
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 10, No. 3, September 2021, pp. 519~527

ISSN: 2252-8938, DOI: 10.11591/ijai.v10.i3.pp519-527  519

Journal homepage: http://ijai.iaescore.com

Boyer Moore string-match framework for a hybrid short

message service spam filtering technique

Arnold Adimabua Ojugo, David Ademola Oyemade
Department of Computer Science, Federal University of Petroleum Resources Effurun, Delta State, Nigeria

Article Info ABSTRACT

Article history:

Received Oct 1, 2020

Revised Jun 4, 2021

Accepted Jun 11, 2021

 Advances in technology and the proliferation of mobile device have continued

to advance the ubiquitous nature of computing alongside their many prowess

and improved features it brings as a disruptive technology to aid information

sharing amongst many online users. This popularity, usage and adoption ease,

mobility, and portability of the mobile smartphone devices have allowed for

its acceptability and popularity. Mobile smartphones continue to adopt the use

of short messages services accompanied with a scenario for spamming to

thrive. Spams are unsolicited message or inappropriate contents. An effective

spam filter studies are limited as short-text message service (SMS) are 140-

bytes, 160-characters, and rippled with abbreviation and slangs that further

inhibits the effective training of models. The study proposes a string match

algorithm used as deep learning ensemble on a hybrid spam filtering

technique to normalize noisy features, expand text and use semantic

dictionaries of disambiguation to train underlying learning heuristics and

effectively classify SMS into legitimate and spam classes. Study uses a profile

hidden Markov network to select and train the network structure and employs

the deep neural network as a classifier network structure. Model achieves an

accuracy of 97% with an error rate of 1.2%.

Keywords:

Boyer Moore string matching

Hybrid algorithm

Spam

Spam filters

String matching

Text processing

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arnold Adimabua Ojugo

Department of Computer Science

Federal University of Petroleum Resources Effurun

P.M.B. 1221, Effurun, Warri, Delta State, Nigeria

Email: ojugo.arnold@fupre.edu.ng, maryarnoldojugo@gmail.com and arnoldojugo@gmail.com

1. INTRODUCTION

Mobile devices are redefining the communication needs, style, and infrastructure worldwide today.

At its center is the mobile smartphone – with its wide acceptability due to its portability, ubiquity of services

and low cost of sending messages that has consequently, promoted short text messages to become the most

used means of electronic communication in the world today. Short-text message service (SMS) is the text

communication service component of phone, web or mobile communication systems that uses standardized

communications protocols that allow the exchange of short text messages between fixed line or mobile phone

devices. The proliferation of the smartphone has today witnessed an estimated over 8 billion SMS was sent

and received in Nigeria alone [1]–[3]. The tremendous rise in the usage of SMS can be attributed to the ease

of use, ubiquity in nature, high open rates, low cost of transaction and inherent trust in the channel [4]–[6].

The advent of short messaging services by Neil Papworth since 1992, has seen great penetration and

a tremendous growth rate of the service. Advent of mobile phones with enhance features has contributed to

the large-scale adoption of SMS [3]. Increased popularity and proliferation of SMS has also seen a

corresponding rise in unsolicited SMS called spams. The ITU 2005 campaign witnessed a rise in the

unsolicited commercial adverts as sent to mobile phones via SMS. Recent drift from email to SMS spams is

https://creativecommons.org/licenses/by-sa/4.0/
mailto:ojugo.arnold@fupre.edu.ng

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 3, September 2021: 519 - 527

520

attributed to the availability of effective email filters, user awareness and industry collaboration [7], [8].

Spams are unsolicited electronic messages that include, and not limited to, emails, SMS, Voice over IP, and

instant messaging from chats. Spams are unsolicited, unwanted messages from a sender and is thus, sent

indiscriminately with no prior relationship to a user, mostly for commercial reasons [9]–[11]. SMS spams

have since become enormous challenge – causing great loss of revenue to service providers and or mobile

network operators and users in general. In total, spams have grown by over 500% from just 2015 to 2019 to

billions sent and received worldwide; Implying that lots of mobile phone users are handicapped in the control

of the number of spams they receive [12]. Besides being distractive and annoying, users need a certain degree

of privacy with their phones and free from Spam and viruses’ invasions [13]–[16]. Mobile network operators

are geared towards reducing the number of spams over their network as such flooding makes the SMS

channel more invasive and less secure [17].

Ojugo and Eboka [1] noted that the rising trend in the usage of SMS, which coincidentally has also

caused a rise in SMS spams can be attributed to: Trust in SMS channel, high open rate, low cost of

transaction, and convenient ease. SMS has great benefit for both subscribers and operators in diverse ways

centered on convenience, flexibility, seamless integration of messaging services and data access. Others may

include [2], [4]: delivery of notifications, guaranteed delivery, reliable, low-cost for concise data, ability to

screen messages and return calls, increases productivity, more sophisticated functionality provides enhanced

user benefits, delivery to multiple users at same time, ability to receive diverse information, e-mail

generation, creation of user groups, integration with other data and Internet-based application, and increase in

revenue for mobile network operators (MNO).

a. Sources of spams

SMS spam is generated from various sources; one of the typical spam sources is number harvesting,

which is carried out by Internet sites offering “free” services. End users can also receive mobile spam from

the following sources [1], [4]: organizations and individuals that pay MNO to deliver SMS to the subscribers:

They are responsible for the highest number of spams received on subscriber’s mobile phones. Although,

MNOs have adopted and enforced use of opt-out, or even opt-in processes for the user to stop receiving

promos or ads, organizations that do not pay for the SMS that are delivered to the subscribers: they are

usually worse and considered as fraud because it damages MNO brands, and individual messages that disturb

recipients.

Apart from the distracting and annoying effects of spam, other serious consequences generated from

spams include competition for network resources otherwise allocated to hams [4]. Spams attracts extra cost to

maintain effective delivery on the quality of service. Flooding the infrastructure with spams causes denial of

service for hams as well as service performance degradation due to network traffic congestion [18]. MNOs

are also faced with threat from malware spread via spams [19], which includes activities such as phishing and

other fraud related activities prominent via social engineering [20]–[24]. These all, in turn causes financial

loss, and result in damage to the mobile user’s trust on the MNO’s reputation [25].

b. Spam filters

Spam filters are today, saddled with real-time filtering efficiency, issues of misclassification due to

high false-positives and true-negative errors, cost penalties resulting from such misclassification, and the

issues of concept drift by spam makers to evade all forms of filters. Most application solutions to email spam

may not be effective for SMS adoption due to [19]–[25]: conversion of email spam filters and adaptation for

SMS spam implementation will lead to a downgrade in performance, SMS are limited as a 160-character of

140-bytes sized messages, and SMS are rife with a semantic structure that is rippled with slangs, symbols,

emoticons, and abbreviations that will inhibit effective performance in filter training and classification

support. To overcome the shortfall these challenges successfully, SMS spam filters must combine filtering

techniques to reduce noise in the dataset employed for model design and training, be able to expand

abbreviations and effectively translate the slangs and emoticons employed by users in SMS [26]–[29]. SMS

spam filters are divided into a number of broad categories based on the method used, and these include [1]–

[4]: list based, content-based, challenge/response system, collaborative and heuristics based filters. See [1],

[2], [4] for more details and classification of these types. For the purpose of this study, we adopt the content-

based filter – since SMS are broadcasted over a network, and they ultimately land to all valid contact mobile

number identified on the network without recourse to the user for consent to deliver.

c. Hybrid semantic-content list-based (SCLB) filter

The hybrid SCLB filter combines the content-based filtering and list-based filtering technique. The

content-based filtering is based on the evaluation of individual words or phrases found in message to

determine if a message is a spam or not. This method analyzes message header, subject, and body to discover

any distinctive characteristic [30], [31]. They are further classified into word-based and heuristic filters [1].

− Word-based filters use a set of rules to detect genuine from spam SMS. Also known as rule-filters, they

use rules about actual word(s) or phrase(s) in a message to classify messages into genuine and spam

Int J Artif Intell ISSN: 2252-8938 

 Boyer Moore string-match framework for a hybrid short message service… (Arnold Adimabua Ojugo)

521

classes. Rule features include word type, frequency of occurrence, structure of text (e.g., font size, color),

presence of many periods between letters (e.g., F.R.E.E), and existence of image. Rules are filter-

dependent and can vary from simple to very complex. A demerit of rule-based filters is that: they are

knowledge intensive, time consuming process in reviewing spam messages to determine the rules and

needs regular update of rules as spammers changes their tactics.

− Heuristic-based filter examines message content through various algorithms and resources and assigns

points to words or phrases. Words commonly found in spams such as “FREE” or “SEX,” receive higher

scores. Terms commonly found in normal messages receive lower scores. The filter then adds up total

scores. If the message receives a certain score (determined by an anti-spam application administrator), the

filter identifies it as spam and blocks it. Messages with score(s) lower than the target number are

delivered to the use. Examples of such heuristic methods include the Bayesian filter, k-nearest neighbors

classifier, AdaBoost classifier, Gary Robinson technique, support vector machine, neural network are

examples. Using such heuristic filters allow many spam filtering methods to be combined in its usage;

Thus, results in better performance than any single method by itself.

In addition, the list-based filter technique is described as shown in [28]–[31], [1], [4]:

− Blacklist method seeks to block unwanted messages from an already created list of senders. Blacklists are

records of email addresses, internet protocol (IP) addresses and phone numbers that have been previously

used to send spam. When incoming message arrives, spam filter checks if IP, email address or phone

number is on a blacklist. If so, the message is considered spam and rejected. Blacklists ensure known

spammers cannot reach users' inboxes. Their only demerit is that they can also misidentify legitimate

senders as spammers.

− Whitelist: Rather than specify senders to block messages from, it specifies senders to allow messages

from, stored in trusted-users list. Whitelist filters uses also, other techniques to cut down on the number of

genuine SMS that accidentally get flagged as spam. A filter that uses just whitelist implies that anyone

not approved is automatically blocked. Some anti-spams use a whitelist variation called automatic

whitelist. Here, an unknown sender address is checked against a database; if they have no history of

spamming – their message is delivered to the recipient's inbox and added to the whitelist.

− Gray-list: This filter works with the assumption that most spammers send batch of messages once. When

message from unknown address is received, it blocks and revert a failure delivery to the sending server. If

the message is resent, which most legitimate servers do, filter receives it and adds the address/phone

number to the list. Although overhead of the filter is low, its demerit is the unjust delay delivery

experienced by genuine messages to its recipient.

d. Statement of problem

The study is motivated by the following problems [1], [2], [32]–[37]:

− The continued rise in growth rate of spams as a means to exploit users have continued to cause both

financial loss and emotional instability as consequences to users, corporate organs, and mobile network

operator(s). Thus, it calls for a concerted effort to stamp out and minimize the trend in rise of spams.

− The formulation of an effective filter design has been hampered by setback(s) in SMS size limitation.

These amongst other constraints have continue to create rippled impediment to feature to be selected for

training and consequently contributing to poor learning and classification of learning algorithm.

− Also, SMS are rippled with slangs, abbreviations emoticons that inhibit proper classification of words.

− A major challenge in resolving spam proliferation has been, the adoption of email spam approaches to

SMS filters―which has proved unsuccessful due to downgrading. There is also, the issue of heuristic

adoption conflict, data encoding conflicts and filtering scheme conversion by model of choice. These

have continued to hamper the performance, flexibility, and robustness of the various filtering technique.

To overcome shortfalls, we adopt Boyer Moore string-match algorithm on a hybrid semantic-

content, list-based filter aimed to reduce noise in form of slangs, emoticons, abbreviations using semantic

approach capable of expanding the message to enhance classification accuracy.

2. MATERIAL AND METHODS

2.1. Dataset used

We adopt the UCI machine learning repository corpus. It is a public SMS spam dataset with 5,574

instances compiled in 2012, which consists of: (a) collection of 425 SMS spam messages manually extracted

from the Grumbletext web site – a UK-based forum in which cell phone users make public claims about SMS

spam messages, most of them without reporting the very spam message received. The identification of the

text of spam messages in the claims is a very hard and time-consuming task, and it involved carefully

scanning hundreds of web pages, (b) it consists of another subset of 3,375 SMS randomly chosen ham

messages of the NUS SMS Corpus (NSC), which is a dataset of about 10,000 legitimate messages collected

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 3, September 2021: 519 - 527

522

for research at the Department of Computer Science at the National University of Singapore. The messages

largely originate from Singaporeans and mostly from students attending the University. These messages were

collected from volunteers who were made aware that their contributions were going to be made publicly

available, and list of 450 SMS ham messages collected from Caroline Tag's PhD Thesis [38], [39]. The

dataset is available at: https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection.

2.2. Boyer Moore’s algorithm (BMA)

The BMA is one of the most efficient string-matching algorithms available as it actually does find

matches in a sub-linear search time. It achieves this by simply scanning through the key string from left to

right. On a miss, the key string is shifted a pre-computed number of characters to the right until a match of

the current character occurs. Then, the next character not yet matched is considered. Since the length of the

key string and the position of the current character is known, the number of characters on which the match of

the key string can occur can be computed. Figure 1 matches characters depicted as upper-case letters. On

inspecting, we note that the algorithm can find the exact string matches in a sub-linear search time. Its

demerit(s) is that: in the search for multiple key strings in a text string - the algorithm is quite inefficient, and

each key string is stored in its entirety [1].

Figure 1. The Boyer Moore algorithm [1]

In traditional BMA, the model successively aligns the pattern P (spam strings) with the text T, and

checks to see if the pattern string P matches the characters of T. With check complete, P is shifted right

relative to T. The improved BMA has three 3 ideas not contained in its naive model as: right to left scan, bad

character shift rule, and good suffix shift rule. Thus, the method examines fewer than m+n characters (at an

expected sub-linear-time), and with a certain extension, runs in linear worst-case time [1], [40], as shown in

Figure 1. In some scenarios, it is necessary to find a group of similar strings instead of an exact match. This is

equal to a string search using wildcards. For example, instead of searching for the string perl.exe, one can

search for p*rl.exe – which will also produce a result of perl.exe, parl.exe, pearl.exe. There are basically, two

mechanisms that are based on two different ideas to handle character substitution or insertions namely [1]:

− Substitution error allows the replacement of one or more characters in a key search string. So, instead of

searching the whole key string, only some positions are considered. This method cannot find character

insertions or deletions.

− Resemblance – here, the similarities of the two strings are measured by dividing the number of characters

they have in common by the length of the longer string. Formally, this equals the division of the

intersection by the union. Resemblance thus, can handle character insertion and deletion (where it exists).

Its drawback is that the character positions are not taken into account. So, the two strings perl.exe and

lexe.rpe have resemblance one. Clearly, this is not what we want. To overcome this, the order or position

numbers can be introduced.

Text String

Spam string

g c a t c a c a g a g a t t a c a c a g t a c g

g a t t a c a

No match, shift 1

Text String

Spam string

g c a t c a c a g a g a t t a c a c a g t a c g

g a t t A C A

No match, shift 9

Text string

Spam string

g c a t c a c a g a g a t t a c a c a g t a c g

G A T TA C A

Match found, continue…

Int J Artif Intell ISSN: 2252-8938 

 Boyer Moore string-match framework for a hybrid short message service… (Arnold Adimabua Ojugo)

523

2.3. The experimental BMA framework

Most stochastic models employs a scheme, whose procedure is thus: a) raw text are taken as input,

b) it then normalized by crosschecking text against dictionaries for their root form, replace slangs and expand

abbreviations using standard English words, c) it analyses normalized text to deduce their semantic concepts

via language data base BabelNet repository and word sense disambiguation, d) it then breaks down the text

corpus into individual element for the language processing algorithms, and e) it then defines parameters to

combine result of pre-processing (original text, normalization and disambiguation stage) [1]. Conversely,

BMA is quite powerful, robust, and flexible – matching strings (of texts) explained as:

− The right-to-left (RL) scan – given any set of text and a pattern string P, the traditional BMA must first

seek to align the data by first checking for the occurrence of P in the text by scanning characters from

right to left (rather than from left to right as in naive model). For the alignment of P against T, as shown

in Figure 2 – to check if P occurs in T, BMA starts at the right end of P by: first compares T(9) with P(7).

A match is found – so, it then compares T(8) with P(6), and so on and so forth, moving right to left until it

finds a mismatch when comparing T(5) with P(3). At that point, the pattern string P is shifted right

relative to T (the amount for the shift is discussed in the bad rule and good rule suffix). Then, the

comparisons begin again at the right end of P. However, if the pattern string P is shifted one place to right

after each mismatch, or after an occurrence of the pattern string P is found – then its worst-case run-time

is given by O(nm) like its naive model (at which point it is unclear why we reverser engineered the model

to compare characters from right to left). Cases where shifts of more than one position (large shifts)

occurs, also abounds in many typical applications. These are resolved using the bad rule and good rule

suffix shifts discussed below. Figure 3 shows the modified BMA framework.

Figure 2. Modified BMA with strong good suffix shift rule

Figure 3. Modified Boyer Moore algorithm

− The bad character rule – suppose the last (rightmost) character string of the pattern P is y and the

character in text T it aligns with is x ≠ y. When this initial mismatch occurs, if the rightmost position in P

of character x – we can safely shift P to the right so that the rightmost x in P is below the mismatched x in

T. Any shorter shift results in an immediate mismatch. Thus, the longer shift is correct (i.e., it will not

shift past any occurrence of P in T). Again, if x never occurs in P, we can shift P completely past the point

of mismatches in T. In these cases, some characters of T will never be examined and the method will

actually run in sub-linear time. Again, if for a particular alignment of P against T, the rightmost n-i

characters of P match their counterparts in T. However, the next character to the left, P(i), mismatches

with its corresponding text T(k) at position k. This rule notes that P be shifted right by max[1,i-R(T(k))]

places (i.e., if the rightmost occurrence in P of character T(k) is in position j < i (including the possibility

of j = 0), then we shift P so that character j of P is below character k of T. Otherwise, shift P by one

position. The essence of this shift rule is to shift P by more than one character when possible. As in

example above, T(5) = t mismatches with P(3) and R(t) = 1. So, P is shifted right by two positions. After

the shift, the comparison of P and T begins again at the right end of P [1], [2].

− Extended bad character rule: The bad character rule is useful for mismatches near the right end of P. But

it has no effect if the mismatching character from T occurs in P to the right of the mismatch point. This is

common when the alphabet is small and the text contains many similar, but not exact substrings. Some

texts may contain different regions of high similarity. In both cases, we use extended bad character rule as

it is more robust. It notes that when a mismatch occurs at position i of P and the mismatched character in

T is x; Then, shift P to the right so that the closest x to the left of position i in P is below mismatched x in

T. The extended rule gives larger shifts, and the only reason to prefer the simpler rule is its additional cost

in implementing the extended rule. The simpler rule uses only O(jj) space (is the alphabet) for array R,

and one table lookup for each mismatch. But the extended rule is implemented in only O(n) space, and at

most one extra step per character comparison. Though, the amount of added space is not often a critical

issue – the more critical question is if the longer shifts make up for the added time used by the extended

rule. The original BMA only uses the simpler bad character rule [1], [2].

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 3, September 2021: 519 - 527

524

− The good rule suffix – The bad character rule by itself is reputed to be highly effective in practice,

especially for English text; But, less effective for small alphabets as it does not lead to a linear worst-case

running time. Thus, we introduce the strong good suffix rule. The original preprocessing method, for the

strong good suffix rule is quite difficult and somewhat mysterious (though a weaker version, is easier to

understand). In fact, the preprocessing for the strong rule was given incorrectly [1], [2]. Suppose in a

given alignment of P and T, a substring t of T matches a suffix of P; But mismatch occurs at the next

comparison to the left. Then find (if it exists) the rightmost copy t’ of t in P such that t’ is not a suffix of P

and the character to the left of t’ in P differs from the character to the left of t in P. Shift P to the right so

that substring t’ in P is below substring t’ in T. If t’ does not exist, then shift the left end of P past the left

end of t in T by the least amount so that a prefix of the shifted pattern matches a suffix of t in T. If no

such shift is possible, then shift P n-places to the right. If an occurrence of P is found, then shift P by the

least amount so that a proper prefix of the shifted P matches a suffix of the occurrence of P in T. If no

such shift is possible, then shift P by n-places (i.e., shift P past t in T). For example, consider the

alignment of the pattern P in the text T [41], [42] in Figure 2.

When a mismatch occurs at position 8 (i.e., P(8)) and T(10) as asterisked, t = ab, and t’ occurs in P

starting at position P(3). Thus, P is shifted right by six places resulting in the sequence string alignment as in

Figure 4 – with its listing is in Algorithm 1. Note that the extended bad character rule would have only

shifted P by only one place as in the example.

Figure 4. Modified BMA with strong good suffix shift rule

Algorithm 1. Complete pseudocode for the Boyer Moore’s string pattern matching algorithm
Input: dataset k, cluster number cls, ham, spam, parameter s and iterations iter

Output: ham, spam

1. Given the pattern P, compute L0(i) and L1(i) for each position i of P
2. Computer R(x) for each character x 2

// Search State

3. k: n
4. while k < m, Do
5. begin
6. i = n:
7. h = k:
8. while i > 0 && P(i) = T(h), Do
9. begin
10. i = i - 1: h = h – 1:
11. end
12. if i = 0 Then
13. begin
14. report an occurrence of P in T ending at position k
15. k = k + n – 1’(2)
16. end: else
17. shift P (increase k) by maximum amount determined by
18. invoke: (a) (extended) bad character rule && (b) good suffix rule
19. end:
20. pass pattern P in T-output to List-based Unit
21. classify pattern P in T as
22. invoke: (a) ham(class) && (b) spam(class): end:
24. return classification result = final output

The frequency probability of occurrence of each word-token(s) as counted into ham or spam – is the

basis for which each incoming message is processed and classified via the string match algorithm. In the

event of error in misclassification, the model goes through the text T again using the pattern P. This will

automatically correct and update the database for future classification. Result of the classification of the filter

into ham and spam, is the expected output of this unit.

Int J Artif Intell ISSN: 2252-8938 

 Boyer Moore string-match framework for a hybrid short message service… (Arnold Adimabua Ojugo)

525

3. FINDINGS AND DISCUSSION

3.1. Model evaluation

To measure the effectiveness and accuracy of the proposed experimental model, we measure their

classification rate and improvement percentages in both training and test-dataset as summarized in Tables 1

and 2, respectively. In (1) and (2) respectively represents classification rate, and improvement percentage of

true-positive instances (A) against true-negative and false-positives (B) instances. In comparison to other

models, the proposed BMA hybrid SCLB filter has results displayed in Tables 1 and 2, respectively.

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐶𝑅) =
𝑁𝑜.𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑅𝑢𝑙𝑒𝑠

𝑁𝑜.𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑒𝑡
 (1)

Table 1. Classification rate of each model
Model Classification rates

Training data Testing data

Naïve Bayes 23.2% 52.5%

Genetic Algorithm Trained Deep Belief Bayesian Network 48.4% 67.7%

Genetic Algorithm Trained Deep Neural Network 87.6% 91.02%
Proposed BMA Hybrid SCLB 96.89% 98.09%

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐶𝑅(𝐴)−𝐶𝑅(𝐵)

𝐶𝑅(𝐴)
 𝑥 100 (2)

Table 2. Improvement percentage
Models Classification improvement

Naïve Bayes 2.4%

Genetic Algorithm Trained Deep Belief Bayesian Network 5.8%

Genetic Algorithm Trained Deep Neural Network 6.9%
Proposed BMA Hybrid SCLB 7.01%

Tables 1 and 2 respectively shows classification rate with naïve bayes, GADBN and GADNN at

23.2%, 48.4%, 87.6% respectively with the proposed BMA hybrid SCLB model at 96.89%; while showing

for test dataset with naïve bayes, GADBN, GADNN and proposed BMA hybrid SCLB at 52.5%, 67.7%,

91.02% and 98.09% respectively. It also shows an improvement rate classification (i.e., recovery from errors

in the false-positive and true-negative classifications) respectively for naïve bayes, GADBN, GADNN and

the proposed model with 2.4%, 5.8%, 6.9% and 7.01% respectively.

4. CONCLUSION

From the various approaches adopted therein by spam filters-the proposed Boyer Moore’s algorithm

with hybrid semantic-content, list-based filter does not require the text pre-processing, word normalization

and semantic approaches as in other stochastic models. Thus, saves computational time and has also proven

to be outperform others or single methods. Even with noisy data that requires text normalization and

semantic expansion (multiple approaches), our hybrid yields a better output by extracting only relevant feats

as parameter to train the hybrid classifier. This will inadvertently contribute to the efficiency of SMS spam

filters. A great deal of concerted efforts is required to combat spams. Spam filters work by first receiving part

(or all) of the message and then analyzing it in some way to decide whether it is ham (i.e., legitimate

message) or spam. SMS spam filters have the capacity and granted capability to transcribe emoticons,

abbreviations and slangs into standard terms as well as expand message size to enhance better feature

extraction for classification algorithms and approaches. The study will also serve to reduce orthographic error

found in SMS, chat groups and other social network medium that impedes learning algorithm.

REFERENCES
[1] A. A. Ojugo and A. O. Eboka, “Signature-Based Malware Detection Using Approximate Boyer Moore String

Matching Algorithm,” International Journal of Mathematical Sciences and Computing, vol. 5, no. 3, pp. 49–62,

2019, doi: 10.5815/ijmsc.2019.03.05.

[2] R. Grossi and F. Luccio, “Simple and efficient string matching with k mismatches,” Information Processing

Letters, vol. 33, pp. 113-120, 1989.

  ISSN: 2252-8938

 Int J Artif Intell, Vol. 10, No. 3, September 2021: 519 - 527

526

[3] J. M. G. Hidalgo, M. de B. Rodriguez, and J. C. C. Perez, “The role of word sense disambiguation in automated

text categorization,” in International Conference on Application of Natural Language to Information Systems,

Alicante, Spain, 2005, pp. 298-309, doi: 10.1007/11428817_27.

[4] A. A. Ojugo and A. O. Eboka, “Comparative evaluation for high intelligent performance adaptive model for spam

phishing detection, Digital Technologies,” vol. 3, no. 1, pp. 9-15, 2018, doi: 10.1269/dt-3-1-1.

[5] C. Agwu, “The Consequences of Mobile Spam in Nigeria Emerging and Evolving Mobile Communication Sector

of the Economy,” Int. Journal of Adv. Research in Computer Science and Software Engineering, vol. 5, no. 5, pp.

117-124, 2015.

[6] I. Murynets and R. over, “Analysis of SMS Spam in Mobility Networks,” International Journal of Advanced

Computer Science, vol. 1, no. 1, pp. 1-8, 2013.

[7] A. A. Ojugo and D. O. Otakore, “Intelligent cluster connectionist recommender system using implicit graph

friendship algorithm for social networks,” International Journal of Artificial Intelligence, vol. 9, no. 3, pp. 497-506,

doi: 10.11591/ijai.v9.i3.pp497-506.

[8] A. A. Ojugo., R.E. Yoro., “Extending three-tier constructivist learning model for alternative delivery: ahead covid-

19 pandemic in Nigeria,” Indonesian Journal of Elect. Engineering & Computer Science, vol. 21, no. 3, pp 1673-

1682, doi: 10.11591/ijeecs.v21.i3.pp1673-1682, 2021.

[9] N. J. Yu, A. Skudrak, and Z.-L. Zhang, “Understanding SMS spam in large Cellular Network: Characteristics,

Strategies and Defenses,” in RAID 2013: Research in Attacks, Intrusions, and Defenses, International Workshop on

Recent Advances in Intrusion Detection, vol. 27, no. 6, pp. 15-26, 2013, doi: 10.1007/978-3-642-41284-4_17.

[10] T. A. Almeida, T. P. Silva, I. Santos, and J. M. G. Hidalgo, “Text normalization and semantic indexing to enhance

Instant Messaging and SMS spam filtering,” Knowledge-Based Systems, vol. 108, no. 15, pp. 25-32, 2016, doi:

10.1016/j.knosys.2016.05.001.

[11] D. Oyemade and A. A. Ojugo, “A property oriented pandemic surviving trading model,” International Journal of

Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 7397-7404, 2020, doi:

10.30534/ijatcse/2020/71952020.

[12] H. Sajedi, G. Z. Parast, and F. Akbari, “SMS Spam Filtering Using Machine Learning Techniques: A Survey,”

Machine Learning Research, vol. 1, no. 1, pp. 1-14, 2016, doi: 10.11648/j.mlr.20160101.11.

[13] A. Narayan and P. Saxena, “The curse of 140 characters: Evaluating the efficacy of SMS spam detection on

Android,” in Proceedings of the Third ACM workshop on Security and privacy in smartphones & mobile devices,

Berlin, Germany, 2014, pp.33–42, doi: 10.1145/2516760.2516772.

[14] M. T. Nuruzzaman, C. Lee, M. F. A. bin Abdullah, and D. Choi, “Simple SMS spam filtering on independent

mobile phone,” Journal of Security and Communication Networks, vol. 5, no. 10, pp. 1209-1220, 2012, doi:

10.1002/sec.577.

[15] A. A. Ojugo and A. O. Eboka, “Mitigating technical challenges via redesigning campus network for greater

efficiency, scalability and robustness: a logical view,” International Journal of Modern Education & Computer

Science, vol. 6, pp. 29-45, 2020, doi: 10.5815/ijmecs.2020.06.03.

[16] D. Cook, J. Hartnett, K. R. Manderson, and J. Scanlan, “Catching Spam before it arrives: Domain Specific

Dynamic Blacklists,” in Proceedings of the Fourth Australasian Symposium on Grid Computing and e-Research

(AusGrid 2006) and the Fourth Australasian Information Security Workshop (Network Security) (AISW 2006),

Hobart, Tasmania, Australia, January 2006, vol. 54, pp. 193-202, doi: 10.1145/1151828.1151851.

[17] B. Han and T. Baldwin, “Lexical Normalisation of Short Text Messages,” in The 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies, Portland, USA 2011, pp. 368-378.

[18] O. B. Longe, A. Robert, S. C. Chiemeke, and F. O. Ojo, “Features outliers and their effects on the efficiencies of

text classifiers in the domain of electronic mail,” The Journal of Computer Science and its Applications, vol. 15,

no. 2, pp. 1-8, 2008.

[19] I. A. Gheyas and L. S. Smith, “Feature subset selection in large dimensionality domains,” Pattern Recognition, vol.

43, no. 1, pp. 5-13, 2010, doi: 10.1016/j.patcog.2009.06.009.

[20] S. Hsib, M. Motwani, and A. Saxena, “Anti-Spam methodologies: a comparative Study,” International Journal of

Computer Science and Information Technologies, vol. 3, no. 6, pp. 5341-5345, 2012.

[21] S.-S. Hong, W. Lee, and M.-M. Han, “The Feature Selection Method based on Genetic Algorithm for Efficient of

Text Clustering and Text Classification,” International Journal of Advances in Soft Computing and its

Applications, vol. 7, no. 1, pp. 23-40, 2015.

[22] A. A. Ojugo and A. Eboka, “Inventory management and prediction using market basket analysis associative rule

mining: memetic algorithm approach,” International Journal of Informatics and Communication Technology (IJ-

ICT), vol. 8, no. 3, pp. 128-138, doi: 10.11591/ijict.v8i3.pp128-138.

[23] C. Kobus, F. Yvon, and G. Damnati, “Normalizing SMS: are two metaphors better than one?,” In Proceedings of

the 22nd International Conference on Computational Linguistics (COLING 2008), Morristown, NJ, USA, 2008, pp

441–448.

[24] C. Wang, et al., “A behavior-based SMS antispam system,” IBM Journal of Research and Development, vol. 54,

no. 6, pp. 3:1-3:16, Nov.-Dec. 2010, doi: 10.1147/JRD.2010.2066050.

[25] P. G. Juneja and R. K. Pateriya, “A Survey on Email Spam Types and Spam Filtering Techniques,” International

Journal of Engineering Research & Technology (IJERT), vol. 3, no. 3, pp. 2309-2314, 2014.

[26] T. B. Shahi and A. Yadav, “Mobile SMS Spam Filtering for Nepali Text using Naïve Bayesian and Support Vector

Machine,” International Journal of Intelligence Science, vol. 4, no. 1, pp. 24-28, 2014, doi:

10.4236/ijis.2013.41004.

Int J Artif Intell ISSN: 2252-8938 

 Boyer Moore string-match framework for a hybrid short message service… (Arnold Adimabua Ojugo)

527

[27] S. Delany, C. Padraig, T. Alexey, and C. Lorcan, “A case-based technique for tracking concept drift in spam

filtering,” Knowledge-Based Systems, 32, pp. 187-195, 2004.
[28] N. Desai and M. Narvekar, “Normalization of Noisy Text Data,” Procedia Computer Science, vol. 45, pp. 127-132,

2015, doi: 10.1016/j.procs.2015.03.104.

[29] T. Dayarante, T. Chaminda, H. K. N. Amarasingha, and J. M. R. S. Jayakody, “Content-based hybrid SMS spam

filtering system,” in Proceedings of ITRU Research Symposium, University of Moratuwa, Sri Lanka, 2013, pp. 31-

35.

[30] G. Sethi and V. Bhootna, “SMS Spam Filtering Application using Android,” International Journal for Computer

Science and Information Technologies, vol. 5, no. 3, pp. 1424-1426, 2014.

[31] G. V. Cormack, J. M. G. Hidalgo, and E. P. Sanz, “Spam Filtering for Short Messages,” in Proceedings of the

Sixteenth ACM Conference on Information and Knowledge Management, CIKM 2007, Lisbon, Portugal, 2007, pp.

313-320, doi: 10.1145/1321440.1321486.

[32] Q. Xu, E. W. Xiang, Q. Yang, J. Du, and J. Zhong, “SMS Spam Detection Using Noncontent Features,” in IEEE

Intelligent Systems, vol. 27, no. 6, pp. 44-51, Nov.-Dec. 2012, doi: 10.1109/MIS.2012.3.

[33] A. K. Uysal, S. Gunal, S. Ergin, E. Sora Gunal, “The impact of feature extraction and selection on SMS spam

filtering,” Journal Elektronika IR Elektrotechnika, vol. 19, no. 5, pp. 67–72, 2013.

[34] R. Daoud and I. Jebril, “Computer virus strategies and detection methods,” International Journal of Open Problems

Computational Mathematics, vol. 1, no. 2, pp. 46-56, 2008

[35] W. Cuker, S. Cody, and E. Nesselroth, “Genres of spam: expectations,” Progress in Intelligence Computing and

Applications, vol. 2, no. 1, pp. 22-33, 2013, doi: 10.4156/pica.vol2.issue1.2.

[36] G. Wittel and F. Wu, “On attacking statistical spam filters,” In Proceedings of First Conference on Email and Anti-

Spam, CSEA ‘ 2004, 44, pp. 37-45, 2004.

[37] A. A. Ojugo and R. E. Yoro, “Forging a machine learning intrusion detection framework to curb the distributed

denial of service attack,” International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 2, pp.

126-132, 2021, doi: 10.11591/ijece.v11i2.pp1498-1509.

[38] I. Androulidakis, V. Vlachos, and A. Papanikolaou, “FIMESS: filtering mobile external SMS spam,” in 6th Balcan

Conference in Informatics (BCI 2013), Thessaloniki, Greece, 2013, pp. 221-227, doi: 10.1145/2490257.2490288.

[39] J. M. G. Hidalgo, G. C. Bringas, E. P. Sanz, and F. C. Garcia, “Content-based SMS Spam filtering,” in Proceedings

of the 2006 ACM Symposium on Document Engineering, Amsterdam, The Netherlands, 2006, pp. 107-114, doi:

10.1145/1166160.1166191.

[40] A. A. Ojugo and O. D. Otakore, “Forging an optimized Bayesian network model with selected parameter for

detection of the Coronavirus in Delta State of Nigeria,” Journal of Applied Science, Engineering, Technology and

Education, vol. 3, no. 1, pp. 37-45, 2020, doi: 10.35877/454RI.asci2163.

[41] A. A. Ojugo and A. Eboka, “Memetic algorithm for short messaging service spam filter text normalization and

semantic approach,” International Journal of Informatics and Communication Technology (IJ-ICT), vol. 9, no. 1,

pp. 13-27, 2020, doi: 10.11591/ijict.v9i1.pp9-18.

[42] A. A. Ojugo, A. O. Eboka, R. E. Yoro, M. O. Yerokun, and F. N. Efozia, “Hybrid Model for Early Diabetes

Diagnosis,” 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry

(MCSI), Sliema, Malta, 2015, pp. 55-65, doi: 10.1109/MCSI.2015.35.

