
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 10, No. 2, June 2021, pp. 265~272

ISSN: 2252-8938, DOI: 10.11591/ijai.v10.i2.pp265-272 265

Journal homepage: http://ijai.iaescore.com

Empirical study prove that breadth-first search is more effective memory

usage than depth-first search in frontier boundary cyclic graph

Al Refai Mohammed N.1, Jamhawi Zeyad2
1Department of Software Engineering, Zarqa University, Jordan

2Department of Computer Science, Zarqa University, Jordan

Article Info ABSTRACT

Article history:

Received Oct 5, 2020

Revised Feb 2, 2021

Accepted Feb 12, 2021

 Memory consumption, of opened and closed lists in graph searching

algorithms, affect in finding the solution. Using frontier boundary will reduce

the memory usage for a closed list, and improve graph size expansion. The

blind algorithms, depth-first frontier Searches, and breadth-first frontier

Searches were used to compare the memory usage in slide tile puzzles as an

example of the cyclic graph. This paper aims to prove that breadth-first

frontier search is better than depth-first frontier search in memory usage.

Both opened and closed lists in the cyclic graph are used. The level number

and nodes count at each level for slide tile puzzles are changed when starting

from different empty tile location. Eventually, the unorganized spiral path in

depth-first search appears clearly through moving inside the graph to find

goals.

Keywords:

Breadth-first search

Depth first search

Frontier boundary

Queue

Slide tiles puzzle

Stack

This is an open access article under the CC BY-SA license.

Corresponding Author:

Refai Mohammed

Department of Software Engineering

Zarqa University, Jordan

Email: refai@zu.edu.jo

1. INTRODUCTION

Various search algorithms complexities were considered in terms of time, space, and cost of optimal

path solution. Most of the previous work focused on heuristic search at A* [1] and IDA* [2]. The complexity

in the worst case in space required for breadth-first search (BFS) is O(bd), and depth-first search (DFS) is

only O(d) [3]. For acyclic graph as DFS need linear space in maximum search depth and expand more nodes

[4], but One limitation of BFS and DFS algorithms is that they expand and store all possible intermediate

nodes [5]. BFS uses too much space, where DFS, in general, uses too much time without guaranteed to find

the shortest path in solutions [3].

Frontier, Sparse, [6], [7] and Divide-and-Conquer [8] will reduce the space for a close list. It save

memory to increase the expand graph. When a problem is not fit in memory at cyclic graph or only contain a

small number of cycles in breadth first search algorthem [9], [10]. Divide-and-Conquer frontier search save

memory by storing only the open list and not the closed list as save in slow magnetic disk files to speed up

internal memory search. This is done by using delayed duplication detection to remove nodes duplication

[11]-[13]. At the same time, frontier reduces the size as a boundary in the search graph, that prevents

previously closed nodes from being revisited [14]. To breaks down behaviour of algorithm exploits problem

decomposition using search spaces [15] to improve search for breadth-first search and depth-first search.

This research will compare total memory usage at breadth first search [16], [17], [3] and depth-first

search [18], [17], [3] algorithms using frontier for an opening list and active closing list which use to detect

duplicate nodes. The useless close list nodes for detect duplicate will be removed from memory to magnetic

disk files because they only used to extract path when reaching the goal. The slide tile puzzles [5], [19]-[26]

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 2, June 2021: 265 – 272

266

sizes 2X4, 2X5, 3X3 used to compare the memory usage at the two algorithms with frontier search as cyclic

graph.

The main contribution for this research is to prove that breadth first frontier search (BFFS)

consumes less memory for an open list and close list than depth first frontier search (DFFS) in cyclic graph.

This fact for all nodes lists in all case study even when changing the empty tile location. The better

description for DFFS when moving in the domain as unorganized spiral way, at last, the graph shape is

changing, when the empty tile location change in the case study especially when the branch factor number

change.

2. RESEARCH METHOD

All the calculations at this paper consider the start node located at level one.

2.1. Generate BFFS scenario

The scenario to generate breadth first search use current list (CL), future list (FL), previous list (PL)

and final close list (NL) to save nodes. The first use list is CL to generate from each node all its related

nodes. If the new node is not in PL and FL, then it will be added to the FL in a unique order directly. When

finish passes through CL, the PL moves to NL, then CL moves to PL, then FL moves to CL, and FL became

empty to be filled in the next step. In the final level, the FL will be empty so PL and CL will move to NL.

As the CL sorted, the siblings visit in order at this paper, but this is not important as the results

related to levels. Table 1 display the BFFS lists and there uses. The using of NL is important to get all the

domain nodes and the path nodes if required. Otherwise, it can be neglected as the result of Zhou and Hansen

discovered the fact to use two levels for check is enough because it suffices to store a subpart of nodes that

forms a boundary between the frontier and interior of the explicit search graph [18]. The Algorithm-1 is the

pseudocode to generate all BFFS nodes as shown in Figure 1.

Table 1. BFFS lists and there uses
List Name List Description

FL Used to check duplication and used to add new unique nodes that not found here or in the previous list

CL Use its node to Generate new nodes that will add to the future list if not found on the previous list and future

list previously

PL Used to check duplication and move to the final list when raising to a new level
NL Save all list of the domain not used to detect duplicate nodes at search

Figure 1. The pseudocode to generate all BFFS nodes

2.2. Generate DFFS scenario

The scenario for DFFS nodes generating is more straightforward but less time-efficient compare to

BFFS, only use the open stack (OS), previous list (PL) and final list (NL). First pop the node from the stack

then generate its related nodes, any new node generated will be checked if not found in OS, and PL will be

added at the top of nodes in the OS; the popped node will be added to PL.

The pop from OS will be repeated until OS became empty, after all, available nodes popped, and no

new node added. The NL list will be explained in detail when discussing the removing useless nodes at

search from PL for DFFS. Table 2 displays DFFS lists and stack. The Algorithm-2 is the pseudocode to

generate all DFFS nodes as shown in Figure 2.

Int J Artif Intell ISSN: 2252-8938

Empirical study prove that breadth-first search is more effective memory usage… (Al Refai Mohammed N)

267

Table 2. DFFS lists and stack
List Name List Description

OS Used to pop nodes to generate its related new nodes and push the new unique nodes to it which not found at

the open stack and the previous list

PL The popped nodes from the open stack added to the list to check duplication when new node generated.

NL Save all useless nodes to detect duplicate nodes from the previous list when adding popped nodes.

Figure 2. Pseudocode to generate all DFFS nodes

2.3. Remove useless duplication detection nodes at DFFS

The discovery of the Zhou and Hansen to form a boundary between frontier and interior of the

explicit search graph [14] that used at BFS and then expand on BFFS by Korf and Zhong [7], is done on

DFFS at this research. Any node shall have an extra parameter for the count of all its related node. That

appears when generating related nodes named related count(RC). When the new corresponding nodes for the

popped node generated and added to the OS, if not found in it and the PL; the work will start at PL to extract

useless nodes to detect duplications. If the popped node and its new related node found at PL, the RC

parameter is reduced by one. At the same time RC for popped node reduced by one. If RC equal zero for the

popped node or its related nodes, that found at the previous list, then they can be removed from the previous

list and added to the final list.

Figure 3 shows the popped node E, if all the related node (D), (B), (H), and (F) are in the PL, then

RC will equal 0. So it can be moved to NL safely because no node at OS will reach to it directly and all its

related (D), (B), (H), and (F) found at the PL, that will not found or added to OS. The algorithm-4 is the

pseudocode to optimize PL for the popped node and its related as shown in Figure 4.

Figure 3. popped node E

Figure 4. pseudocode to optimize PL for the popped node and its

related

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 2, June 2021: 265 – 272

268

3. RESULTS AND DISCUSSION

3.1. Depth-first search path

The node that reaches from two paths at slide tile puzzle appears at level 7 for the first time; then it

appears many times. When all nodes at the domain for size 3x3 checked, it found that all nodes generate

scale from 12 nodes around, This fact leads to the way that depth-first search passes through the domain in a

non-organized spiral way which cut by local maxima and domain edges. Figure 5 displays Manhattan

distance that is similar to slide tile puzzle as they are cycle graph with different polygon which is four scales

for Manhatten distance and 12 scales for slide tile puzzles, so it is more straightforward. The local maxima

neglected to show the step of extract the domain in a spiral way. The priority to choose new node are left,

down, right and at last up.

The steps start from node A. Nodes B, D, F, and H pushed to stack. Then node H popped from the

stack for the next step, the nodes I, G, and W pushed to stack. Then W popped from the stack for the next

step and so on. The Table 3 shows the serial number of visit node, stack size and pushed nodes. It is noted

that the path moves to one of the edges, then starts rotating around the domain from left to right. Then it tried

to move inside the subdomain again. These steps repeated many times. The local maxima and the number of

generated nodes will complicate the moving path for slide tile puzzles. The maximum memory use for the

sample is nine nodes.

Figure 5. Manhattan distance

Table 3. Visit node serial and stack node
Serial Node Stack Status Stack Size

1 A B, D, F, H 4

2 H B, D, F, I, G, W 6

3 W B, D, F, I, G, X, V 7

4 V B, D, F, I, G, X, U 7
5 U B, D, F, I, G, X, T 7

6 T B, D, F, I, G, X, S 7

7 S B, D, F, I, G, X, R 7

8 R B, D, F, I, G, X, E, Q 8

9 Q B, D, F, I, G, X, E, P 8
10 P B, D, F, I, G, X, E, O 8

11 O B, D, F, I, G, X, E, N 8

12 N B, D, F, I, G, X, E, M, C 9

13 C B, D, F, I, G, X, E, M, L 9

14 L B, D, F, I, G, X, E, M, K 9
15 K B, D, F, I, G, X, E, M, J 9

16 J B, D, F, I, G, X, E, M, Y 9

17 Y B, D, F, I, G, X, E, M 8

18 M B, D, F, I, G, X, E 7

19 E B, D, F, I, G, X 6
20 X B, D, F, I, G 5

21 G B, D, F, I 4

22 I B, D, F 3

23 F B, D 2

24 D B 1
25 B 0

3.2. The case study nodes count and levels

If the domain calculated by permutation and remove the unreached node from the beginning node

for the case study, it will be the factorial of the node size divide by 2 [20]. The domain size and level for all

the case study when the empty space appears at all allowed locations displayed at Table 4. It’s noted that

domain size will not be affected by changing the location of empty space but it will affect the domain levels

as in some case decrease the maximum level by one especially when empty space at location with extra

branch factor; also count of nodes at maximum level is change for each case study as the empty space

location is change and maximum count appear when the empty space at location with four available move

locations.

Table 4. DFS & BFS sizes and levels
Slide tile puzzle Domain levels Domain count Max. level nodes count

Domain 2X4 36-37 20,160 1-4

Domain 3X3 31-32 181,440 2-148

Domain 2X5 55-56 1,814,400 1-12

Int J Artif Intell ISSN: 2252-8938

Empirical study prove that breadth-first search is more effective memory usage… (Al Refai Mohammed N)

269

The order of all nodes generated on levels for slide tile puzzle 2*4 on BFS as displayed in Figure 6

increase by time as CL size increase, until reach to the maximum size. Then start reduced until reach the

maximum level. This case appears for all slide tile puzzles chosen for the case study in this paper. The DFS

generation levels order display in Figure 7 is similar for various case studies as DFS reached quickly to one

global or local maximum nodes and then return back. So some deep nodes in the domain reached quickly

and, others may be reached at the end of the search. DFS passing through the domain in the non-organized

spiral way and when reaching local maxima or one of the global maxima return to the low level, then moving

up if the node not found at PL until finish the domain or find the solution.

Figure 6. BFS generation levels order

Figure 7. DFS generation levels order

3.3. The related count for each node

Each slide tile puzzle in the case study has tiles in different locations that have 2,3, and 4 related

nodes allow for movement. When the generation of all the nodes and count nodes with 2, 3 and 4 nodes, then

the results appear at Table 5.

Table 5. Related nodescounts
Slide tile puzzle Two related nodes Three related nodes Four related nodes

Domain 2X4 10,080 10,080

Domain 3X3 80,640 80,460 20,160

Domain 2X5 725,760 1,088,640

It appears that values calculated as In formula 1, Where C is related nodes counts, (A) is all domain

counts, (T) is all location at slide tile puzzle and N is the count of locations with specifically related nodes.

C=(A/T)*N (1)

3.4. The edge of slide tile domain

When taking any path from the start node to all last level nodes and check the domain edges to the

right and left from the path, the results will appear as in Table 6. It found that the domain edge is more than

half of the maximum level in the normal breadth-first search, and the maximum level count ratio compare to

all domain nodes decrease as the domain increase. It is 13.3 % for 3*3, 10.6 % in 2*4, and 9% in 2*5.

Table 6. Domain edge
Slide tile puzzle BFS edge level range Max. level count range Number of paths

Domain 2X4 26-28 2,135-2,185 20

Domain 3X3 26-28 24,095-25,956 164

Domain 2X5 40-41 163,345-170,499 36

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 2, June 2021: 265 – 272

270

3.5. The maximum open counts and levels

The open nodes at BFS as the previous scenario will be the size of pending CL nodes plus the FL at

any time, and the maximum level will be the future level. The max open nodes at DFS will be the size of OS,

and the maximum level will be the popped node from the OS. The Table 7 display the domain maximum

open nodes range and maximum level range for DFS and BFS when the Empty space location at all allow

places; Figure 8 displays the maximum open count for BFS and DFS as it appears in the table. When the

empty space location change then maximum open nodes in DFS and BFS levels change. The clear fact that

appears at the table is the open nodes at BFS for all the study cases are less than the open node at DFS at

worst cases for each of them. The maximum open nodes at DFS increase compare to BFS also increase when

the domain size increase. The maximum open nodes level appears at a different location for the BFS and

DFS.

Table 7. DFS and BFS max. open count and level
Slide tile puzzle BFS Max. Open DFS Max. Open

Count Range Levels Count Ranges Levels

Domain 2X4 2,011-2,063 25-26 4,391-4,440 22-25

Domain 3X3 24,049-25,134 23-25 42,682-42,923 17-29

Domain 2X5 133,477-135,599 36-38 375,210-375,728 26-37

3.6. The maximum close counts and levels

The close nodes at BFS as the previous scenario will be the size of used nodes at CL plus PL at any

time, and the maximum level will be the current level. The max open nodes at DFS will be the size of PL,

and the maximum level will be the popped node from the OS. Table 8 displays the domain maximum close

nodes ranges and the maximum level ranges for DFS and BFS when the Empty space location at all places

allow at the case study. Figure 9 displays the maximum close count for BFS and DFS.

Figure 8. Maximum open count for BFS and DFS

Figure 9. Maximum close count for BFS and DFS

Table 8. DFS and BFS max. close counts and levels
Slide tile puzzle BFS Max. Close DFS Max. Close

Count Range Levels Count Ranges Levels

Domain 2X4 3,875-3,957 26-27 6,917-6,969 10-21

Domain 3X3 44,271-44,959 25-26 66,774-67,006 21-28

Domain 2X5 262,640-265,105 38 650,907-652,425 23-42

As its appearance in the table when the empty space location change, the maximum close nodes at

DFS and BFS levels change. The clear fact that appears in the table is the closed nodes at BFS for all study

cases are less than the close node of DFS. The maximum close nodes increase the percentage at DFS

compare to BFS when the domain size increase. The maximum close nodes level appears at different location

for the BFS and DFS.

Int J Artif Intell ISSN: 2252-8938

Empirical study prove that breadth-first search is more effective memory usage… (Al Refai Mohammed N)

271

4. CONCLUSION

This research concentrated on the memory usage in DFS and BFS strategies with frontier boundaries

DFFS and BFFS. It clarified that presented count of nodes saved in memory, in the worst case for DFFS at

open list and previous list, consumed more memory than BFFS. In the open list, it consumed 38.478%, and

for the close list it consumed 43.229% in the case study. This allows expanding more nodes in the BFFS. The

DFFS has the advantage to pass through the different levels in the unsorted path compare to BFFS, especially

when the goal falls in deep location. The BFFS has an easy way to sort nodes and path optimality than DFFS,

which give it an extra advantage. DFFS pass in the domain in a non-organized spiral path. It will be better

than BFFS when the local maxima is reduced or eliminated in the domain as in acycle graph because it saves

expanded nodes for each level in the path. This model finds a fact of domain shape change for the number of

levels, and the number of nodes in each level when the empty space appears at a different location for the

start node. The recommendations for future work to apply these results in depth-first search with iterative

model and check expected results on other domains.

ACKNOWLEDGEMENT

This research is funded by the Deanship of Research in Zarqad University/Jordan

REFERENCES
[1] I. Pohl, “Practical and theoretical considerations in heuristic search algorithms,” in W. Elcock, D. Michie (Eds.),

Machine Intelligence, Vol. 8, Ellis Horwood, Chichester, pp. 55-72, 1977, Available:

https://www.researchgate.net/publication/243656112_Practical_and_theoretical_considerations_in_heuristic_search_

algorithms.

[2] R. E. Korf, M. Reid, and S. Edelkamp, “Time complexity of iterative-deepening-A*,” Artificial Intelligence, vol.

129, no. 1–2, pp. 199–218, 2001, doi: 10.1016/S0004-3702(01)00094-7.

[3] R. E. Korf, “Depth-first iterative-deepening,” Artificial Intelligence, vol. 27, no. 1, pp. 97–109, 1985, doi:
10.1016/0004-3702(85)90084-0.

[4] W. Zhang and R. E. Korf, "Depth-first versus best-first search: New results," in Proceedings 11th AAAI, pp. 769-

775, 1993, Available: https://www.aaai.org/Papers/AAAI/1993/AAAI93-115.pdf.

[5] G. Wang and R. Li, “DSolving: a novel and efficient intelligent algorithm for large-scale sliding puzzles,” Journal of

Experimental & Theoretical Artificial Intelligence, vol. 29, no. 4, pp. 809–822, 2017, doi:
10.1080/0952813X.2016.1259270.

[6] R. Zhou and E. A. Hansen, “Memory-bounded A* graph search,” in 15th Int. Florida Artificial Intelligence Research

Soc. Conf., 2002, pp. 203–209, 2002, Available: https://www.aaai.org/Papers/FLAIRS/2002/FLAIRS02-041.pdf.

[7] R. E. Korf, W. Zhang, I. Thayer, and H. Hohwald, “Frontier search,” in Journal of the ACM, vol. 52, no. 5, pp. 715–

748, 2005, doi: 10.1145/1089023.1089024.

[8] R.E. Korf, W. Zhang, “Divide-and-conquer frontier search applied to optimal sequence alignment,” in Proceedings

of the National Conference on Artificial Intelligence (AAAI), pp. 910-916, 2000, Available:

https://www.aaai.org/Papers/AAAI/2000/AAAI00-140.pdf.

[9] A. Auer and H. Kaindl, “A case study of revisiting best-first vs. depth-first search,” in Proceedings of the 16th

European Conference on Artificial Intelligence, pp. 141–145, 2004, Available:

https://dl.acm.org/doi/10.5555/3000001.3000032.

[10] D. E. Martin and G. Estrin, “Models of computational systems-cyclic to acyclic graph transformations,” IEEE trans.

electron. comput., vol. EC-16, no. 1, pp. 70–79, 1967, doi: 10.1109/PGEC.1967.264607.

[11] R. E. Korf, “Best-first frontier search with delayed duplicate detection,” In Proceedings of the National Conference

on Artificial Intelligence (AAAI-2004), pp. 650-657, 2004, Available:

https://www.aaai.org/Papers/AAAI/2004/AAAI04-103.pdf.

[12] R. Zhou, E. A. Hansen, “Structured duplicate detection in external-memory graph search,” in: Proceedings of the

19th National Conference on Artificial Intelligence (AAAI-04), San Jose, CA, 2004, pp. 683-688, 2004, Available:

https://www.aaai.org/Papers/AAAI/2004/AAAI04-108.pdf.

[13] Z. Zhang, J. X. Yu, L. Qin, and Z. Shang, “Divide & conquer: I/O efficient depth-first search,” in Proceedings of the

2015 ACM SIGMOD International Conference on Management of Data, 2015, doi: 10.1145/2723372.2723740.

[14] R. Zhou and E. A. Hansen, “Sparse-memory graph search,” in Proceedings of the 18th international joint conference

on Artificial intelligence, 2003, pp. 1259–1266, doi:10.5555/1630659.1630839.

[15] L. Otten and R. Dechter, “Anytime AND/OR depth-first search for combinatorial optimization,” in Lecture Notes in

Computer Science, Cham: Springer International Publishing, 2014, pp. 933–937, doi:10.1007/978-3-319-10428-

7_70.

[16] S. S. Skiena, The algorithm design manual, 2nd ed. London, England: Springer London, 2009, p 480.

[17] R. E. Korf, “Linear-time disk-based implicit graph search,” J. ACM, vol. 55, no. 6, pp. 1–40, 2008,

doi:10.1145/1455248.1455250.

[18] R. E. Korf. “Artificial intelligence search algorithms,” in Algorithms Theory Computation Handbook, CRC Press,

1999, Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.1135&rep=rep1&type=pdf.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.1135&rep=rep1&type=pdf

 ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 2, June 2021: 265 – 272

272

[19] K. B. Irani and S. I. Yoo, “A methodology for solving problems: problem modeling and heuristic generation,”

in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 676-686, Sept. 1988,

doi:10.1109/34.6776.

[20] Slocum. J and Sonneveld. D, “The 15 Puzzle,” Slocum Puzzle Foundation, 2006, ISBN-13: 9781890980153.

[21] D. Ratner and M. Warmuth, “The (n2−1)-puzzle and related relocation problems,” Journal of Symbolic Computation,

vol. 10, no. 2, pp. 111–137, 1990, doi:10.1016/S0747-7171(08)80001-6.

[22] R. E. Korf and L. A. Taylor, “Finding optimal solutions to the twenty-four puzzle,” in Proceedings of the thirteenth

national conference on Artificial intelligence - Volume 2, 1996, pp. 1202–1207, Available:

https://dl.acm.org/doi/10.5555/1864519.1864565.

[23] R. E. Korf and A. Felner, “Disjoint pattern database heuristics,” Artificial Intelligence, vol. 134, no. 1–2, pp. 9–22,

2002, doi:10.1016/S0004-3702(01)00092-3.

[24] W. W. Johnson, Notes on the ‘15’ Puzzle,” Amer. J. Math., vol. 2, no. 4, pp. 397-399, 1879, doi:10.2307/2369492.

[25] W. E. Story, “Notes on the ‘15’ Puzzle,” Amer. J. Math., vol. 2, no. 4, pp. 397-404, 1879, doi:10.2307/2369492.

[26] R. E. Korf and P. Schultze, “Large-scale parallel breadth-first search,” in Proceedings of the 20th national conference

on Artificial intelligence - Volume 3, 2005, pp. 1380–1385, Available:

https://dl.acm.org/doi/10.5555/1619499.1619555.

BIOGRAPHIES OF AUTHORS

Dr. Mohammed N. Al-Refai Chairman of Software Engineering Department in Zarqa

University Ph.D in Computer Science (Distributed Systems) Amman Arab University for

Graduate Studies 2007 Master Degree in computer science, al-albayt Univercity, almafraq,

Jordan, 1999- 2002. BS in Computer science, Mu’ta University, Alkarak, Jordan, 1988-92.

Dr. Zeyad M. Jamhawi Ph.D in Computer Information Systems (Artificial Intelligence),

Omdurman Islamic University, Sudan 2013-2016. Master degree in Computer Information

System, Arab academy for banking and finance, Amman, Jordan 2009-2012. Professional

Diploma specialization in E-Government. Jordanian University, Jordan 2007-2008. BS in

Computer science, Mu’ta University, Alkarak, Jordan, 1988-92.

https://www.sciencedirect.com/science/journal/07477171
https://dl.acm.org/doi/10.5555/1864519.1864565
https://dl.acm.org/doi/10.5555/1619499.1619555

