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 Deep reinforcement learning (DRL) which involved reinforcement learning 

and artificial neural network allows agents to take the best possible actions to 

achieve goals. Spiking neural network (SNN) faced difficulty in training due 

to the non-differentiable spike function of spike neuron. In order to overcome 

the difficulty, deep Q network (DQN) and deep Q learning with normalized 

advantage function (NAF) are proposed to interact with a custom 

environment. DQN is applied for discrete action space whereas NAF is 

implemented for continuous action space. The model is trained and tested to 

validate its performance in order to balance the firing rate of excitatory and 

inhibitory population of spike neuron by using both algorithms. Training 

results showed both agents able to explore in the custom environment with 

OpenAI Gym framework. The trained model for both algorithms capable to 

balance the firing rate of excitatory and inhibitory of the spike neuron. NAF 

achieved 0.80% of the average percentage error of rate of difference between 

target and actual neuron rate whereas DQN obtained 0.96%. NAF attained 

the goal faster than DQN with only 3 steps taken for actual output neuron 

rate to meet with or close to target neuron firing rate. 
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1. INTRODUCTION 

Deep reinforcement learning (DRL) combines machine learning and artificial intelligence 

techniques [1]. Reinforcement learning algorithms with deep neural networks are implemented in DRL to 

select the best possible action to attain goals. A DRL agent interacts with a virtual environment as shown in 

Figure 1 and select actions to solve complex problem [2]. Deep neural network is used by agents to 

approximate a value or policy function in order to update and index the data instead of using a lookup table. 

The data consists of states, actions and rewards. The agent takes actions based on the current state and reward 

in a virtual environment [3]. The agent receives rewards or penalties based on the actions performed. The 

agent receives positive rewards when the outcome is closer to the target whereas when there is a faulty action 

taken, the agent obtains negative rewards. The agent learns from experience to decide the best suitable action 

to attain a goal [4]. 

Spike neuron is elementary unit in spiking neural network (SNN). Spike neuron has the 

characteristic of spiking behaviour. When spike neuron is fired,a spike is generated by using spike generation 

function. Spikes are sequences of action potential that is used in signal transmission in spike neurons [5]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Synapses of spike neuron which consists of excitatory and inhibitory population are required to be optimized 

before implement into a network to form a SNN. An optimization method is proposed to optimize spike 

neuron by using maximum likelihood [6]. The maximum likelihood optimization method is used to configure 

the single M-N neuron to predict the firing activity of the neuron. The average error between the actual and 

predicted of spike activity is 3%. A supervised multi-spike learning algorithm is proposed to train neurons in 

SNN [7]. A single neuron is trained to learn spike patterns in order to generate spike trains. The expression of 

membrane potential is simplified by the algorithm and enables the optimization of synaptic weights through 

the application of gradient descent. The results showed that the algorithm able to achieve classification 

accuracy. Based on [6] and [7], the gaps can be seen from the need of training data to train the model. 

Maximum likelihood optimization method and supervised multi-spike learning algorithm required training 

dataset to train the model. Furthermore, an unsupervised training algorithm is implemented to train SNN [8]. 

Spike neuron model is trained using synaptic weight association training (SWAT). The training and testing 

results showed that the algorithm exhibits the capability for classification and convergence accuracy. A 

limited precision (SNN/LP) supervised learning algorithm of spiking neural networks is implemented in SNN 

training [9]. Synaptic weights and synaptic delays are applied with limited precision for supervised learning. 

The algorithm achieved low mean squared error in non-linear XOR classification problem and capable to 

achieve up to 97% of classification accuracy. 

In spiking neural network (SNN), information is emitted and processed by spike neuron through a 

sequence of action potentials which is also known as spikes [10]. Information is encoded in firing rate of 

spike neuron [11]. Spike neuron consists of a spike generation function for firing purpose. The spike function 

is non-differentiable which create a discontinuity at the instance of firing time. Non-differentiability of the 

function leads to difficulty to develop gradient descent to perform backpropagation in order to update the 

weight of spike neuron for minimizing loss [12]. This has caused training of SNN using backpropagation 

become difficult as compared to other artificial neural networks (ANN) [13]. SNN mimics biological nervous 

system more closely compared to conventional artificial neural networks [14]. Although SNN is biologically 

more realistic than artificial neural network (ANN) but receives less attention than ANN due to the difficulty 

to train SNN [15]. In order to overcome the non-differentiability of spike function that leads to difficulty in 

SNN training, deep reinforcement learning is applied to balance the firing rate of excitatory and inhibitory 

population of spike neuron. Spike neuron has different firing rate of spikes when different configuration on 

the firing rate of excitatory and inhibitory population of the neuron is applied [16]. The firing rate of 

inhibitory population of the spike neuron is initialized as input and adjusted during training to achieve the 

firing rate of excitatory population of the neuron has the same rate with the target neuron firing rate. In this 

research, two algorithms of reinforcement learning are proposed to act as agents which are deep Q network 

(DQN) and deep Q-learning with normalized advantage functions (NAF) to interact with a custom 

environment with OpenAI Gym framework to optimize spike neuron into balance state. Other than previous 

research works that using deep learning or reinforcement learning, this research work applied deep 

reinforcement learning to solve the difficulty in SNN training by using backpropagation algorithm. The 

algorithm consists of reinforcement learning algorithm with deep neural network for approximation of Q 

function. The motivation of this paper is to train single spike neuron using deep reinforcement learning with 

the absence of training dataset in order to attain goals. The algorithms learn from experience to perform an 

action to maximize rewards. 

 

 

 
 

Figure 1. Architecture of Deep Reinforcement Learning 
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2. RESEARCH METHOD  

A spike neuron is created by using neural simulation tool (NEST) simulator. Single spike neuron is 

used in training for optimization. A spike neuron is modeled by using PyNEST command in Python 

programming language after a custom environment is built. Simulation parameters are required to be 

initialized for NEST simulator to model a spike neuron as shown in Table 1 [17].  

 

 

Table 1. Simulation parameters of spike neuron 
Simulation Parameters Value 

Simulation Time, t_sim 25000 

Size of Excitatory Population, n_ex 16000 

Size of Inhibitory Population, n_in 4000 

Mean Rate of Excitatory Population 5.0Hz 

Initial Rate of Inhibitory Population with a random number range, r_in 17.5-19.5Hz 
Peak Amplitude of Excitatory Population, epsc 50 

Peak Amplitude of Inhibitory Population, ipsc -50 

Synaptic Delay,d 0.01 

Lower bound of search interval, self.lower 0 

Upper bound of search interval, self.upper 50 

 

 

A custom environment is created using OpenAI gym toolkit. The spike neuron is converted into 

OpenAI Gym framework after the custom environment is built. The environment set the initial state for the 

problems to be solved. Action space and observation space are configured for both DRL algorithms. Action 

space represents how many possible actions for the DRL agents to interact with the environment and 
observation space represents all the data that generated by the environment and to be observed by the agents 

as shown in Figure 2. 

 

 

 
 

Figure 2. Interaction of DRL agents and a custom environment with OpenAI Gym framework 

 

 

In DRL algorithm, no training dataset is required as input to provide raw data for training. The DRL 

agents select the action to be taken without training data. The agents generate their own data according to the 

given state, actions taken and reward by interacting with the custom environment with OpenAI Gym 

framework. The training data which also known as experience is stored in memory. The agents learn from 

experience to make decisions on the action to be taken to obtain the maximum rewards in order to achieve 

goal [18]. 

A deep neural network is constructed in DQN as DQN is value-based method. Action space for 

DQN in the custom environment is discrete type with 4 possible actions. The agent takes actions based on the 

4 possible actions defined as shown in Table 2. The agent receives rewards according to the action taken and 

state. 4000 training steps are taken to balance the firing rate of excitatory and inhibitory population of the 

spike neuron. The trained model is used for testing to validate the performance for 5 episodes. The flowchart 

of this algorithm is showed in Figure 3(a).  

 

 

Table 2. Action list of DQN 
Action Details of action 

0 Current inhibitory rate + 0.01 
1 Current inhibitory rate - 0.01 

2 Current inhibitory rate + random number from range of 0.02 to 0.05 

3 Current inhibitory rate - random number from range of 0.02 to 0.05 

 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 1, March 2021:  175 – 183 

178 

NAF agent is contructed with a state-value function and an advantage function [19]. In NAF, three 

networks are implemented in training to approximate Q function which are mu_model, V_model and 

L_model. The V_model is the network used to learn state value function and mu_model is the network 

applied to select action to be taken that can maximizes Q function. An advantage function is construct in 

L_model. Action space of NAF algorithm is continuous domain [20-21]. The action value is random selected 

by the NAF agent from the range of 0 to 50 which is the search interval range. Reward is feedback to the 

agent from the environment. The training steps is set to 26000 steps to balance the firing rate of exhibitory 

and inhibitory population of spike neuron. After trained the model, the model is implemented in testing in 

order to validate the performance for 5 episodes. The flowchart of this algorithm is showed in Figure 3(b). 

 

 

  
(a) (b) 

 

Figure 3. Flowchart of the algorithm, (a) DQN, (b) NAF 

 

 

3. RESULTS AND DISCUSSION 

The spike neuron model is trained in the custom environment built with OpenAI Gym framework. 

The model is trained until it able to meet the target neuron rate and achieve convergency. When the model is 

not given enough training, the model is not able to meet the convergence and the goal is unable to attain. 

 

3.1.  DQN algorithm 

Spike neuron is optimized using DQN with 4000 steps. The DQN agent interacted with the custom 

environment and selected the actions to be taken. A plot of episode reward versus episodes is generated as 

shown in Figure 4. The learning curve indicated that the DQN agent capable to explore in the custom 

environment with OpenAI Gym framework. The trained model able to react towards the custom environment 

to attain the goal to train spike neuron into balance state. During the initial state, the agents obtained negative 

reward as the agent is unable to explore in the custom environment with OpenAI Gym framework to 

optimize spike neuron. During training, the agent learns to explore in the custom environment and receives 

more rewards. The agent receives positive and negative rewards based on the given state and action taken 

throughout the training. Each action is selected randomly from 4 discrete actions that defined in action space 
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of the algorithm. With this capability to explore in the custom environment, the model became usable for 

testing. After training, the model is tested for 5 episodes to validate the performance of the model. The model 

received rewards for each episode during testing as shown in Figure 5. 

 

 

 
 

Figure 4. Learning curve of the spike neuron model using DQN algorithm 

 

 

 
 

Figure 5. Testing curve of the trained model using DQN algorithm 

 

 

The inhibitory population rate is fine-tuned by the agent in order to attain the goal. The testing result 

is tabulated in Table 3. The actual output neuron rate of two episodes are closer to the target neuron firing 

rate with the difference of 0.04Hz in third and fifth episodes whereas the actual output neuron rate is attained 

the goal in the fourth episode. In first and second episodes of testing obtained the highest value of difference 

between actual and target neuron firing rate which is 0.08Hz. The percentage of error between the rate of 

difference of actual and target output neuron rate and goal is calculated in Table 4. The average percentage of 

error achieved 0.96%. The lowest steps taken for actual output neuron rate to meet with target neuron firing 

rate is 84 steps. The result showed that the capability of the trained model to interact with custom 

environment with OpenAI Gym framework to optimize the firing rate of excitatory and inhibitory population 

of the spike neuron into balance state. 
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Table 3. Testing result of the trained model using DQN algorithm 

Episode Simulation Parameter 
Optimal Value given 
by DQN Agent (Hz) 

Total Reward Steps taken to 
attain goal 

1 

Mean Rate of Inhibitory Population 20.76 

-5540000.00 89 Initial Rate of Inhibitory Population  18.66 

Output Neuron rate 5.08 

2 
Mean Rate of Inhibitory Population 20.78 

-5964000.00 92 Initial Rate of Inhibitory Population  18.66 

Output Neuron rate 4.92 

3 

Mean Rate of Inhibitory Population 20.81 

-4522000.00 91 Initial Rate of Inhibitory Population  18.66 

Output Neuron rate 5.04 

4 

Mean Rate of Inhibitory Population 20.73 

-5462000.00 84 Initial Rate of Inhibitory Population  18.66 

Output Neuron rate 5.00 

5 

Mean Rate of Inhibitory Population 20.83 

-1645000.00 86 Initial Rate of Inhibitory Population  18.66 
Output Neuron rate 4.96 

 

 

Table 4. Testing result for output and target neuron firing rate in DQN algorithm 
Episode Target neuron 

firing rate (Hz) 

Actual output 

neuron rate (Hz) 

Difference of output 

and target neuron 

firing rate (Hz) 

Percentage 

of Error 

(%) 

Average 

Percentage of 

Error (%) 

1 

5.00 

5.08 0.08 1.60 

0.96% 

2 4.92 0.08 1.60 

3 5.04 0.04 0.80 

4 5.00 0.00 0.00 

5 4.96 0.04 0.80 

 

 

3.2.  NAF algorithm 

Spike neuron is optimized using NAF with 26000 training steps. The NAF agent is learnt to interact 

with the custom environment with OpenAI Gym framework and to select action to be taken to get maximum 

rewards. A plot of episode reward versus episodes is generated as shown in Figure 6. The learning curve 

showed the exploration of NAF agent in the custom environment. The result proved that the NAF agent has 

the capability to explore in the custom environment with OpenAI Gym framework. The trained model 

capable to react towards the environment to optimize the firing rate of excitatory and inhibitory population of 

the spike neuron into balance state. The agent obtained positive and negative rewards fluctuately due to the 

continuous action space. The range of the action value is between 0 to 50. Different action values are being 

selected randomly for actions taken in training. The model able to perform exploration in the custom 

environment using NAF algorithm and the model can be applied for testing. 5 episodes of testing is applied 

to test the performance of the trained model for validation purpose as shown in Figure 7. The testing result is 

recorded in Table 5. 

 

 

  
 

Figure 6. Learning curve of the spike neuron model 

using NAF algorithm 

 

Figure 7. Testing curve of the trained model using 

NAF algorithm 
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The firing rate of inhibitory population is fine-tuned by the agent to attain the goal. The percentage 

of error between the rate of difference of actual output neuron rate and goal is recorded in Table 6. The 

average percentage of error between rate of difference of output and target neuron firing rate achieved 0.80%. 

The lowest steps taken for actual output neuron rate to meet with or close to the target excitatory population 

rate is 3 steps. The result showed the trained model able to interact with the custom environment with 

OpenAI Gym framework to achieve the balance state of spike neuron.  

 

 

Table 5. Testing result of the trained model using NAF algorithm 

Episode Simulation Parameter 
Optimal Value given 
by DQN Agent (Hz) 

Total  
Reward 

Steps taken to 
attain goal 

1 

Mean Rate of Inhibitory Population 20.80 

-480.00 11 Initial Rate of Inhibitory Population  19.23 

Output Neuron rate 5.08 

2 
Mean Rate of Inhibitory Population 20.80 

40.00 3 Initial Rate of Inhibitory Population  19.23 

Output Neuron rate 5.04 

3 

Mean Rate of Inhibitory Population 20.80 

-710.00 13 Initial Rate of Inhibitory Population  19.23 

Output Neuron rate 4.96 

4 

Mean Rate of Inhibitory Population 20.80 

-2030.00 21 Initial Rate of Inhibitory Population  19.23 

Output Neuron rate 5.00 

5 

Mean Rate of Inhibitory Population 20.80 

-130.00 8 Initial Rate of Inhibitory Population  19.23 
Output Neuron rate 4.96 

 

 

Table 6. Testing result for output and target neuron firing rate in NAF algorithm 
Episode Target neuron 

firing rate (Hz) 

Actual output 

neuron rate (Hz) 

Difference of output and 

target neuron firing rate (Hz) 

Percentage of 

Error (%) 

Average Percentage of 

Error (%) 

1 

5.00 

5.08 0.08 1.60 

0.80% 

2 5.04 0.04 0.80 

3 4.96 0.04 0.80 

4 5.00 0.00 0.00 

5 4.96 0.04 0.80 

 

 

3.3.  Evaluation of DQN and NAF algorithm 

Spike neuron is optimized to balance the firing rate of excitatory and inhibitory population by using 

DQN and NAF algorithms in the custom environment with OpenAI Gym framework. The evaluation of the 

performance of the DQN and NAF trained model is tabulated in Table 7. 

DQN algorithm is applied to train the spike neuron in discrete action space whereas NAF algorithm 

is implemented to train the spike neuron in continuous domain. The types of action space to use depends on 

the applications. The training steps of DQN is lower than NAF as 4000 training steps are executed on the 

model and able to meet the goal. The training time is longer for NAF as the model is trained for 26000 steps 

to attain the goal. The average percentage error of rate of difference between target and actual output neuron 

firing rate in NAF is lower than DQN. NAF able to achieve 0.80% of percentage error in the testing trained 

model. Furthermore, steps taken for actual output neuron rate to meet with or close to the target neuron firing 

rate in NAF is lower compared to DQN which only 3 steps taken to attain the goal. This indicates that NAF 

algorithm able to optimize spike neuron into balance state faster than DQN. 

The performance of DQN and NAF is compared with a previous research work which using 

maximum likelihood optimization method to optimize spike neuron as shown in Table 8. 

 

 

Table 7. Evaluation result of DQN and NAF Algorithm 
 DQN NAF 

Action Space Discrete Continuous 

Training steps 4000 26000 

Average percentage of error of rate of difference between output and target neuron firing rate 0.96% 0.80% 

The lowest steps taken for actual output neuron rate to meet with or close to the target excitatory 

population rate 

84 3 

The highest steps taken for actual output neuron rate to meet with or close to the target excitatory 

population rate 

92 21 
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Table 8. Comparison of Spike Neuron Optimization Method 
Method Average error between actual and target output 

Maximum likehood optimization method 3.04% 

Deep Q Network (DQN) 0.96% 

Deep Q-Learning with Normalized Advantage Function (NAF) 0.80% 

 

 

Both proposed algorithms achieved lower average error between actual and target output compared 

to maximum likehood optimization method. The environment used in DQN and NAF are different with the 

maximum likehood optimization method as the custom environment of DQN and NAF is constructed with 

OpenAI Gym framework. The environment for DQN and NAF is customized in order to ensure both agents 

is capable to explore in the environment in order to optimize spike neuron. 

 

 

4. CONCLUSION 

Deep reinforment learning is proposed as a method to overcome the difficulty in SNN training due 

to non-differentiable of spike function of spike neuron. Deep Q network and Deep Q-learning with 

normalized advantage functions algorithms are proposed to balance the firing rate of excitatory and inhibitory 

population of a spike neuron. A spike neuron is trained in the custom environment with OpenAI Gym 

framework. Both algorithms able to interact with the custom environment with OpenAI Gym Framework to 

attain the goal. The average percentage error of rate of difference between target and actual output neuron 

firing rate for NAF and DQN algorithms obtained 0.80% and 0.96% respectively. In terms of steps taken for 

actual output neuron rate to meet with the target neuron firing rate, NAF achieved faster than DQN to meet 

the target neuron firing rate. The results proved that the algorithms able to explore in the custom environment 

to optimize the spike neuron. In future work, DQN and NAF algorithm can be used for further development 

to train a spiking neural network (SNN) since both algorithms are capable to explore in the custom 

environment with OpenAI Gym framework by using DRL to optimize a spike neuron. The developed SNN 

can be demonstrated in various types of applications such as playing game, classification, image recognition 

and so on. 
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