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 Cerebrovascular diseases are one of the serious causes for the increase in 

mortality rate in the world which affect the blood vessels and blood supply to 

the brain. In order, diagnose and study the abnormalities in the 

cerebrovascular system, accurate segmentation methods can be used. The 

shape, direction and distribution of blood vessels can be studied using 

automatic segmentation. This will help the doctors to envisage the 

cerebrovascular system. Due to the complex shape and topology, automatic 

segmentation is still a challenge to the clinicians. In this paper, some of the 

latest approaches used for segmentation of magnetic resonance angiography 

images are explained. Some of such methods are deep convolutional neural 

network (CNN), 3dimentional-CNN (3D-CNN) and 3D U-Net. Finally, these 

methods are compared for evaluating their performance. 3D U-Net is the 

better performer among the described methods. 
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1. INTRODUCTION 

In the world, vascular diseases are one of the most common cause of death which causes stroke in 

about millions of people every year. Therefore, fast, and accurate tools are required in order to diagnose and 

treat cerebrovascular diseases. Magnetic resonance angiography (MRA) is the one of the common imaging 

techniques used to perform this function, which consists in a magnetic resonance imaging (MRI) that looks 

specifically the blood flow in the brain vessels when measuring. Different methods of MRA are time-of-

flight (TOF), phase contrast (PC), and fresh blood imaging (FBI) and contrast-enhanced MRA [1]. TOF 

MRA is the most commonly used imaging modalities in non-invasive vascular research [2]. Segmentation is 

used to identify and separate vessels from neighborhood tissue which helps in better view and quantitative 

analysis. Segmentation of blood vessels done manually is having many shortcomings like it is time-

consuming, prone to error. In such a situation, more accurate and faster segmentation methods are 

implemented. Some of the approaches used for cerebrovascular segmentation are deep CNN [3], 3D CNN, 

and 3D U-Net. 

A CNN is a class of deep neural network [4] consisting of one or more convolutional layers, pooling 

layer, and fully connected layer. A feature map created by the first layer i.e., convolutional layer is used to 

extract the features from an input image. This is possible by using a filter that scans the full image pixel wise. 

Pooling layer cutdown the quantity of information the first layer generated for each feature and maintains the 

most important information only. The output generated by the pooling layer is flattened by fully connected 

input layer, which converts them into a single vector that serves as an input for the next layer. After passing 

through the fully connected layer, the final layers use the SoftMax activation function which helps in 

classification. Fully connected output layer generates the final result which will determine a class for the 
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image. The filters of different sizes are used, also known as kernels. Usually, convolution layer and pool 

layer are used in some combination in CNN architecture [5]. Max pooling and mean pooling are the two 

types of operations carried out by the pooling layer. Mean pooling or average pooling calculates the average 

value from the region of the feature map. Maximum Pooling also called as max pooling finds the maximum 

value from the region of feature map covered by filter. The error caused by the neighborhood size limitation 

can be reduced by mean pooling and it also retains the background information. The estimated error caused 

by the mean deviation can be reduced by max pooling and hence keeps more texture information. 

In 3D-CNN, 3D filters can move in all the three dimensions i.e., along X, Y and Z axes. 3D CNN 

requires more parameters and computations compared to 2D. Improvement in computer hardware and 3D 

medical imaging availability gives the concept of using 3D information for segmentation. Compared to 2D 

and 2.5D approaches which are having one, three orthogonal views, respectively, 3 dimensional images can 

deliver information in any direction. For the segmentation of the brain tumor of arbitrary size, the first pure 

3D models were introduced. Multiscale, dual-path 3D CNN is also used in many applications. The next 

pathway received the patches from a sub sampled representation of the image. More areas around the voxel 

can be processed by using this, which will be advantageous to the whole system [6]. For better performance, 

small kernel size can be preferred. A deep model is required to isolate an organ from complex images which 

can thereby extract highly informative features. A significant challenge for 3D models is to train such deep 

network. 

In order to strengthen the U-Net [7] structure with richer spatial information model, 3D U-Net is 

developed which is a deep neural network that helps in very compact volumetric segmentation. 3D U-Net 

requires only some annotated 2D slices by using weighted loss function and data augmentation for training. 

This network takes 3D volume as input and 3D operations like convolution, pooling, and loss calculation are 

used to process them. For vascular boundary detection, 3D U-Net was used. One of the disadvantages of 3D 

U-Net is the input image size should be small because of limited memory space [8]. Therefore, the input size 

of region of interest (ROI) is having poor resolution. Therefore, the input image can be divided into multiple 

batches to overcome this issue, which can be further used for training and testing. In this paper, these three 

methods are explained in detail and compared their performance with global statistical based approach (GSB) 

by using dice similarity coefficient (DSC) values. 

The remaining part of this paper is organized is being as. In the next section, literature survey is 

presented. In section 3, different cerebrovascular segmentation methods are explained, in section 4, results 

are discussed and finally conclusion is presented in section 5. 

 

 

2. RELATED WORKS 

Major contributions of some of the researchers who aimed at developing a system for 

cerebrovascular segmentation are summarized below. Sanches et al. [1] proposed a cerebrovascular 

segmentation method using deep learning. A 3D model called Uception which is inspired from U-Net 

architecture is discussed in this paper. When compared with the U-Net model, this 3D architecture showed 

better performance. In order to improve the outcome of this model, they have decided to add more details 

regarding the cerebrovascular anatomy in the neural network. 

Hesamian et al. [6] summarized some of the medical image segmentation methods and their 

performance compared with old methods. This paper also explained some of the applications helpful in the 

medical industry such as training techniques used for image segmentation. Advantages and disadvantages of 

these techniques are also taken into consideration. The challenges faced by the deep learning networks for 

segmentation and its effective remedies are also explained at the end. 

A fully automatic segmentation method is proposed by Gao et al. [9] for detection of 

cerebrovascular diseases. This segmentation method is very fast too. Improved curve evolution and statistical 

model analysis play a major role in the segmentation of 3D-cerebral vessels from MRA. Modelling of the 

cerebral vessels is also explained in this paper. Combination of region distribution and gradient information 

is used as one novel mode in curve evolution. Low contrast thin vessel boundary around brain tissue can be 

determined by using the edge-strength function. A fast level set method was introduced to speed up the 

implementation of curve evolution which helps in improving the performance of cerebrovascular 

segmentation. 

Fatma et al. [10] presented a review on accurate and advanced automated methods for 

cerebrovascular segmentation. In this paper, old, new, automatic, and semiautomatic models explained along 

with its advantages and disadvantages. A linear combination of discrete gaussians (LCDG) model is used for 

segmentation that yields the empirical marginal gray level distribution intensity in the images, while using 

modified expectation maximization (EM) algorithm for refinement. 

A statistical method discussed by Fatma et al. [11] utilizes a voxel-wise classification. In order to 

isolate blood vessels from the background of each time of flight MRA slice, probability models of voxel 
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intensities are determined. The marginal empirical distribution of intensity probabilities is approximated for 

the purpose of classification where LCDG is employed with alternate signs. For linear combination of 

gaussian approximation, EM-based techniques are also utilized that helps in dealing with LCDGs. 

 

 

3. RESEARCH METHOD 

Cerebrovascular segmentation methods such as deep convolutional neural network (CNN), 

3dimentional-CNN (3D-CNN) and 3D U-Net are used for conducting this research which are discussed in 

detail. These methods are compared for evaluating their performances. Dice similarity coefficient (DSC) is 

used for determining the segmentation accuracy. 

 

3.1.  Convolutional neural network (CNN) 

When considering time-of-flight (TOF) MRA images, there are chances of over-fitting in the model 

learning and increased processing time by the use of complex deep CNN architectures. A CNN architecture 

proposed by Phellan et al. [12] composed of two convolutional layers and fully connected layers. Figure 1 

depicts the CNN architecture, where the number of filters and details of receptive field in the two 

convolutional layers are mentioned. There is no sub sampling in the second convolutional layer. Next layer is 

a rectified linear activation (ReLu) which will reduce the back propagation vanishing problem. There are two 

fully connected layers present in this architecture. The first fully connected layers will reduce the 

dimensionality from 256 to 100 neurons, and the other layer will determine the likelihood of belonging to a 

vessel or not [12]. 

 

 

 
 

Figure 1. Network architecture [11] 

 

 

Cerebrovascular segmentation method is used to analyse and evaluate some TOF MRA datasets of 

healthy subjects. The datasets were acquired for the segmentation process. Slab boundary artefact correction 

was done for pre-processing and by using the N3 algorithm [13], intensity non-uniformity correction can also 

be done. A skull stripping algorithm [14] is also used. Based on the pre-processed TOF MRA datasets, the 

manual segmentation of the vessels in each dataset is done. The patches from all directions are extracted from 

a cubic region which is defined around all voxels inside the brain region. To calculate the vessel likelihood, 

each patch is fed to the CNN [15]. Then, for each orientation, three probability maps are present. Datasets 

consisting of TOF MRA images are randomly selected for training, the performance of the deep CNN can be 

evaluated. More accurate results can be obtained if more training images are used. For each image used for 

testing, the training image selected will be different. Then, there is need for increasing the number of training 

images. In order to evaluate the performance of the cerebrovascular segmentation using CNN and ground-

truth manual segmentations, dice similarity coefficient (DSC) [16] is used. DSC can be calculated as,  

DSC= 2|A ∩ B|/ (|A| + |B|), where A and B defines the ground-truth and CNN segmentations, respectively. 

 

3.2.  3D-convolutional neural network (3D-CNN) 

3D-CNN architecture proposed by Kandil et al. [17] shown in Figure 2, consists of eight 

convolutional layers, two fully connected layers, and one classification layer. The eight layers are having 30, 

30, 40, 40, 40, 40, 50, 50 feature maps (FMs) and the kernel size is 27. Image segments with size 25×25×25 

are used as input to the network. The batch size used is 10 segments. The voxel’s exact position will be lost if 

pooling layer is present which will inversely affect the accuracy and the strides are unary. The PReLu non-

linearity is used by this 3D CNN architecture and the root mean square (RMS) Prop optimizer and Nesterov 
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momentum with values L1= 10−6, L2= 10−4 and m= 0.6 are used for training. The learning rate and the 

dropout are set to 10-3 and 50% rate respectively, that was used on the last hidden layers. At each 

optimization step for the normalization of the FM activation in all hidden layers, batch normalization 

technique was used. Blood flow signal strength inside the brain at a specific time varies from one area to 

another. In order to face this challenge, inside each compartment, blood vessels are of same features when 

each MRA volume is partitioned into two compartments. 

 

 

 
 

Figure 2. 3D -CNN architecture  

 

 

Performance of the segmentation process can be enhanced by this. During the partitioning process, 

cerebral bio-marker called circle of Willis (CoW) is selected. Most of the blood vessels are of different 

diameter size when it is existing at CoW and below it and it is having small diameter size above CoW. Based 

on the position of the MRA slices, whether it is above or below CoW are divided into two compartments. All 

the blood vessels should have same shape, appearance, and diameters of approximate sizes in each 

compartment; therefore, the segmentation efficiency and accuracy can be increased. A sub vascular tree is 

produced by the 3-D CNN manipulation during this process. The final outcome is obtained by combining two 

sub vascular tree [17]. 3D CNN segmentation accuracy can be tested by considering the evaluation metric 

DSC. In the experiment done by Kandil et al. [17], training set consists of 49 images and testing is done for 

17 images. 

 

3.3.  3D U-Net 

Sanches [1] proposed an architecture called Uception [18] which increases the network size by 

adding convolutional layers or by increasing their depth. Disadvantage of using 3D U-Net is that there is a 

chance of overfitting when it is having a greater number of parameters. If the number of annotated images is 

less in biomedical datasets, this problem mainly arises. Therefore, sparsely connected architectures are 

preferred. In this sparsely connected architecture, the input is passed in parallel to several branches with 

different kernel sizes and finally concatenated in the end. In addition, this architecture with 1D convolution 

will dissociate the depth information in the channels and spatial information with the 3D convolutions. 

Moreover, processing the image in two scales is possible by using different kernel sizes. The modules which 

are created to be used in a 3D model are: the features map shape is retained by one model and the image size 

is made half with parallel strided convolutions and maxpooling operations by the other model to make 

contracting path [1]. In the expansive path, up-sampling was used. Uception architecture is given in Figure 3. 

After each convolution layer, a ReLu activation function is applied. A sigmoid activation function 

was used after the last convolutional layer. Therefore, each voxel is linked to a probability which will helps 

to reach the probability of belonging to the vessels network during the training. Since the input is in binary 

segmentation, the last layer has only one channel. After each activation function, dropout was used when the 

regularization technique goes. The negative of the dice coefficient is used for the loss function, from (1): 

 

𝐷𝑆𝐶(𝑃, 𝑇) =
2∗|𝑃∩𝑇|

|𝑃|+ |𝑇|
 (1) 
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where P is the prediction of the network and T is the ground truth. Convergence speed is high and is 

numerically stable as its value is between zero and one. By using the back-propagation algorithm with the 

Adam optimizer, the training was done. Moreover, cubic of patches of 64×64×64 voxels were used to feed 

the data. For validation, non-superposed patches were used. In addition, more data is obtained as a result of 

training through patches, since data augmentation was not used; only 36 images from this dataset were 

disposed. A technique called snapshot ensemble [19] is used to enhance the generalization by averaging the 

weights of the same model at different moments of the training. During training with a cyclic learning rate 

schedule, these moments are chosen as the local minima of the validation loss. 

 

 

 
 

Figure 3. Uception architecture [1] 

 

 

4. RESULTS AND DISCUSSION 

When CNN approach [20] is used for segmentation of blood vessels in time of flight MRA images, 

DSC values of five datasets are averaged and obtained 0.764±0.010. From Phellan et al. [12] experiment, it is 

proved that as a greater number of images used will increase the training times and the time taking for testing 

are not depending on the quantity of training images and the segmentation accuracy and cannot be increased 

by more training images. Figure 4 shows the segmentation results using the deep CNN [21]. Figure 4(a) 

shows the result obtained manually and Figure 4(b) depicts the CNN approach output. For 3D-CNN [22], 

segmentation accuracy can be determined using a common segmentation evaluation metric called dice 

similarity coefficient (DSC) is used. 

 

 

 
(a) 

 
(b) 

 

Figure 4. Segmentation results using CNN: (a) manual and (b) output of CNN approach 

 

 

This segmentation method shows good performance in characterizing cerebral vasculature with 

0.832±2.30 DSC when compared with manually segmented ground truth. Each MRA volume is partitioned 

above CoW and below CoW to perform the segmentation [23] task locally over the entire brain. The results 
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of segmentation should be positive, as the other evaluation parameters of the extracted features are influenced 

[24]. 3D-CNN segmentation result is shown in Figure 5. Figure 5(a) shows the result obtained manually and 

Figure 5(b) depicts the 3D- CNN approach output. 

 

 

 
(a) 

 
(b) 

 

Figure 5. Segmentation results using 3D-CNN: (a) ground truth, (b) output of 3D-CNN approach 

 

 

By using 3D U-Net [25] approach, DSC obtained when compared with the ground truth is  

0.671± 0.01. Figure 6 shows the segmentation results of 3D U-Net when compared with its ground-truth. 

Figure 6(a) shows the result obtained manually and Figure 6(b) depicts the 3D U-Net approach output. 

Finally, these methods are compared with the global statistical-based approach (GSB) proposed by 

El-Baz et al. [26] and the DSC value obtained in this method is 0.801± 2.7. Figure 7 shows the segmentation 

result using GSB. Figure 7(a) shows the result obtained manually and Figure 7(b) depicts the GSB approach 

output. 

 

 

 
(a) 

 
(b) 

 

Figure 6. Segmentation results using 3D U-Net: (a) ground truth and (b) output of Uception approach 

 

 

 
(a) 

 
(b) 

 

Figure 7. Segmentation results using GSB: (a) ground truth and (b) output of GSB approach 

 

 

Comparing the DCS values, we are able to find that the performance of 3D U-Net is higher 

compared to other methods. 3D U-Net shows less similarity with the manual method which proves it as a 

better method. The DSC values obtained for the three segmentation methods when comparing with the 

ground truth are shown in Table 1. 
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Table 1. DSC values based on the type of segmentation used 
Types of segmentation DSC value 

CNN 0.764 ± 0.01 
3D-CNN 0.832 ± 2.30 

3D U-Net 

GSB 

0.671 ± 0.01 

0.801 ± 2.7 

 

 

5. CONCLUSION  

Nowadays, cerebrovascular diseases are becoming one of the major causes for increasing the death 

rate of the world population. Diagnosis and testing of such diseases are still a challenge for healthcare 

providers. Therefore, segmentation of the cerebrovascular structure is a very important step for the diagnoses 

process. Computer-aided diagnosis (CAD) system is used by the clinicians in the prediction process. In this 

paper, some of such automatic segmentation methods like CNN, 3D-CNN and 3D U-Net are explained and 

compared their performance. In this paper, some of such automatic segmentation methods like CNN, 3D-

CNN and 3D U-Net are explained and compared their performance. In the CNN approach, only a smaller 

number of segmented ground truth images are needed to obtain good results which makes this application 

easier in many places such as in research or clinical field. 3D CNN is very helpful in the segmentation of 

small as well as complex blood vessel. For either healthy or unhealthy vessels, this method is applicable. 

However, CNN shows better performance than 3D-CNN. 3D U-Net architecture is proposed as a result of the 

inspiration from the inception architecture. When compared with the original U-Net, this model showed 

better performance. Loss function needs to be selected with much care; therefore, the total number of voxels 

in the data is not considered by the dice coefficient. By comparing the three segmentation methods, 3D U-

Net showed the better performance. 
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