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1. INTRODUCTION

Combinatorial optimization problems (COPs) are a subset of mathematical optimization problems
that are used in different fields, regardless of whether the structure is complex or simple. Various functional
problems, such as the traveling salesman problem (TSP), the assembly line balancing problem, the shortest
path tree, and the minimum period tree, can be classified as COPs. TSP is commonly used to assess the
efficiency of recently designed approaches to COPs and of those relevant to many significant fields, such as
engineering, logistics, and transport. TSP is an NP-hard problem following a Hamiltonian cycle with minimal
expense [1], [2]. In the TSP principle, the vendor begins from one city, visits all other cities precisely once
upon a time, and returns to the beginning city seeking to get a closed tour with lowest expense. The tour
expense depends directly on the tour length [3], [4]. Many researchers have suggested solving TSP, with its
simple description and very complicated solution. Initially, exact and approximate (heuristic or
metaheuristic) approaches were developed to resolve TSP [5], [6]. Exact methods can solve small TSPs
optimally. By contrast, heuristic methods are preferable for large TSPs. Moreover, certain greedy, principle-
based algorithms may be used to solve TSP. However, conventional approaches lead to exponential time or

Journal homepage: http://ijai.iaescore.com


https://creativecommons.org/licenses/by-sa/4.0/

14 a ISSN: 2252-8938

unsatisfactory quality. To beat these shortcomings, many metaheuristic algorithms in the literature have been
developed for TSP due to the importance of accomplishing improved solutions in realistic computing time

[7].

Meta-heuristic algorithms can be classified into two major groups; single-based solution and
population-based solution [6], [8], [9]. The ability of meta-heuristic algorithms to address optimization
problems, such as TSP, relies on two elements: exploitation and exploration. Exploration refers to the
research within the search space of unvisited regions, whereas exploitation refers to the search in the existing
problem space regions for good solutions [10]-[12]. Single-based algorithms, including variable
neighborhood search [13], simulated annealing [14], and guided local search [15], aim to improve a single
candidate solution. By contrast, population-based algorithms maintain and enhance candidate solutions, often
using population features to conduct direct search; such algorithms include biogeography-based optimization
[16], grey wolf optimizer [17], particle swarm optimization (PSO) [18], emperor penguin colony [19],
genetic algorithm (GA) [20], ant colony optimization (ACO) [21], black hole (BH) algorithm [22], and
dragonfly algorithm (DA) [23]. In recent years, studies on plants have demonstrated that plants display
intelligent behavior. Consequently, plants are believed to have a nervous system [24]. Examples of plant
intelligence algorithms include the sapling growing up algorithm [25], rooted tree optimization [26], runner
root algorithm [27], and strawberry algorithm as plant propagation algorithm (PPA) [28].

PPA was initially suggested by [28] to solve numerical problems; it emulates the survival technique
adopted by plants, in which they survive by colonizing new areas with good growing conditions. The
strawberry plant has a survival of sustainability and growth that send short runners to exploit the quest for
good solutions in existing problem space regions and send long runners in the search space to explore
unvisited regions. In [29], studied PPA to solve TSP and showed that PPA can produce better solutions than
other algorithms. However, applying a deterministic local search based on 2-opt and k-opt takes exponential
time to find an optimal solution; moreover, when this occurs slows down its convergence speed, simply
because there may be a deficiency of diversity in certain solutions which leads not to thrust the algorithm
towards optimal regions. Consequently, to ensure better convergence, and make the algorithm have solution
diversity in both local and global search. This present study implements a crossover operation and three
mutation operations (flip, swap, and slide) in PPA and the proposed termed as partial-partitioned greedy
algorithm (PPGA). The main contribution of a scientific study is to improve PPA for solving TSP using
TSPLIB and produce a promising variant of PPA. The proposed algorithm PPGA is evaluated using 10 TSP
datasets (with different sizes and complexities) selected from traveling salesman problem library (TSPLIB).
The proposed PPGA is also compared with five metaheuristic algorithms: ACO, PSO, GA, BH, and DA. The
main advantage of PPGA is the ability to find an ideal or near-ideal solution in a short time.

This paper is structured being as: section 2 explains the mathematics of TSP. Section 3 provides the
literature review. Afterward, section 4 discussed the proposed PPGA methods. Section 5 and 6 explores the
experimental results, performance evaluation, and benchmark datasets used in this study are presented.
Lastly, section 7 the conclusions and recommendations for potential future research are given.

2. TRAVELING SALESMAN PROBLEM

The importance of TSP is attributed to the detailed studies and high guidelines of computer
scientists for it to be included in the assessment of modern optimization algorithms. This problem has been
shown to be an NP-hard problem. It can be defined being as: An agent must visit N nodes exactly once and
return at the starting node at the lowest expense, i.e., lowest time of visitation or the shortest distance. A cost
matrix C = [c;;] is explored to obtain a permutation 7 : {0,...,N — 1} — {0, ..., N — 1}, where c;; shows
the expense of visiting node (j) from node (i). The aim is to reduce an objective function represented by f (,
C) as shown in (1):

N-1
f(m@ C) = Z d (Ca(), Ca(i+1)) + (Ca), Cn)) (1)
i=0
where (i) shows the i®" node in permutation 7, d is the distance between nodes and ¢;j=¢;; V¥ i, j and the
position of city (i) can be verified by utilizing the values of the x-axes, and y-axes, i.e., X; and y; sequentially.

3. LITERATURE REVIEW
Various algorithms, including single and hybrid algorithms, for TSP have been developed. In [30]
proposed a hybrid approach using PSO to improve ACO performance parameters. In addition, a 3-opt local
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search was endowed to the proposed approach to enhance local search. However, the proposed algorithm has
many operations that consume additional time in improving the same search regions to determine the best
improvement. In [31] solved the issue of unstable nature instance problem by providing ACO with a local
search operator. This operator iteratively chooses the best solution found by the algorithm and then continues
to remove or insert cities to improve the solution quality. Nonetheless, using multi-operator in local search
may radically increase the computation time or reduce their performance. GA has been implemented by
several researchers for TSP. In [32] proposed the use of GA to resolve the challenging large-scale colored
balanced TSP. nevertheless, the proposed next generation access (NGA) algorithm should demonstrate good
performance in terms of solving speed or solution quality.

In accordance with [33] studied a hybrid metaheuristic algorithms address TSP based on simmulated
annealing (SA) and the symbiotic organisms search. The possible challenge of the proposed algorithm can be
found to a few considerations, the proposed algorithm includes the use of several parameters. Additionally,
increasing the problem complexity, the configuration of the algorithm is linked to it. In another related work
[34] studied on improving the performance of the SA by using a greedy search to deal properly with large-
scale TSP. However, the proposed algorithm stuck in local optima. This is because the SA utilizes a greedy
acceptance criterion that only takes an optimized solution and excludes the worst solution. The probabilistic
TSP was solved in multiple trials in [35] through an adaptive multiswarm PSO. In the suggested adaptive
PSO, random values are allocated in the initial stage of the search. Next, these parameters are configured
dynamically at the same time as the objective function of the problem is optimized. Nonetheless, the search
process lacks feedback information and learning due to having less values of parameters to optimize. In [36]
strengthened PSO to solve the imprecise cost matrix TSP. The PSO modifications consist of the adoption of
the swap series, the swap process, and the guidelines for various speed updates. Nonetheless, several methods
have been used in the proposed algorithm which affects to take additional time to get the best improvement.
In [37] proposed a hybrid between firefly algorithm (FA) and GA; here, the distance of the FA is redefined
by presenting two swap methods to prevent dropping into local optima. The created population which has
poor solutions that could lead to long-term convergence to an ideal solution.

According to [38] investigated the BH algorithm to solve TSP. The implementation of the BH
algorithm was assessed on 10 datasets and the outcomes in comparison with other optimization techniques.
The computational results showed that the BH algorithm can provide solutions better than ACO, GA, and
PSO. However, The BH algorithm still lacks the capability to perform high exploration during the update
process. Due to a new solution is produced randomly when the previous solution is not improved.
Furthermore, a similar study was conducted in [39] to investigate the DA on solving TSP. PPA has been
investigated to work on discrete problems, specifically on TSP [29]. The research concerns the usage of the
idea of long and short runners in maximum graphs while looking for Hamiltonian cycles. The performance of
the PPA algorithm was tested on a traditional dataset and compared with that of PSO SA, GA, and FA.
Experimental results were included; however, the performance of the algorithm in solving TSP must be
further investigated and compared with that of other optimization methods. Besides, the PPA algorithm
suffers from slows down its convergence speed, simply because there may be a deficiency of diversity in
certain solutions which leads not to thrust the algorithm towards optimal regions.

4. PROPOSED PARTIAL-PARTITIONED GREEDY ALGORITHM FOR TRAVELING
SALESMAN PROBLEM
PPGA randomly begins with the initial population of plants/tours/solutions and iteratively
improvises solutions for a given problem instance. In each iteration, PPGA improvises solutions by using
short and long runners. The PPGA algorithm proceeds as:

4.1. Initial population

The initial population is a collection of an ordered list of plants where every plant represents a
sequence of cities. X; is tour i, i=1, . . ., NP, implying that NP is the plant population size. In accordance with
the Euclidean distance, tour lengths X, are calculated. Each city of plant is assigned a label of city such that
no city can be seen twice in the same plant. TSP tour representation primarily has two strategies: adjacency
and path. In this study, path representation is chosen for a tour. As shown in Figure 1, let {A, B, C, D, E} be
the labels of cities where A is the starting point.

‘A[B[C[D[E[A]

Figure 1. Plant/tour
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4.2. Short runners (exploitation task)

A pre-determined tour set is taken from the ones that had short-length tours after sorting the tours by
their tour lengths; from these tours, short runners are sent, i.e., new local tours are produced from them.
Crossover is the synthesis of the two tours to create new tours that are copied into the new tours. The
crossover operation, which utilizes the crossover simplest case, randomly chooses two tours to crossover,
randomly picks a crossover point on the basis of (2), and then changes all cities after that point.

CPipn=r.(Lin —2)+1 )
where CP shows the crossover point, r € [0, 1] is a randomly selected index, and L is the size of plants.

4.3. Long runners (exploration task)

Long runners are implemented by using three mutation operations (flip, swap, and slide). To explain
the flip, swap, and slide operations, A, B, C, D and E are considered cities in the tour visited in sequence
{A—B—C—D—E}. The operation structures produced are presented as:

—  Flip: Orders the cities vice versa from the last city to the first city; the new sequence is {A - E - D —
C — B}.

—  Swap: Swaps two cities in the tour, where B and E are exchanged the new sequence is {A—E — C —
D — B}.

—  Slide: Slides two cities (B and C) after all the other cities’ positions; the new sequence is {A— D — E
— B — C}.

PPGA started with a good population of tours (plants). The initial population diversity is supposed
to be created by random methods utilized to create tours. Therefore, short runners conduct the exploitation
process, and long runners control the exploration process in the search space. Figure 2 shows the pseudo-
codes of the PPGA algorithm.

PPGA Algorithm
1. Create a population P= X, i =1, . . ., NP of valid tours; select values for Gumx and v.
2Z.g=1
3. while g < gmx do
4. Calculate N; = £ (%), V Xs € P
5 Sort N=1N;,, i =1, . . ., NP in ascending order (for minimization);
[ for i = 1: E (NB/10), Top 10 % of plants do
7 Create (y/ i) short runners and select two random plants i..i+1 apply crossover
operator, where y
is an arbitrary parameter.

B. if Njj41 > £ (1541 ) then
S. Xiit1 = Tuin

10 else

11. Ignore 14

12. end if

13. end for

14. for i = E (NBE/10) + 1: NP do

15. r; = 1 runner for plant i using random mutation operator, mutation operator = 3, 1 long
runner for each plant not in the top 10 percent
16. if N; » £ (r;) then

17. X~ 1y

18. else

19. Ignore 1;

20. end if

21. end for

22.end while

Figure 2. Pseudo-codes of the PPGA algorithm

5. EXPERIMENTAL SETUP

This section presents the performance and robustness of PPGA in solving TSP. Two experimental
results are used. The first experiment PPGA against discrete PPA. In the second experiment, the proposed
PPGA is compared with five population-based algorithms, i.e., ACO, PSO, GA, BH, and DA. The proposed
PPGA is tested on 10 benchmark TSP datasets with diverse characteristics taken from TSPLIB [3]. Choosing
different instance structures provides great insights into the behavior of the proposed algorithm when
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addressing TSP. Figure 3 simplifies one type of TSP instances extracted from the TSPLIB benchmark

library.

NAME: ulyssesZ2.tsp

TYPE: TSP

COMMENT: Odyssey of Ulysses
DIMENSION: 22
EDGE_WEIGHT_TYPE: GEO

NODE COCERD SECTION
38.24 20.42

(Groetschel/Padberg)

DISPLAY DATA TYPE: COORD_DISFLAY

Figure 3. Sample structure of the Ulysses22 dataset

In all datasets, n nodes reflect unique positions in specific towns, e.g., Berlin. The first five lines
provide some details, such as the data type (including Euclidean, geographical or other forms of data) about
the problem being discussed. The keyword TYPE defines the category of data, e.g., symmetric, asymmetric,
or tour set. The keyword DIMENSION is the number of nodes for TSP datasets. The keyword EDGE
WEIGHT TYPE determines how the edge weight is described, e.g., the keyword EUC 2D is the Euclidean
distance in the plane, whereas GEO is the geographical distance. The node coordinate part starts with the
keyword NODE COORD_ SECTION. The node identifier, x and y coordinates are made up of every line.
The identifier of the node is a unique integer > 1. Table 1 summarizes the statistics for several TSP instances.

Table 1. Description of some TSP instances

Data name Location
ulysses22 Groetschel/Padberg

bays29 Groetschel, Juenger, Reinelt
bayg29 Groetschel, Juenger, Reinelt
att48 Padberg/Rinaldi

eil51 Christofides/Eilon

berlin52 Berlin (Germany)

st70 Smith/Thompson

eil76 Christofides/Eilon

gro6 Europe

eil101 Christofides/Eilon

The proposed PPGA algorithm is implemented in the programming environment MATLAB 2020a
and executed in an Intel ® Core™ i5 CPU, 2.40 GHz, 4 GB RAM memory, and Windows 7. Each test is
conducted of five independent runs. The maximum number of generations (gmax) and population size are set
to 200 and 100, respectively, for the proposed PPGA algorithm.
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6. EXPERIMENTAL RESULTS

The experimental results of the proposed PPGA is compared with PPA, as shown in Table 2. The
best, worst, average, standard deviation (Std), and time (in seconds) are listed for each algorithm. Table 2
compares the results of the proposed PPGA against PPA for ten various datasets TSP. All the problems have
been run five times independently.

Table 2. Comparison of PPGA against PPA

Dataset Algorithm Best Worst Average Std Time
ulysses22  PPA 66.81 84.16 73.33 6.92 1.05
PPGA 75.30 76.58 75.92 0.56 4.86
bays29 PPA 9883.32  10504.77  10257.19 265.89 1.06
PPGA 9105.87 9764.46 9311.17 287.96 6.44
bayg29 PPA 9253.00 10823.40  10070.52 763.67 1.06
PPGA 9120.33 9568.70 9318.19 178.09 2.57
att48 PPA 42308.39  47767.24  44816.51 2020.77 1.09
PPGA 33961.11 34581.00 34585.88 495.81 9.33
eil51 PPA 504.75 604.33 535.98 39.11 1.10
PPGA 444.03 458.42 450.39 5.20 9.91
berlin52 PPA 8971.38  10420.33 9864.75 537.23 111
PPGA 7748.63 8359.85 8190.14 261.48 10.00
st70 PPA 924.72 1125.70 1045.35 74.88 1.10
PPGA 714.36 804.27 770.25 3471 13.14
eil76 PPA 740.36 841.25 786.78 44.17 1.16
PPGA 586.47 632.15 604.68 17.33 14.35
gro6 PPA 1014.70 1067.18 1038.06 21.55 1.17
PPGA 634.36 721.80 670.88 34.65 17.92
eil101 PPA 1066.95 1194.35 1137.02 60.34 1.20
PPGA 774.68 835.36 796.48 27.11 18.85
Average PPA 7473.43 8443.27 7962.54 383.45 111
PPGA 6316.51 6580.25 6477.39 134.29 10.73

According to the results in Table 2 column 3, the proposed PPGA algorithm achieved nine out of ten
datasets, which means 90% better than PPA in terms of best distance. The average comparison was shown in
the lower section of the table. Table 2 results indicate that PPGA was better than PPA, according to the
average tour costs and the average standard deviation for all datasets shown in column five and six. For the
ten selected datasets, the average cost of touring PPGA was 6477.39. The achieved average tour costs for
PPA was 7962.54. According to Table 2, this result is due to the improvement process achieved by the
crossover and three mutation operations (flip, swap, and slide) which overcome the problem of slows down
its convergence speed, and deficiency of diversity in discrete PPA.

Owing to the fact that there are a vast number of articles suggested for TSP in the literature, this
study selected the algorithms that were recently published and those that obtained the best outcomes using
the same datasets in the experiment to be compared with them in this study. The proposed PPGA is compared
with five algorithms that are available in the literature: i.g., ACO, PSO, GA, and BH by [38] and DA
proposed by [39]. The computational results are presented in Table 3. The best, worst, average, standard
deviation (Std), and time (in seconds) are stated for each algorithm in Table 3.

Table 3 illustrates data showing that PPGA obtains the best results in six datasets out of 10 datasets,
which means 60% better than ACO. PPGA outperforms PSO, GA, and DA in all 10 datasets. PPGA also
achieves better outcomes in 5 datasets and equal results in one dataset than BH. Small values demonstrate the
best solutions obtained and vice versa. In addition, for each algorithm, the Std on various runs is given to
demonstrate algorithm efficiency and stability. A description of the average comparison is shown in the
lower part of the table. Along with the results given in Table 3, the average tour costs in column five for all
the datasets prove that PPGA is better than ACO, PSO, GA, BH, and DA. Based on the results in Table 3, the
proposed PPGA algorithm superiority other algorithms in some data and rival in other data this is due to the
improvement process achieved in PPGA by the crossover and three mutation operations (flip, swap, and
slide). Where crossover and three mutation operations (flip, swap, and slide) have a responsibility in the
balance between exploitation and exploration. The average tour cost for PPGA is 6477.39 for the selected ten
problems. The accomplished average tour costs for ACO, PSO, GA, BH, and DA are 7089.73, 8307.81,
7661.78, 6546.42, and 6994.93, respectively. Moreover, the standard solution deviation achieved by the
PPGA algorithm is slightly worse than DA, but better than ACO, PSO, GA, and BH. This result implies that
in seeking optimal solutions, the PPGA algorithm is more efficient and robust, whereas other algorithms such
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as ACO, PSO, GA, and BH may be stuck in local optimal solutions. Finally, the proposed PPGA algorithm
achieved a better average execution time than other optimization algorithms.

Table 3. Comparison of PPGA versus other algorithms

Dataset Algorithm Best Worst Average Std Time

ulysses22 ACO 75.39 75.84 75.48 0.19 84.27
PSO 75.91 77.18 76.21 0.55 61.87

GA 75.77 76.44 75.98 1.23 63.39

BH 75.30 75.93 75.68 0.34 50.44

DA 76.82 80.93 77.83 1.16 21.00

PPGA 75.30 76.58 75.92 0.56 4.86

bays29 ACO 9239.19  11014.44 9823.20 722.41 88.25
PSO 9120.33 9498.17 9195.90 168.97 88.82

GA 9751.42 1051391  10015.23 319.87 57.11

BH 9396.47 9507.17 9463.25 60.95 52.10

DA 9387.03 9611.78 9480.29 64.96 22.00

PPGA 9105.87 9764.46 9311.17 287.96 6.44

bayg29 ACO 9447.49  11033.54 9882.21 675.83 99.95
PSO 9329.25  11332.72 9947.02 799.40 75.29

GA 9579.12  10411.19 9771.95 127.11 56.16

BH 9375.44 9375.44 9375.44 0.00 45.87

DA 9464.41 9704.98 9547.75 64.75 22.00

PPGA 9120.33 9568.70 9318.19 178.09 2.57

att48 ACO 35230.90 46204.24  39436.18 4874.29 133.45
PSO 36996.44  61421.99 47018.41 9685.89 84.73

GA 3531251 50671.45  43620.63 2004.00 57.35

BH 34200.86  35528.51  34473.84 589.80 43.21

DA 37225.85 38683.21  37759.73 425.69 23.00

PPGA 33961.11 34581.00 34585.88 495.81 9.33

eil51 ACO 454.38 469.05 461.01 6.29 59.19
PSO 469.15 737.52 574.80 107.23 57.25

GA 448.83 462.11 453.47 9.41 59.63

BH 437.89 526.89 458.92 38.63 44.39

DA 471.56 491.65 475.16 4.51 23.00

PPGA 444.03 458.42 450.39 5.20 9.91

berlin52 ACO 7757.02  10541.12 8522.90 1152.2 65.07
PSO 9218.46  14279.43  11089.52 2067.93 68.64

GA 8779.75 9565.37 9288.44 1301.21 52.73

BH 8188.07 9356.74 8455.83 508.98 43.40

DA 9400.75 9610.15 9486.70 72.54 23.00

PPGA 7748.63 8359.85 8190.14 261.48 10.00

st70 ACO 711.65 855.20 757.75 59.60 94.56
PSO 1030.84 1756.12 1321.81 269.27 55.28

GA 1112.30 1242.20 1158.84 52.17 55.09

BH 723.26 1081.10 797.57 125.22 45.33

DA 797.47 887.08 839.01 24.28 29.00

PPGA 714.36 804.27 770.25 34,71 13.14

eil76 ACO 574.24 665.99 594.14 40.21 61.74
PSO 804.26 1195.90 975.63 152.40 56.76

GA 619.22 679.78 652.05 122.09 46.69

BH 566.24 925.84 659.10 152.17 46.54

DA 624.92 674.48 644.89 13.03 30.00

PPGA 586.47 632.15 604.68 17.33 14.35

groé ACO 555.75 639.91 580.54 33.93 84.38
PSO 1095.11 1728.82 1378.86 247.50 56.21

GA 737.96 748.35 742.42 4.32 63.24

BH 546.83 1197.87 807.24 258.81 43.58

DA 671.00 836.00 734.05 47.26 40.00

PPGA 634.36 721.80 670.88 34.65 17.92

eil101 ACO 725.09 868.20 763.92 59.96 89.63
PSO 1158.70 1973.81 1499.99 319.74 62.09

GA 828.88 854.43 838.83 9.96 55.18

BH 720.38 1249.86 897.38 210.14 45.83

DA 812.80 997.60 898.52 47.90 36.00

PPGA 774.68 835.36 796.48 27.11 18.85

Average ACO 6477.11 8236.75 7089.73 762.49 86.04
PSO 6929.84  10400.17 8307.81 1381.88 66.69

GA 6724.57 8522.52 7661.78 395.13 56.65

BH 6423.07 6882.53 6546.42 194.50 46.06

DA 6893.26 7157.78 6994.93 76.60 26.9

PPGA 6316.51 6580.25 6477.39 134.29 10.73
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7. CONCLUSION

For several decades, the creation of intelligent behavior in plants to solve complex problems has
been an important research area. In this study, discrete PPA is improved to solve COPs, particularly the TSP.
The algorithm is evaluated on ten benchmark datasets and compared with five common algorithms in the
literature to determine the efficacy of the proposed PPGA algorithm for solving TSP. The experimental
results indicate that, relative to ACO, PSO, GA, BH, and DA, the PPGA algorithm can yield high-quality
solutions. Moreover, the experimental results demonstrate that PPGA considerably outperforms other
algorithms in terms of average tour cost and execution time. Further research concerns extending PPGA to
solve other COPs such as, the facility layout problem, the quadratic assignment problem, and vehicle routing
problems.
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