data mining or decision support 

systems is confusion matrix [22]. It is balanced in the precision and sensitivity that distinguishes correct label 

classifications in different classes [23], [24]. Accuracy is the ratio of the true predictions in the whole data. 

Precision is a true positive prediction ratio compared to overall positive predicted results. In addition, the 

third is sensitivity is a true positive prediction ratio compared to overall true positive data. The last was 

denoted as F1-score, used to determine the balance between sensitivity and precision. 
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 True Positive (TP): Number of samples having pancreatic cancer diagnosed correctly 

 False Positive (FP): Sum of healthy people that were incorrectly identified to have pancreatic cancer 

 True Negative (TN): Number of healthy people correctly spotted 

 False Negative (FN): Number of samples with pancreatic cancer that were incorrectly classified as 

healthy 

From Table 3 it can build the formula for accuracy, precision, recall (sensitivity), and F1-score that 

are seen in (2)-(5).  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
⁡𝑥⁡100% (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥⁡100%  (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
⁡𝑥⁡100% (4) 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2⁡𝑥⁡
(⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡𝑥⁡𝑅𝑒𝑐𝑎𝑙𝑙⁡)

(⁡𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙⁡)
𝑥⁡100% (5) 

 

 

 
 

Figure 1. Flowchart of random forest [25] 

 

 

Table 3. Confusion matrix 

Actual Value 
Recognize Value 

Positive Negative 

Positive TP FN 
Negative FP TN 

 

 

3.  RESULTS AND DISCUSSION  

This research using Jupyter notebook as software for running the program of logistic regressions and 

random forest in processing pancreatic cancer classification problem. Testing the accuracy, precision, recall, 

and F1-score in this type of classification are by changing the amount of data training. In this test, the number 

of data training is equal to 10, 20, 30, 40, 50, 60, 70, 80, and 90 which will be used on the results of the 

dataset. The results of accuracy, precision, recall, and F1-score which are given by logistic regressions and 

random forest classifier method are shown in Table 4 and Table 5. 

Based on Table 4, it is shown that the number of data training is affecting by the values of accuracy, 

precision, recall, and F1-score. In this research, the highest accuracy value was recorded when the data 

training is 30% with 96.48% while the lowest accuracy value was recorded when the data training is 70% 

with 91.49%. In precision, 70% and 90% of data training reached a maximum value that is 100%. For the 
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recall, the recall of the highest value is 97.70% for 30% of data training. The last for F1-score, 30% of data 

training reached the highest value that is 96.29%.  

Based on Table 5, it is shown that the number of data training is affected by the values of accuracy, 

precision, recall, and F1-score. In this research, the highest accuracy value was recorded when the data 

training is 20% with 99.38% while the lowest accuracy value was recorded when the data training is 90% 

with 89.68%. In precision, 10%, 20%, and 30% of data training reached a maximum value that is 100%. For 

the recall, the recall of the highest value is 99.10% for 10% of data training. The last for F1-score, 20% of 

data training reached the maximum value that is 100%.  

 

 

Table 4. The results of pancreatic cancer classification using logistic regression 
No. Data Training Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

1. 10 95.62 96.56 96.4 95.4 
2. 20 95.68 96.02 96.97 95.45 

3. 30 96.48 96.74 97.7 96.29 

4. 40 95.94 97.44 96 95.73 
5. 50 96.05 98.33 95.16 95.88 

6. 60 95.01 96.06 95.83 94.76 

7. 70 91.49 100 86.11 91.39 
8. 80 95.05 96.3 95.83 94.77 

9. 90 94.44 100 91.67 94.29 

 

 

Table 5. The result of pancreatic cancer classification using random forest 
No. Data Training Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

1. 10 98.91 100 99.1 98.85 

2. 20 99.38 100 98.99 100 

3. 30 99.29 100 98.85 99.26 

4. 40 95.12 96.43 98.67 95.54 

5. 50 97 96.9 98.41 96.85 

6. 60 97.48 98.04 91.91 98.67 
7. 70 91.73 97.44 94.44 96.57 

8. 80 97.62 92.59 91.67 97.17 

9. 90 89.68 93.33 91.67 70.83 

 

 

4.  CONCLUSION  

After classifying pancreatic cancer with logistic regressions and random forest methods, it gets 

several results of accuracy, precision, recall, and F1-score. By comparing the values that are given from those 

methods (logistic regressions and random forest), it is possible to conclude that random forest generates a 

better result than logistic regression. The results of the two methods random forest gives the highest accuracy 

rate when the data training is 20% with 99.38%, while logistic regression reaches 96.48% when the data 

training is 30%. Because of the good results, random forest is suggested to help the medical staff to predict or 

classify a disease rather than logistic regression, especially for a dataset that is similar to this research. 
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