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 In an age when people spend most of their time indoors and smartphones 

become a necessity, there is an increasing demand to navigate user absolute 

position in indoor environments. While global positioning system (GPSs) 

perform well outdoors, their inaccuracy can not be tolerated in places where 

GPS signal is weak or barely detected. This leads to a number of solutions 

which utilize smartphone inertial measurement unit (IMU) to track user 

location. Most IMU-based methods track the trajectory of a person by using 

stride-length and heading estimation. Thus, the accuracy of stride-length 

estimation plays a very important role in these methods. Inspired by recent 

success in the field of computer vision and machine learning, we proposed an 

image-based stride-length estimation method that employs Gramian angular 

field (GAF) in converting accelerometer data into images, and then feed them 

into a convolutional neural network (CNN) to predict the stride-length. We 

evaluate the performance of our proposed method by using a public dataset 

from Qu Wang in his GitHub repository (available at 

https://github.com/Archeries/StrideLengthEstimation). The result shows that 

our proposed method is superior in terms of accuracy in one stride and in 

large walking distance than others using only data collected from the 

accelerometer. 
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1. INTRODUCTION 

A method to estimate a person's location without the support of any external infrastructure in the 

environment is known as pedestrian dead reckoning (PDR). This technique only utilizes the inertial 

measurement unit (IMU) sensors (namely, accelerometer, gyroscope, and sometimes magnetometer), which 

are attached or carried by the users. To obtain user relative position, three important values must be extracted, 

which are step event, stride length, and heading. Among the mentioned tasks, stride length estimation (SLE) 

receives attraction from many researchers because this information is valuable not only in positioning but 

also in activity monitoring, and gait analyzing [1]. 

The simple SLE method assumes that people’s average stride length can be represented using a 

constant. This approach is of course not accurate because different people have different stride lengths. Many 

studies on SLE were done with advanced techniques and models, D´ıez in [2] did a survey and divided 

approaches into two classes: direct methods and indirect methods. In the scope of this paper, we examine 

https://creativecommons.org/licenses/by-sa/4.0/
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three main approaches: the first is the biomechanical methods, the second is integration methods, and the 

final is adaptive methods. 

Biomechanical methods utilize gait analysis in their models like Miyazaki's [3], in which he used a 

gyroscope attached to the subject's thigh to measure the angles created by lower limbs during the walking 

motion. When evaluating the step length, the author assumed that the length of the subject legs is already 

known and two steps in the same stride are equal. Potential errors from assumptions are corrected by taking 

advantage of the relationship between stride length and walking velocity. Zijiska in [4] came up with a 

method to calculate stride using lower limb length and the difference in height of the center of mass (COM). 

Another approach was proposed by Weinberg [5], in which he used vertical acceleration to estimate the stride 

length. An attempt to improve Weinberg’s equation like Kang in [6] where he set up another logarithm-based 

formula to combine with the original one with some added constraints. 

The double integration model could be implemented as a strap-down inertial navigation system 

(INS). Li and Young in [7] used a 2-axis accelerometer and a 1-axis gyroscope placed on a subject's shank to 

collect movements. The walking motion is then segmented and converted into a world coordinate frame 

using the angle calculated from gyroscope readings. Kose and colleagues in [8] took an approach that used a 

wavelet-based decomposition method to detect and separate steps from each leg. Then they applied the 

Kalman filter and reverse integration to compute step length. Error in the method is compensated by 

removing the pelvic rotation from the model. Another implementation to correct the sensor error is using the 

null-velocity update point (ZUPT) to reset the integration which can be found in [9]-[12]. 

There are two types of models in the adaptive approach which are parametric and non-parametric 

models. Kim in [13] perform experiments to determine the correlation of stride length and the mean of 

accelerometer signal from that same stride. Considering the method proposed in [14], which focuses on the 

importance of frequency and its linear relationship with the stride length. A similar approach with more 

features added can also be seen in [15]. Methods utilized variance of accelerometer signals to use in their 

model can be found in [16]-[18]. Besides the linear model, Zihajehzadeh in [19] uses gaussian processed 

regression (GPR) to achieve a better result. Much recent research on using non-parametric models like the 

method in [20] took advantage of Neural Network using three different values computed from maxima and 

minima in each stride as features. Hannink in [21] also used CNN but the accelerometer and gyroscope signal 

are normalized to 256 samples per stride. Gu in [22] trained a Stack Autoencoder to learn important features 

from input data, then they are fed to a regression layer for stride estimation. Although much progress was 

made in estimating a person's stride length, existing methods still pose limitations. The drawback of the 

biomechanical methods is that some parameters are required to know beforehand, which might not be 

available. About double integration, the sensor position plays a major role, thus smartphones or other 

electronic devices may not be suitable. Finally, with adaptive models, feature selection is crucial because it 

has a great influence on the performance of the model. After having a relative position of a user, we may then 

combine with some indoor positioning methods to make absolute position prediction to be more accurate 

[23], [24]. 

We took a different approach to solve the mentioned problems and present a unique method to 

estimate stride length. First, we only use accelerometer data from the dataset collected by Wang in [25]. 

Second, it doesn’t require knowing any information about users' height or leg length. Third, to reduce the 

task of feature selection and determine their relationship, data is preprocessed and converted to images using 

the GAF algorithm [26], which has been successfully applied as a time series encoder in [27], [28]. Finally, 

for the task of learning, we used the CNN model due to its flexibility and accuracy. 

 

 

2. RESEARCH METHOD  

2.1.  GAF algorithm 

In our research, we focus on exploiting the accelerometer due to its ability to collect data related to 

user walking motion. The raw output of an accelerometer can be described as time series and its patterns can 

be extracted to estimate subject stride length. To retain the features of the data, we took a new approach to 

present information using the GAF algorithm proposed by Wang in [26]. Wang algorithm is suitable for 

converting one-dimensional time series data into a two-dimensional array, which can also be interpreted as an 

image. The method is briefly described as follows. 

Suppose that our accelerometer data is in form of a time series 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛}, where n is the 

size of X. First, we would have to rescale data in the range of [-1, 1] as (1). 

 

𝑥𝑖̃ =
(𝑥𝑖−max(𝑋))+(𝑥𝑖−min(𝑋))

max(𝑋)−min(𝑋)
 (1) 
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Where 𝑥𝑖̃ is the normalized value of 𝑥𝑖; max(𝑋) , min(𝑋) is maximum and minimum value of 𝑋, 

respectively. The rescale data can be expressed in a polar coordinate system by using the following 

transformation. 

 

{
∅𝑖 = arccos( 𝑥𝑖̃)

𝑟𝑖 =
𝑖

𝑁
 , 𝑖 ∈ 𝑁

   (2) 

 

Where ∅𝑖 is the angle, 𝑟𝑖 is the radius and N is the number of the data points. The cosine function would 

respond to input value in range of [−1, 1] as [0, 𝜋] 
This representation gave us another way to gain insights into time-series data. We can calculate the 

trigonometric sum/difference among sampling points to determine the time correlation between them. 

Gramian angular summation field (GASF) and Gramian angular difference field (GADF) are defined as (3), 

(4): 

 

𝐺𝐴𝑆𝐹 = (
cos(∅1+∅1) ⋯ cos(∅1+∅𝑛)

⋮ ⋱ ⋮
cos(∅𝑛 + ∅1) ⋯ cos(∅𝑛+∅𝑛)

) (3) 

 

𝐺𝐴𝐷𝐹 = (
sin(∅1+∅1) ⋯ sin(∅1+∅𝑛)

⋮ ⋱ ⋮
sin(∅𝑛 + ∅1) ⋯ sin(∅𝑛+∅𝑛)

) (4) 

 

We utilize this algorithm to transform sensor data into images and the procedure is illustrated in Figure 1. 

 

 

   
(a) (b) (c) 

 

Figure 1. Illustration of GAF algorithm: (a) one dimensional time series data, (b) polar coordinate 

representation, (c) gasf representation 

 

 

2.2.  Proposed stride length estimation method 

2.2.1. Overall architecture of the method 

We proposed a method for stride length estimation, which consists of three phases as shown in 

Figure 2. The first phase is data preprocessing which handles raw data from the accelerometer sensor through 

filtering, segmentation and convert the signal to images. Inside data preprocessing we have a module called 

time series to image conversion. Its task is to rescale the data, represent data in polar coordinate, then 

construct a GASF or GADF matrix, the input to the CNN is normalized by resizing the GASF matrix to a 

fixed size (128x128). The second phase is training the CNN model using the images and labels extracted 

from the training dataset. Details of the model will be described in the latter section. After training, we use 

that model to predict value from the testing dataset. 

 

2.2.2. Data preprocessing 

Raw accelerometer sensor data is subject to noise from the shaking of user motion. To reduce the 

noise, we apply the Butterworth low-pass filter with a cutoff frequency equal to 5 Hz and an order equal to 5. 

After accelerometer readings are filtered, they need to be divided into smaller segments. Most of the time, 

this task is performed by a step detector or step counter. To simplify this requirement, we assume that the 
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data was already divided, and each segment presents one stride as can be seen in Figure 3. After 

segmentation, filtered data from each axis will be converted to an image using the GAF algorithm mentioned 

in the previous section. The procedure can be seen in Figure 4. 

 

 

 
 

Figure 2. Proposed method architecture 

 

 

 
 

Figure 3. Raw data from accelerometer 

 

 

   
(a) (b) (c)  

 

Figure 4. Data to images conversion procedure: (a) Filtered data of 3 axes, (b) polar coordinate data of 3 

axes, (c) GASFs 

 

 

The CNN model requires input images to have a fixed size. However, each stride duration is 

different, which leads to different sizes of the image. Thus, we would have to resize the image to a particular 
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dimension. As stated in the dataset [25], the sampling rate is 100 Hz and each stride contains about 120 

samples, so we chose the size of the image in one axis to be 128×128 to retain the features inside. 

2.2.3. CNN architecture 

Most of the task involving CNN for images is classification. However, in our case we want the 

output to be the stride length so CNN would be treated as a regression model. We designed a simple CNN 

model that consists of 7 layers. First, we apply a convolutional layer (with ReLU activation) to create the 

feature map of the detected features from image input, then to prevent overfitting we use a dropout layer 

(with a rate of 0.3) before features are flattened, we normalize them using a BatchNormalization layer. After 

that 2 fully connected layers are used followed by a neuron that has a linear activation function at the end of 

the model. Except for the last neuron, all layers utilize rectified linear units as their activation function. For 

better illustration, the CNN architecture of each layer is shown in Figure 5. 

 

 

 
 

Figure 5. CNN model architecture 

 

 

3. EXPERIMENTS AND EVALUATION 

3.1.  Distance estimation 

To evaluate the performance when subject travel in large distance, we need to calculate the 

accumulated walking distance. The accumulative distance of the subject is computed as (5): 

 

𝐷̃ = ∑ 𝑠̃𝑖
𝑁
𝑖=1  (5) 

 

where 𝐷̃ is the total traveled distance, 𝑠̃𝑖 is the estimation of 𝑖𝑡ℎ stride and N is the number of strides. 

 

3.2.  Error evaluation metrics 

To keep consistence among the error metrics used for evaluating, we adopted the evaluation metrics 

from the dataset [25]. The relative stride error is calculated as (6): 

 

𝐸𝑠 =
1

𝑁
∑

|𝑠𝑖−𝑠̃𝑖|

𝑠𝑖
× 100 (%)𝑁

𝑖=1  (6) 

 

where 𝐸𝑠  denotes the stride length relative error; 𝑠𝑖  𝑎𝑛𝑑 𝑠̃𝑖  are the actual stride length and the estimated stride 

length of the 𝑖𝑡ℎ stride, respectively. The relative distance error is computed as (7): 

 

𝐸𝑑 =  
|∑ 𝑠̃𝑖−𝑁

𝑖=1 ∑ 𝑠𝑖
𝑁
𝑖=1 |

∑ 𝑠𝑖
𝑁
𝑖=1

× 100 (%) (7) 

 

where 𝐸𝑑 denotes the walking distance relative error; 𝑠𝑖 , 𝑠̃𝑖 are the actual stride length and the estimated stride 

length of the 𝑖𝑡ℎ stride, respectively.  

 

 



                ISSN: 2252-8938 

 Int J Artif Intell, Vol. 10, No. 4, December 2021:  997 - 1008 

1002 

3.3.  Dataset 

The dataset we chose for training and evaluation was created and presented by Qu Wang in [25]. In 

his dataset, 10000 strides and their parameters were recorded including readings from accelerometer, 

gyroscope, and magnetometer. To better illustrate the dataset, we analyzed the stride length-frequency 

distribution of the whole dataset in Figure 6(a). 

From Figure 6(a), it is observed that most strides fall in the range from 0.2 meters and 3.5 meters, 

which is reasonable as the subject walking at different velocities. However, there exists a case when 

measured stride-length is above 3.5 meters and reaching nearly 30 meters. This happened because Wang’s 

dataset covers several unique scenarios for example when users using escalators or elevators. If we keep 

those unusual data in the dataset, it could create a false pattern which can ruin the model. To prevent this, it is 

important to also implement an activity recognition algorithm to distinguish between different motion 

patterns and scenarios. However, the dataset does not provide us with the label of the movement type or 

subject walking environment, so it is not possible to classify subject unique cases. To simplify the problem 

that we studied, we filter out all the data that is not in the [0.2, 3.5] meter range. After filtering, the dataset 

has 7998 strides left and the distribution is shown in Figure 6(b). 

 

 

  
(a) (b) 

 

Figure 6. Dataset before and after being filtered, (a) before filter, (b) after filter 

 

 

Next, we use the stride number to segment the dataset into a series of strides. This series is also 

labeled using the provided stride-length column in the dataset. As the accelerometer is our main concern, 

only signals from the accelerometer are used. To provide data for the training phase and evaluation phase, we 

split the data into the training set, validation set, and evaluation set. We use 5612 steps and 1403 steps for 

training and validating, respectively and the remains for evaluation. 

 

3.4.  Experimental result and analysis 

3.4.1. Model hyperparameters and the performance evaluation 

Our model was built using Keras library. We use Huber as the loss function of the model because it 

is better to outlier than others. For the optimization task, we try several optimizers and found that Adam 

optimizer is the best fit for our model. Besides, to prevent overfitting the model, early stopping was utilized. 

The summary of a model hyperparameter is shown in Table 1. 

 

 

Table 1. Proposed model hyperparameter 
Parameter Value and setting 

Loss function Huber 

Optimizer Adam 

Learning rate 0.0001 
Metrics Mean Absolute Error (MAE) 

Batch size 32 
Epoch 100 

Early Stopping 15 
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Figure 7 illustrates the mean absolute error (MAE) and Loss during the training process. The error 

and loss decrease rapidly in the first couple of epochs. Then as the iterations increase, the MAE became 

stable after 60 epochs while loss only needed 20 epochs to reach that state. The model gets the optimal 

performance after 92 epochs with the training loss, validation loss, training MAE, validation MAE values 

equal to 0.00381, 0.00141, 0.0515, and 0.05431 correspondingly. 

 

 

  
(a) (b) 

 

Figure 7. MAE and Loss of training and validation: (a) MAE, (b) loss 

 

 

We evaluate the performance of our model using the prepared test set and plot the comparison of 

estimated stride length and the actual value in Figure 8. Figure 9 shows the result of some concrete strides 

from raw signals, to intermediate GAF images and corresponding stride-length prediction. From the figure, 

we can see that our proposed method gives the closest prediction value to the actual ones. 

 

 

 
  

Figure 8. Comparison of estimated stride length in proposed method and actual stride length  

(with Validation data) 

 

 

3.4.2. Comparison with other models 

From raw signals, we calculate the root square of ax, ay, and az from the accelerometer sensor, and 

then apply low-pass filter to feed the signals to the GAF transformation. 

 

𝐴 =  √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2   

 

For comparison, we implemented 4 models from Kim [13], Yao [16], Shin [17], and Weinberg [4]. These 

models can be briefly described as (8), (9), (10), (11), 
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𝑆𝐿𝐾𝑖𝑚 = 𝐾. √
∑ |𝐴𝑖|𝑁

𝑖=1

𝑁

3

 (8) 

𝑆𝐿𝑌𝑎𝑜 = 𝛼 √𝐴max − 𝐴𝑚𝑖𝑛
4 + 𝛽. 𝑓 + 𝛾. 𝑣 (9) 

 

𝑓𝑖 =
1

𝑡𝑖 − 𝑡𝑖−1

 

 

𝑆𝐿𝑆ℎ𝑖𝑛 = 𝛼. 𝑓 + 𝛽. 𝑣 + 𝑐 (10) 

 

𝑆𝐿𝑊𝑒𝑖𝑛𝑏𝑒𝑟𝑔 = 𝐾 √𝐴𝑚𝑎𝑥−𝐴𝑚𝑖𝑛
4

 (11) 

 

where 𝐴𝑚𝑎𝑥𝑎𝑛𝑑 𝐴𝑚𝑖𝑛 denote the maximum and minimum acceleration values, respectively; 𝐴𝑖 is the 

acceleration value at stride 𝑖𝑡ℎ; 𝑡𝑖−1 and 𝑡𝑖 are the starting and ending moments of time at step 𝑖𝑡ℎ; 𝑓 is the 

stride frequency and 𝑣 is the acceleration variance of the step. 𝐾, 𝛼, 𝛽, 𝑐, 𝑎𝑛𝑑 𝛾 are model coefficients 

identified during the training process.  

 

 

 
 

 
 

 
 

Figure 9. Some strides with raw signal and their image representation and estimated stride-length 

 

 

The Shin, Yao, Weinberg, and Kim methods are evaluated using the testing dataset prepared earlier 

which consists of 973 steps. We can clearly see in Figure 10 that Shin and Yao’s estimation is scattered 

around actual value while Weinberg and Kim’s method tend to overestimate. Details of the error over the 

walking distance of our proposed method with others are shown in Table 2. Over the distance of 1300.5799 

(m) our proposed method 𝐸𝑠 and 𝐸𝑑 are only 4.4378% and 3.1756%, which is the smallest among others. 

This indicates that our model has the best performance while evaluating the error of each stride and over a 

long distance. From Figure 11, it is obvious that our proposed method achieves 80% of strides with the 
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estimation error under 0.08817 meters, while Kim, Yao, Shin, and Weinberg’s are 0.20103, 0.2077, 0.17526, 

and 0.18179 meters, respectively. 

 

 

  
(a) (b) 

 

    
(c) (d) 

 

 
(e) 

 

Figure 10. Comparison of estimated stride length in other methods and actual stride length: (a) Our proposal 

method (b) Shin method, (c) Yao method, (d) Weinberg method, (e) Kim method 
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Table 2. Comparison of proposed method and others 
 Real Proposed method Shin  Yao  Weinberg  Kim 

Distance (m) 1300.5799 1341.8809 1361.4525 1366.5864 1414.1273 1447.1376 

Error (m) - 41.301 60.8726 66.0065 113.5474 146.5577 

𝐸𝑑 (%) - 3.1756% 4.6804% 5.0751% 8.7305% 11.2686% 

Stride length error (m) - 0.05827 0.11502 0.13454 0.12325 0.15202 

𝐸𝑠 (%) - 4.4378% 8.7553% 10.1992% 9.3031% 11.5474% 

 

 

 
 

Figure 11. CDF of proposed method and others 

 

 

4. DISCUSSION 

From the indoor positioning perspective, having an accurate estimation of stride length and travel 

distance opens up new possibilities as many tracking systems rely on SLE. Using our proposed method 

combined with state-of-the-art techniques for step detection and heading estimation, we can minimize the 

error during the process and achieve a highly accurate position of the current users. Furthermore, this study 

could also be used in the field of gait analysis and health monitoring as the stride length of a person is a 

valuable parameter to predict an impaired gait. The main limitation of our proposed method is that it depends 

on heavy computation. As the accelerometer data is under the process of conversion from time series to 

image and passing through the CNN model, it would take a considerable amount of time. This leads to a 

problem that it is difficult for mobile devices' hardware to handle such an amount of work. A better idea is to 

place the system in a centralized server to harness the processing power and reduced the load for mobile 

devices. 

In the future, studies can be done on how to reduce the computational time of the proposed method 

to support real-time tracking applications. The relationship between stride length and data from other sensors 

like gyroscope and magnetometer could be investigated to further improve accuracy. Finally, the lack of 

dataset labels for training should also be addressed since inaccurate data could result in the model learning 

false patterns. Thus, sensor data collecting procedures for stride length need to be rigorously examined so 

that with special moving patterns, the model can tell the difference between them. 

 

 

5. CONCLUSION 

In this paper, we have proposed a new method for stride length estimation. By utilizing the GAF 

algorithm, we were able to transform the accelerometer sensor time-series data into images. Then a CNN 

model was designed to estimate stride length given images as its input. We trained and evaluated the 

performance of our model using a public dataset created by Qu Wang. Although this dataset did not satisfy 

our requirements in labeling, it provided us an indicator of how the model performs. Experiments were 

conducted to measure the performance of our model compared to Kim, Yao, Shin, and Weinberg models. 

The experimental results show that the proposed method is better than others. Our model achieved 4.4378% 

in relative stride error and 3.1756% in relative distance error, which is superior compared to the closest 

methods which are 8.7553%, 4.6804%, respectively. 
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