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 In the medical field, accurate classification of medical data is really 

important because of its impact on disease detection and patient’s treatment. 

Technology, machine learning, is needed to help medical staff to improve 

accuracy to classify disease. This research discussed some kernel functions, 

such as gaussian radial basis function (RBF) kernel, Polynomial kernel, and 

linear kernel with support vector machine (SVM) to classify thalassemia 

data. Thalassemia is a genetic blood disorder which is also one of the major 

public health problems. In this paper, there is an explanation about 

thalassemia, SVM, and some of the kernel functions that serve as a 

comprehensive source for the next research about this topic. Furthermore, 

there is a comparison result from three kernel functions to find out which one 

has the best performance. The result is gaussian RBF kernel with SVM is the 

best method with an average of accuracy 99,63%.  
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1. INTRODUCTION 

Thalassemia is one of the main public health problems with highly prevalent in the area extending 

from subSaharan Africa, through the Mediterranean region and Middle East, to the Indian subcontinent and 

East and Southeast Asia [1], [2]. However, migrations of people caused thalassemia genes to spread 

throughout the world and extend to Indonesia. There are 7% of the world's population as carriers of 

thalassemia with the death of about 50,000-100,000 children [3]. In Indonesia, thalassemia is one of the most 

common chronic diseases [4]. Currently, thalassemia ranks 5th among non-communicable diseases after heart 

disease, cancer, kidney, and stroke with the number of carriers 3.8% of the entire population in Indonesia. 

Based on data from the Indonesian Thalassemia Foundation, there has been a steady increase in thalassemia 

cases from 2012 until 2018 [3]. 

Thalassemia is a genetic disease because of blood disorders inherited from family. Thalassemia 

sufferers' body makes an abnormal form or an inadequate amount of hemoglobin [1], [5]. Hemoglobin allows 

red blood cells to carry oxygen [6]. When there is not enough hemoglobin, the body’s red blood cells do not 

function properly, and they die more quickly. And then, the oxygen delivered to all the other cells of the body 

is not enough.  

The cause of thalassemia is mutations in the DNA of cells that make hemoglobin [7]. Hemoglobin is 

made of two different parts, called alpha and beta. Therefore, there are two types of thalassemia, such as 

alpha-thalassemia or beta-thalassemia. According to [8], the new classification has been simplified based on 

the way of treatment namely non-transfusion-dependent thalassemia (NTDT) and transfusion-dependent 
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thalassemia (TDT). Because of differences in treatment, early detected thalassemia with a screening process 

is necessary to help thalassemia suffers to get the right treatment. The aim is to increase their life expectancy 

and reduce the risk of thalassemia to the next generation. Thus, it is important to obtain a precise thalassemia 

diagnosis. 

Nowadays, in healthcare, it is significant to invest the development in computer technology to 

enhance processing the medical data [5]. Machine learning technologies, one of computer technology, can 

help us in classification problems on large datasets. It has an important role because it can be applied in daily 

life such as biomedical data. However, there are several interesting challenges recently such as our data may 

come from multiple heterogeneous sources, our data may have a huge number of samples and require a 

method to understand the complex model, and our data may have few samples but lie in high dimension and 

is spatiotemporal. New developments in statistics and kernel methods is required to these challenges [9]. 

There are some methods on previous researches to classify thalassemia, such as fuzzy kernel robust 

C-means, fuzzy C-means, and fuzzy kernel C-means [4], neural networks and genetic programming [10], 

artificial intelligence algorithms [11], artificial neural network [12], and naïve bayes [13]. Also, [12], [14] 

used SVM that showed good result with 93.2% accuracy and 100% AUC respectively. 

This research used some of kernel functions with support vector machine (SVM) to classify 

thalassemia. SVM can be modified with various kernel functions, as an essential component, to get a better 

result. Therefore, a comparison between that essential component for classifying thalassemia should be done. 

It will help the medical staff to overcome the classification problems. This research discussed some of the 

kernel functions such as the linear kernel, polynomial kernel, and gaussian radial basis kernel. The aim is to 

find out which kernel function that gives the highest accuracy for classifying thalassemia in the SVM 

method. 

 

 

2. RESEARCH METHOD 

Support vector machines (SVM) is supervised machine learning. Originally, SVM algorithm 

proposed by Vapnik and Lerner [15], [16]. SVM can be applied for classification and regression [17], [18]. It 

claimed that SVM is a method that has a high accuracy for classification [19]. Mapping form input space to a 

higher dimensional space is the idea of SVM. SVM constructs a hyperplane to separate data into classes [20]. 

The selected hyperplanes are those that maximize the margin of classification edges [21].  

Let {𝑥𝑖 , 𝑦𝑖} 𝑖
𝑁 is the dataset where , 𝒙𝒊𝜖𝑅𝐷 is feature of vector, 𝑦𝑖  is class label for 𝑥𝑖, and N is the 

number of samples. To find the best hyperplane, this is main formula of support vector machines: 

 

 𝑓(𝑥)  =  𝒘 ∙  𝒙 +  𝑏 (1) 

 

That formula contains w (weight) as the orthogonal vector to the hyperplane determining its orientation, b 

(bias) as the distance from the origin to the hyperplan, and x indicates the training sample [22]. The aim is to 

maximize the margin.  

Moreover, SVM goal is construct the two planes, let say H1 and H2, as (2) and (3):  

 

𝐻1 ⟶  𝒘𝑇𝒙𝑖 + 𝑏 = +1 𝑓𝑜𝑟 𝒚𝑖 =  +1 (2) 

 

𝐻2 ⟶  𝒘𝑇𝒙𝑖 + 𝑏 = −1 𝑓𝑜𝑟 𝒚𝑖 =  −1 (3) 

 

where the plane for the positive class is 𝒘𝑇𝒙𝑖 + 𝑏 ≥ +1 is and the plane for the negative class is 𝒘𝑇𝒙𝑖 + 𝑏 ≤
−1. See Figure 1 illustrate the hyperplane in SVM. The problem of SVM optimization can be written as:  

 

Minimize 
1

2
‖𝑤‖2 (4) 

 

s.t. 𝑦𝑖  (𝒘𝑇  ∙  𝑥𝑖  +  𝑏 ) ≥  1, ∀𝑖 =  1, … , 𝑁  (5) 

 

By solving the problem above, formula of 𝒘 and 𝑏 can be written as:  

 

𝒘 = ∑ 𝑎𝑖𝑦𝑖𝒙𝒊
𝑁
𝑖=1   (6) 

 

 𝑏 =  
1

𝑁𝑠
∑ (𝑦𝑖 − ∑ 𝑎𝑚𝑦𝑚𝒙𝑚𝑚𝜖𝑆 )𝑖𝜖𝑆  (7) 

 

Then, decision formulas of SVM can be written as: 
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𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝒘 ∙  𝒙 +  𝑏) (8) 

 

 

 
 

Figure 1. Illustration of SVM [16] 

 

 

SVM has several advantages, such as its capability to process data with large amounts in high 

dimensions [23]. Also, SVM implemented easily using linear boundaries as shown in Figure 1. However, 

there are classification problems where can not using a linear boundary to separate classes [24]. See Figure 2, 

that case is non-linear separable data. The best way to approach a non-linear decision boundary is to expand 

the original feature space. Nevertheless, it makes computations intractable because the original feature is 

enlarged to high dimensional space. To tackle that issue, we applied the 'kernel trick' using a kernel function. 

 

 

 
 

Figure 2. Non-linear separable data [25] 

 

 

SVM classification performance closely relies on the kernel function [26]. Therefore, a kernel 

function is the most essential component to make the SVM method get higher accuracy [27]. When a task is 

difficult in the original problem space, kernel function helps to transform input space into another space 

where we can work easier [25]. On another word, kernel function work for transforming data into a higher-

dimensional space [28], [29]. Its approach is mapping data into kernel space where data become linearly 

separable [26]. 

The kernel function can be written as: 
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𝜅(𝑥𝑖 , 𝑥𝑗) =< 𝜑(𝑥𝑖), 𝜑(𝑥𝑗) > (9) 

 

Example, we construct lifting map 𝜑: 𝜒 →  ℋ with 𝜑: (𝑥1, 𝑥2) → (𝑥1
2 + √2𝑥1𝑥2 + 𝑥2

2). This map lifting the 

data from 𝜒 = ℝ2 to ℋ = ℝ3 [30]. Therefore, 𝜑 mapping data from dimensional space to feature space. 

The problem of SVM optimization will be as follows: 

 

Minimize
1

2
‖𝑤‖2 + C ∑ 𝜖𝑖

𝑁
𝑖=1    

 

s.t𝑦𝑖  (𝒘𝑇  ∙  𝜑(𝒙𝒊)  +  𝑏 ) − 1 + 𝜖𝑖 ≥  0, ∀𝑖 =  1, … , 𝑁  

 

By solving the problem above, formula of 𝒘 and 𝑏 will be as (10) and (11):  

 

𝒘∗ = ∑ 𝑎𝑖𝑦𝑖𝜑(𝒙𝒊)
𝑁
𝑖=1  (10) 

 

𝑏∗ =  
1

𝑁𝑠
∑ (𝑦𝑖 − ∑ 𝑎𝑚𝑦𝑚𝜑(𝒙𝒎)𝑚𝜖𝑆 )𝑖𝜖𝑆  (11) 

 

Then, decision formulas of SVM will be as (12):  

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝒘∗  ∙  𝜑(𝒙𝒊)  + 𝑏∗) (12) 

 

where 𝜖𝑖 is slack variable or measure of the misclassification errors which should be minimize. C is the 

penalty or determines the trade-off between the minimization of error and the maximization of the 

classification margin. 

In this research, authors proposed three kernels which applied for thalassemia classification: 

a. Gaussian radial basis kernel 

 

𝜅(𝑥𝑖 , 𝑥𝑗) = exp
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2  (13) 

 

Wheres 𝜎 is the only parameter that defines width kernel. Its impact to close or far a single training 

sample reaches. Also, σ can defined as the radius of influence of samples which is affected by the 

classification model. From research in [16], a small σ indicates the width of the kernel is small so the model 

focuses on a small set of data and the new hypersurface will be spiky. It may leads to an overfitting problem. 

The opposite, a high σ increases the kernel width and then most of the data are transformed into a flat 

hyperspace which leads to the underfitting problem. 

b. Polynomial kernel 

 

𝜅(𝑥𝑖 , 𝑥𝑗) = (< 𝑥𝑖 , 𝑥𝑗 > +1)
𝑑
 (14) 

 

Wheres d is degree of polynomial kernel function. From research in [16], high degree would 

increase the complexity of the classification model. It can be seen as overfitting problem because testing error 

increases but training error decreases. The opposite, with a small d may leads to a high bias and low variance 

or underfitting problem. 

c. Linear kernel: 

 

𝜅(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 (15) 

 

This kernel function is the simplest kernel function which the results of learning algorithms are 

often equivalent to SVM without kernel functions [16]. By comparing these kernels, the expectation is we 

know which kernel gives the highest accuracy. To calculate the accuracy, a confusion matrix is used. The 

formula for accuracy is: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+ 𝑇𝑁+ 𝐹𝑃+ 𝐹𝑁
 (16) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑃
 (17) 
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𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 (18) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙
 (19) 

 

𝑇𝑃: Number of samples having thalassemia classified correctly. 

𝐹𝑃: Number of healthy people that were incorrectly classified to thalassemia. 

𝐹𝑁: Number of samples with thalassemia that were incorrectly classified as healthy. 

𝑇𝑁: Number of healthy individuals correctly spotted. 

 

 

3. RESULTS AND DISCUSSION 

In this paper, thalassemia data received from Harapan Kita Children and Women's Hospital, 

Indonesia, and it consist of 150 samples. The dataset of thalassemia represented by 10 variables such as 

Hemoglobin (𝑔/𝑑𝐿), Haematocrit Percent (%), Leukocyte Count (103/𝜇𝐿), Basophils Percent (%), 

Eosinophils Percent (%), Rod Neutrophils Percent (%), Segment Neutrophils Percent (%), Lymphocytes 

Percent (%), Monocytes Percent (%), and Platelet Counts (103/𝜇𝐿). By default authors utilized the Shapiro-

Wilk algorithm to assess the normality of the distribution of instances with respect to the feature. A barplot as 

shown in Figure 3, is then drawn showing the relative ranks of each feature. Platet Counts has the highest 

ranking.  

 

 

 
 

Figure 3. Ranking of thalassemia data features with saphiro algorithm 

 

 

This research used training data diverse from 10% to 90% and used 𝜎 = 0.1 for Gaussian RBF 

kernel and d=3 for polynomial kernel. The reason is, from the number of the experiment that is obtained,  

𝜎 = 0.1 and d=3 has the best performance. This chosen 𝜎 = 0.1 is also supported by [16]. 

It is shown in Table 1, the SVM model with a gaussian radial basis function kernel produces the best 

accuracy for classifying thalassemia data with an average of accuracy 99.63%. The second-best is a linear 

kernel with 98.23% accuracy. The last one is a polynomial kernel with 97.9% accuracy. Linear kernel SVM 

has the best accuracy of 100% with 10% and 30% training data. On the other side, the polynomial kernel has 

the best accuracy of 100% if the model uses 10-30% and 50% training data. And for gaussian radial basis 

function gives the best accuracy with 10-50%, 70%, and 80% training data. For F1 Score, gaussian radial 

basis still the best one. In Table 2, the gaussian radial basis kernel gives the best performance with an average 

precision of 99.56% and an average recall of 99.78%. However, there is a difference in second place between 
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precision and recall. SVM linear is in second place for precision, while for recall SVM polynomial is in 

second place. 

 

 

Table 1. The accuracy and F1 score of SVM with kernel function 

Training 

Data 

Accuracy  F1 Score  

SVM 

Linear 

SVM 

Polynomial 

SVM 

Gaussian 

SVM 

Linear 

 SVM 

Polynomial 

SVM 

Gaussian 

10% 100.00 100.00 100.00 100.00 100.00 100.00 

20% 96.67 100.00 100.00 96.00 100.00 100.00 

30% 100.00 100.00 100.00 100.00 100.00 100.00 

40% 98.00 96.67 100.00 98.00 96.00 100.00 

50% 98.67 100.00 100.00 99.00 100.00 100.00 

60% 98.89 97.77 98.89 99.00 98.00 99.00 

70% 97.14 96.19 100.00 98.00 96.00 100.00 

80% 99.16 97.5 100.00 98.00 100.00 100.00 

90% 95.56 93.33 97.78 97.00 93.00 99.00 

Average 98.23 97.94 99.63 98.33 98.11 99.78 

 

 

Table 2. The precision and recall of SVM with kernel function 

Training 

Data 

 Precision   Recall  

SVM 

Linear 

 SVM 

Polynomial 

SVM 

Gaussian 

SVM 

Linear 

SVM 

Polynomial 

SVM 

Gaussian 

10% 100.00 100.00 100.00 100.00 100.00 100.00 

20% 100.00 100.00 100.00 93.00 100.00 100.00 

30% 100.00 100.00 100.00 100.00 100.00 100.00 

40% 100.00 100.00 100.00 95.00 94.00 100.00 

50% 98.00 100.00 100.00 98.00 100.00 100.00 

60% 100.00 100.00 100.00 98.00 96.00 98.00 

70% 95.00 95.00 100.00 98.00 98.00 100.00 

80% 100.00 100.00 100.00 94.00 96.00 100.00 

90% 100.00 97.00 96.00 95.00 92.00 100.00 
Average 99.22 99.11 99.56 96.78 97.33 99.78 

 

 

Authors also used other machine learning, such as KNN with k=7 and random forest. The result is 

90% accuracy from KNN and 100% accuracy from random forest. Nevertheless, SVM with some of the 

kernel functions still give the highest accuracy, 100%, so it can be said that SVM performed the best machine 

learning method to classify thalassemia.  

 

 

4. CONCLUSION 

Machine learning can help medical staff to classify thalassemia disease precisely. If early detection 

is done, patients can get the right treatment. It helps them increase their life expectancy and reduce the risk of 

thalassemia to the next generation. In this research, there are three kernel functions used in SVM with linear, 

polynomial, and gaussian radial basis function kernel. Kernel function can help SVM to transform input 

space into a higher-dimensional space where we can work easier. 

From this research, support vector machine with gaussian RBF kernel is the best one to classify 

thalassemia data from Harapan Kita Children and Women's Hospital, Indonesia. We can see in Table 1, each 

kernel performs the highest accuracy. However, if we see the average accuracy, gaussian RBF is the best one 

with an accuracy of 99.63%. The second-best is a linear kernel with 98.23% accuracy. The last one is a 

polynomial kernel with 97.9% accuracy. Besides that, the gaussian radial basis also gives the highest F1 

score of 99.78%. Also, in Table 2, the gaussian RBF kernel has the highest average of precision and recall 

with 99.56% and 99.78% respectively. For future research, use a larger dataset is recommended to generate 

higher accuracies in each method. Also, we believe that future research can develop this method to give the 

best accuracy for predicting or classifying other diseases. 
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