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 In cross-language information retrieval (CLIR), the neural machine 

translation (NMT) plays a vital role. CLIR retrieves the information written 

in a language which is different from the user's query language. In CLIR, the 

main concern is to translate the user query from the source language to the 

target language. NMT is useful for translating the data from one language to 

another. NMT has better accuracy for different languages like English to 

German and so-on. In this paper, NMT has applied for translating English to 

Indian languages, especially for Telugu. Besides NMT, an effort is also made 

to improve accuracy by applying effective preprocessing mechanism. The 

role of effective preprocessing in improving accuracy will be less but 

countable. Machine translation (MT) is a data-driven approach where parallel 

corpus will act as input in MT. NMT requires a massive amount of parallel 

corpus for performing the translation. Building an English - Telugu parallel 

corpus is costly because they are resource-poor languages. Different 

mechanisms are available for preparing the parallel corpus. The major issue 

in preparing parallel corpus is data replication that is handled during 

preprocessing. The other issue in machine translation is the out-of-

vocabulary (OOV) problem. Earlier dictionaries are used to handle OOV 

problems. To overcome this problem the rare words are segmented into 

sequences of subwords during preprocessing. The parameters like accuracy, 

perplexity, cross-entropy and BLEU scores shows better translation quality 

for NMT with effective preprocessing. 
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1. INTRODUCTION 

CLIR is a subfield of information retrieval (IR). In IR, we retrieve the relevant data by using the 

user query. CLIR is used to retrieve the data in another language than that of the user's query language. In 

this, we need to translate the user query language to another language. Machine translation (MT) is useful for 

the translation of data from one language to another. The need for MT has increased due to the rise of users 

in native languages. In 1990s, 80% of the web content was in English. In 2011 it had fallen to 27%. This is 

because of the rise in the content of other languages like Russian, French, German, and so-on. The KPMG 

analysis in India during 2017 stated that Indian language internet users are 38% in 2011 which was raised to 

https://creativecommons.org/licenses/by-sa/4.0/
mailto:buddaraju.narasimharaju@gmail.com


Int J Artif Intell ISSN: 2252-8938  

 

Effective preprocessing based neural machine translation for English to… (B. N. V. Narasimha Raju) 

307 

57% in 2016 and expected to be 72% by 2021. This is a clear sign of an increase in the importance of native 

languages. There is a need for appropriate MT mechanism for translating from one language to another, 

especially in the Indian languages. This helps the users to go through the content that was present in other 

than the native language. 

Machine translation consists of different kinds of translation. Earlier direct translation has to 

translate the sentence from the source language into a target language. This technique uses a bilingual 

dictionary for translation. Now corpus-based translation is used, which is categorised into statistical and 

neural machine translation. Statistical machine translation (SMT) will depend on both bilingual corpus and 

statistical models. In NMT, the neural networks will perform the translations. Earlier SMT was used, but 

NMT has shown improvement in the accuracy of the translation. MT is a data-driven approach and depends 

on the corpus [1]-[3]. Without an adequate amount of corpus, it cannot achieve better translations. NMT uses 

RNN architecture [4] and mainly depends on the parallel corpus. So, there is a need to collect more parallel 

corpus for better translations. 

NMT consists of three phases, viz. preprocessing, encoding and decoding. Preprocessing is 

performed on the parallel corpus. Obtaining the parallel corpus for Telugu-English language is difficult 

because they are resource-poor. Collection of the parallel corpus is either done manually or by using tools. 

The parallel corpus may contain different noises and inconsistencies. These kinds of problems will be more 

in morphologically rich languages like Telugu. The parallel corpus may contain data replication like the same 

source and different translations and vice-versa. This would confuse the machine while performing 

translations. 

NMT shows good results, but the translation faces problems like out-of-vocabulary [5], [6]. If NMT 

uses a limited-size vocabulary with highest frequency words, then it leads to OOV problems. This result in 

poor translations [7]-[9]. If the source sentence contains more frequent words, then the translation will be 

good. If the source sentence contains more unknown words, then the translation will be poor. This kind of 

problems will be more in both resource-poor and morphologically rich languages. Earlier, OOV problems are 

using word-level NMT along with back-off dictionaries [10]-[12]. These models are not suitable for 

unknown words. So, they copy the unknown words into the target text. It would be apt for the named entities 

but not for all the unknown words. 

The preprocessing phase will remove all the noises, data replication and OOV problems in the data. 

Then the encoding and decoding phases of the NMT will use the data. Preprocessing will solve different kind 

of problems which improves the quality of translation. So, preprocessing is an essential step in NMT. The 

next phases in NMT are encoding and decoding. NMT consists of two neural networks [13]-[16], i.e. encoder 

and decoder. The source sentence is the input for the encoder, and the decoder will generate the translation 

for the source sentence. The encoder-decoder phase can also handle the problem in processing long 

sentences. 

 

 

2. RELATED WORK 

Earlier SMT techniques are essential for translating the sentences. B.N.V Narasimha Raju et al. 

proposed [17] SMT for translation which consists of language model, translation model and decoder. In this, 

phrase-based translation model has achieved adequate quality of translation. Later neural networks along 

with MT has improved the translation when compared to the SMT. Mai Oudah et al. proposed [13] the 

combination of NMT and SMT for English-Arabic languages. In this, NMT has shown good performance but 

suffers from the translation of short sentences. This was resolved by using both statistical and neural MT, but 

it lacks good tokenization schemes. These tokenization problems are handled during preprocessing. 

Preprocessing is one of the main steps in NMT. If preprocessing is not applied to the corpus, then 

the quality of the translation will be less. Preprocessing can perform tokenizations, remove unimportant 

words, and so-on. Preforming these techniques will depend on the situation. Duygu Ataman et al. proposed 

[18] using a fixed-sized vocabulary. The conventional methods will cause semantic and syntactic losses. 

These problems are solved by unsupervised morphology learning which reduces vocabulary. Anoop 

Kunchukuttan et al. proposed [19] the text normalization on Hindi-English parallel corpus and perform 

tokenization by using Moses toolkit. 

Kyunghyun Cho et al. proposed [20] RNN encoder-decoder along with a gated recursive 

convolutional neural network. Here encoder is for extracting representations of fixed length from the input of 

variable length. From the representation, the decoder will generate the translations. This mechanism has 

shown good results for short sentences if it has less number of unknown words. In this way, NMT is showing 

a good performance when compared to the other techniques. The performance of NMT will decrease if there 

are more number of unknown words. So, these unknown words are also a kind of OOV problems. 
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Preprocessing can handle data replication problems in the English to Telugu Translation. The data 

replication will confuse the model while making the translations, which degrades the performance. So, 

remove the replicated data from the parallel corpus. To overcome the problem of OOV, we have used a 

tokenization scheme called byte-pair encoding (BPE) during preprocessing. BPE was generally used for data 

compression [21]. These are a kind of subword models which achieve better accuracy for the translation. It is 

also possible to translate some words that are not present at training time. Mattia A. Di Gangi et al. has 

proposed [22] byte-pair encoding in preprocessing for English-German languages. 

In NMT, both the encoder and decoder are one of the phases in MT. In general, the regular RNN 

will be used for encoder and decoder phases. The regular RNN will have a problem when handling the 

longer-range dependencies in the source sentence. The proposed model uses long short-term memory 

(LSTM) instead of regular RNN in encoder and decoder. LSTM will produce better accuracy than regular 

RNN in case of long-range dependencies. NMT needs to use LSTMs in both encoder and decoder phases. In 

the preprocessing phase, it handles both OOV and data replication problems. 

 

 

3. NEURAL MACHINE TRANSLATION 

NMT consists of three phases, i.e. preprocessing, encoding and decoding, as shown in Figure 1. 

NMT is a data-driven approach. So, it depends on the parallel corpus. NMT requires large parallel corpus for 

generating better translations. The collection of the parallel corpus is also a problem for the resource-poor 

languages like Telugu-English. The creation of parallel corpus can be either manual or by using tools. Usage 

of tools will generate noises. Handling these noises are difficult. So, manual preparation of the corpus would 

be better but still there exist noise and inconsistencies in the data. If the Parallel corpus is inconsistent or 

noisy, then it will reduce the accuracy in translation. The preprocessing phase will handle both noises and 

inconsistencies in a parallel corpus. NMT also faces a problem with data replication and OOV. Data 

replication in the parallel corpus will consist of the same source sentences with different translations and 

vice-versa. NMT will handle both the data replication and OOV problems while preprocessing.  
 

 

 
 

Figure 1. Steps in neural machine translation 
 

 

In preprocessing, the source text is the input. It removes unwanted characters, symbols and so-on 

from a parallel corpus. Then remove the replicated data in a parallel corpus. First, we load the parallel corpus 

and convert the characters to lowercase. Now, remove the unwanted symbols in the parallel corpus. After 

removing them save the filtered corpus. Now remove the replicated data from the filtered corpus. For this 

first, we have combined the parallel corpus into a single file by maintaining a delimiter. Identify and remove 

the replicated sentences from Telugu-English parallel corpus. 

In general, the parallel corpus would contain the data of both Telugu and English in two files. 

Consider a sample parallel corpus as, 
 

This is ravi house  ఇది రవి ఇల్లు  

Ravi gone to school రవి బడికి వెళ్ళాడు 
This is ravi house  ఇది రవి గృహము 
 

Parallel corpus consists of data replication. Now convert English corpus to lowercase. Now parallel 

corpus will be 
 

this is ravi house  ఇది రవి ఇల్లు  

ravi gone to school రవి బడికి వెళ్ళాడు 
this is ravi house  ఇది రవి గృహము 
 

remove the unwanted symbols and data replication in the parallel corpus. Parallel corpus consists of data 

replication in sentences 1 and 3. It has the same source sentence but different translations. To remove the 

Source Text Preprocessing 

 

Encoding Decoding Target Text 
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replication in data, combine parallel corpus into a single file by using a delimiter. The delimiter is useful for 

separating both English-Telugu parallel corpus. The delimiter used is */*. Now parallel corpus will be,  

 

this is ravi house*/*ఇది రవి ఇల్లు  
ravi gone to school*/*రవి బడిక ివళె్ళాడు 
this is ravi house*/*ఇది రవి గృహము 
 

Convert the complete corpus into the Unicode format. Identify whether there is any data replication. 

The corpus present before the delimiter is English and after the delimiter is Telugu. Identify the replicated 

sentences in the English or Telugu language corpus. Now, remove the complete sentence i.e. both English 

and corresponding Telugu language sentence. Line 1 and 3 consists of replicated data. After removing the 

data replication, the corpus will be,  

 

this is ravi house*/*ఇది రవి ఇల్లు  
ravi gone to school*/*రవి బడిక ివళె్ళాడు 
 

Remove the data replication in a parallel corpus. Now, pass the corpus for further preprocessing. A 

parallel corpus of 20000 lines was passed for testing data replication. It has reduced the corpus to 17589. 

Parallel corpus has 2411 replicated sentences. Removal of data replication would raise the performance of 

NMT. NMT requires Telugu-English parallel corpus for training. The English-Telugu parallel corpus is a 

resource-poor language. Due to low resource, the vocabulary of the corpus may contain high-frequency 

words which cause the OOV problem [23]-[25]. If the input of NMT consists of unknown words, then it will 

reduce performance. To remove this OOV problem, word segmentation techniques are used. Divide the 

unknown word into subword units by using BPE, then try to translate by using subwords. 

Byte pair encoding [12], [21] is a data compression mechanism, that is used for merging frequent 

pairs of bytes. This technique is also useful for word segmentation. Merge the characters or character 

sequences. In BPE, initialize the symbol vocabulary with character vocabulary. Represent each word as a 

character sequence with a special delimiter at the end. The delimiter is useful after translation to restore the 

original token. Count all the symbol pairs and replace the most frequent symbol pair with a new symbol 

which represents an n-gram character. Merge the frequent n-gram characters to form a single symbol. In 

BPE, the initial vocabulary size and the final symbol vocabulary sizes are equal. The BPE Algorithm in 

Figure 2 is useful for this kind of word segmentation. Apply BPE for both the source and target vocabulary. 

It is compact in text or vocabulary size. That means having a guarantee that the subword unit is present in the 

respective language training text. 

 

 
Algorithm: Byte-pair encoding 
Input: It contains a set of strings S and the target vocab size is k 

procedure BPE (S, k) 

X is the all unique characters in S 

 while |X| < k do  

tm, tn is the Most frequent bigram in S 
tl is tm + tn 

 X is X + [tl] 

Replace each occurrence of tm, tn in S with tl 

end while 

return X 
end procedure 

 

Figure 2. Algorithm for byte pair encoding 

 

 

In corpus, BPE will count the frequency of each word. Split word into characters and place a special 

token called </w> at the end of the word. For example, consider the word “high” and the tokens for the word 

are [“h”, “i”, “g”, “h”, “</w>”]. Count the frequency of all words in the corpus. It will specify the vocabulary 

for tokenized word along with its corresponding counts. For example, consider 

 

{'h i g h </w>': 4, 'h i g h e r </w>': 2, 'n e w e s t </w>': 6, 'w i d e s t </w>': 3} 
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In every iteration, find the most frequent consecutive byte pair and merge the two byte-pair tokens 

into one. In the first iteration, the byte pair “e” and “s” occurred 6+3=9 times. Merge them into new token 

“es”. Now the vocabulary is 

 

{'h i g h </w>': 4, 'h i g h e r</w>': 2, 'n e w es t </w>': 6, 'w i d es t </w>': 3} 

 

In the next iteration, byte pair “es” and “t” occurred 6+3=9 times. Merge them into new token “est”. 

Now the vocabulary is 

 

{'h i g h </w>': 4, 'h i g h e r</w>': 2, 'n e w est </w>': 6, 'w i d est </w>': 3} 

 

In the next iteration, byte pair “est” and “</w> are more frequent. Merge the byte pairs into a new 

token “est</w>”. Repeat this until the defined subword vocabulary size or the next highest frequency pair is 

1. Suppose if a word “highest” need to encode then the BPE would split it into two subwords viz. “high” and 

“est</w>”. By using the subwords, NMT would try to translate them. In the same way, any unknown words 

are converted to subword units and try to translate them. Apply the same process to the parallel corpus. 

Translating the unknown words will increase the performance of NMT. 

After preprocessing, input will be passed to the encoder of the NMT. In general, the end-to-end 

approach is used for sequence learning. The sequence to sequence model will generate a fixed-length output 

from fixed-length input. Here the length of input and output may vary. The encoder consists of a multilayer 

LSTM, and it will map the input sequence to a fixed dimensionality vector. The decoder is also an LSTM 

that will generate the target sequence from the dimensionality vector [26], [27]. This architecture is shown in 

Figure 3. This mechanism will read the input sentences completely, and then it will start generating the 

output. The model will stop generating the output when it encounters a <eos> token. 

 
 

 
 

Figure 3. Sequence to sequence model 

 

 

In the NMT the input sequence is (i1,...,iT) and the RNN generates an output sequence of (j1,…,jT) by 

iteratively performing the following equations. 

 

ht= f(Whiit + Whhht-1) 

 

jt = Wjhht 

 

Here h represents the hidden layer, f represents the activation function, W represents the weights. It 

is little bit difficult to apply RNN when input and output sequences are of different length. A general 

sequence model can map the input sequence to a fixed-size vector using one RNN. Now generate the target 

sequence by using another RNN from this vector. The problem arises in regular RNN when we need to train 

with long-range dependencies. In such situations, the regular RNN may fail to produce accurate translations. 

To overcome such problems, we can use LSTMs. LSTMs can handle the long-range dependencies in a better 

way than the regular RNN. The architecture of LSTM is shown in Figure 4. 

The behaviour of LSTM is to hold the information for a longer time. In LSTMs, there are four layers 

which interact in a special way. LSTM consists of a cell state which is a horizontal line from Ct-1 to Ct. It runs 

through the entire chain with some minor linear interactions. LSTM can add or remove the information in the 

cell state by using gates. It consists of a sigmoid layer and pointwise multiplication. The output of the 

sigmoid function is ft. 

 

ft =σ(Wf . [ht-1, it] + bf 

నేను  

 

am going home <eos> 

<eos> ఇంటి
కి 

   వెళ్తు న్నాను 

I నేను  
 

ఇంటికి  వెళ్తు న్నాను 
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Figure 4. LSTM cell 
 

 

The next step will decide what is the new information we are going to add to the cell state. The 

output of the sigmoid layer gt. Next, the tanh will create a new candidate value 𝐶𝑡. Now we will update the 

cell state from Ct-1 to Ct. Multiply the old cell state by ft and then add the gt * 𝐶𝑡 . 
 

gt = σ(Wg . [ht-1, it] + bg) 

 

 �̃�𝑡= tanh(Wc . [ht-1, it] + bc) 

 

Ct = ft * Ct-1 + gt *  �̃�𝑡 

 

Finally, the outputwill be a filtered version of the cell state. The output of the sigmoid layer is ot.  

 

ot = σ(Wo . [ht-1, it] + bo) 

 

ht = ot * tanh(Ct) 

 

In this way, each LSTM cell would function. The goal of the LSTM is to find the conditional 

probability p(j1,…,jT' | i1,...,iT) where the length of both input sequence and output sequence may vary. The 

length of the input sequence is T, and the length of the output sequence is T'. It computes the conditional 

probability by obtaining the fixed dimensional representation v of the input sequence (i1,...,iT) and it is given 

by the last hidden state of the LSTM. Now compute the probability of j1, …, jT'' with a standard LSTM-LM 

formulation whose initial hidden state is the representation v of i1,...,iT. 
 

p(j1,…,jT' | i1,...,iT)=∏ 𝑃𝑇′

𝑡=1 (jt | v, j1,…,jt-1) 

 

After having a rigorous training by using many sentence pairs, now the decoder will produce the 

correct translation T of the source sentence S by using LSTM. 

 

�̂� = argmax
𝑇

𝑃(𝑇 | 𝑆) 

 

The parameters used for the evaluation of the model are accuracy, perplexity, cross-entropy, and 

bilingual evaluation understudy (BLEU) score. Accuracy represents the amount of correct classification. The 

model having high accuracy is a better performer. The perplexity is a measure used for finding how well a 

probability model predicts a sample. The low perplexity score indicates good probability distribution for 

predicting the sample. The cross-entropy is useful for calculating the loss function. It measures the difference 

between two probability distributions for a given set of events. The model having less cross-entropy score 

will be a better performer. The BLEU score is useful for evaluating the predictions made by the machine 

translation systems. The model having higher BLEU score will perform well in predicting the translations. 

 

 

4. RESULTS AND DISCUSSION 

In this, the parallel corpus with and without replicated data is used. The replicated data will contain 

repeated sentences, sentences with the same source but different translations and vice-versa. Remove all the 
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repeated sentences from the dataset because it is difficult to find which source is correct for the translated 

sentence and vice-versa. If a sentence is repeated more number of times in the database, it will confuse the 

model in identifying and learning new features. It causes overfitting and will generate wrong results. If the 

train and test datasets also contain the same sentences, the accuracy will be more during training and testing. 

It will fail while translating the new sentences to produce the correct translations. Remove these problems 

from the dataset that helps in increasing the efficiency of the translation. 

Apply normal preprocessing to generate word vocabularies, sequences of indices and BPE for data 

with and without replication. The performance of NMT using BPE for data with replication and without 

replication is as shown in Figure 5. The training accuracy for databases is shown in Figure 5(a), the training 

perplexity for databases is shown in Figure 5(b), the training cross-entropy for databases is shown in  

Figure 5(c), the validation accuracy for databases is shown in Figure 5(d), and the validation perplexity for 

databases is shown in Figure 5(e). Input the data for NMT. Here both the regular RNN and LSTM are used. 

NMT consists of two encoder and decoder layers. The size of the RNN is 500. It uses Adam optimizer, with a 

learning rate of 0.01. The decay is 0.5. The dropout is 0.3, and the training steps are 20000. 

 

 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 

 
(e) 

           Database without replication       Database with replication 

 

Figure 5. Performance of NMT using BPE for data with replication and without replication. 

(a) training accuracy, (b) training perplexity, (c) training cross-entropy, (d) validation accuracy,  

(e) validation perplexity 

 



Int J Artif Intell ISSN: 2252-8938  

 

Effective preprocessing based neural machine translation for English to… (B. N. V. Narasimha Raju) 

313 

Now we compared the performance of NMT using different preprocessing techniques like data with 

and without replication along with BPE. The comparison of parameters like training accuracy, training 

perplexity, training cross-entropy, validation accuracy, validation perplexity are shown in Table 1. In all 

parameters, the database without replication has achieved better performance. 

 

 

Table 1. Comparison of parameters for evaluating the performance of database with and without replication 
Parameters Database without replication Database with replication 

Training Accuracy 91.02 88.32 

Training Perplexity 1.394 1.598 

Training Cross-Entropy 0.332 0.4686 

Validation accuracy 77.99 77.77 

Validation Perplexity 4.086 4.14 

 

 

We have also measured the performance of NMT by using the BLEU metric, and the scores are as 

shown in Table 2. The performance comparison for different NMT techniques using replicated and non-

replicated corpus are as shown in Figure 6. NMT without replication using BPE and LSTM has more 

accuracy in translation. The preprocessing model used for removing the replication along with BPE is useful 

for improving the accuracy of NMT. 

 

 

Table 2. Performance in various techniques for corpus with and without replication using BLEU score 

Model 
BLEU Score 

Without replication With replication 

RNN 46.87 46.03 

LSTM 47.19 46.38 
BPE+RNN 47.70 47.01 

BPE+LSTM 48.81 48.27 

 

 

 
 

Figure 6. Comparison of the corpus with and without replication using BLEU score 

 

 

5. CONCLUSION 

In NMT, removing replication in the parallel corpus will improve the translation accuracy. Applying 

BPE solves the unknown words problem like OOV. In this paper, the parallel corpus with and without data 

replication along with BPE is used in the preprocessing phase. The output of the preprocessing phase is given 

as input for the encoder and decoder phases. The model was tested for both English-Telugu language pairs. 

The quality of translation is measured by using the accuracy, perplexity, cross-entropy and BLUE scores. By 

analyzing the performance of various techniques, it was shown that the model not having replicated corpus is 

showing better accuracy for translations. So, removing the replicated data in parallel corpus and solving the 

OOV problems are the two important steps for improving the accuracy of translation in resource-poor 

languages. Preprocessing has shown a slight improvement in the quality of translation, which is countable. 

Preprocessing can be considered as one of the essential steps in NMT. So, NMT with effective preprocessing 

like removal of data replication along with BPE has performed better for the English-Telugu parallel corpus. 

Thus, by using the NMT with efficient preprocessing for English-Telugu parallel corpus improves the 

translation accuracy of CLIR. 
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