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 The gait cycle prediction model is critical for controlling assistive 

rehabilitation equipment like orthosis. The human gait model has recently 

used statistical models, but the dynamic properties of human physiology limit 

the current approach. Current human gait cycle prediction models need 

detailed kinematic and kinetic data of the human body as input parameters, 

and measuring them requires special instruments, making them difficult to 

use in real-world applications. In our study, three separate machine learning 

algorithms were used to create a human gait model: Gaussian process 

regression, support vector machine, and decision tree. The algorithm used to 

create the model's input parameters are height, weight, hip and knee angle, 

and ground reaction force (GRF). For better gait cycle model prediction, the 

models produced were enhanced by incorporating different sliding window 

data. The best gait period prediction model was DT with sliding window data 

(t−3), which had a root mean square error of 3.3018 and the R-squared  

(R-Value) of 0.97. The projection model focused on hip and knee angle and 

GRF was a feasible solution to controlling assistive rehabilitation devices 

during the gait cycle. 
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1. INTRODUCTION 

Human gait rehabilitation is the process of regaining patient mobility from paralyzed muscles caused 

by neurological disorders such as stroke and SCI [1]. The technique in human gait rehabilitation includes 

orthosis [2], [3], and functional electrical stimulation (FES) [4], [5] as the assistive device to help the 

rehabilitation process. Gait analysis is the biomedical study of the lower limbs during locomotion [6]. Medical 

practitioners often face the daunting prospects of storing and analyzing vast volumes of data typically obtained 

during several gait cycles. For example, Chen et al. [7] highlighted the difficulties faced by doctors in assessing 

quantitative analysis of gait anomalies, thus developing a gait acquisition and analysis method for osteoarthritis 

prediction model using RGB-D camera. In gait rehabilitation, researchers such as Galli et al. [8] and Vallery 

et al. [9] have used the data collected during gait rehabilitation for the purpose of exoskeleton control designs 

to suit patient needs during rehabilitation. The data collection of gait study used technique such as optical 

system, electromyography, goniometric system, and imaging [10]-[13]. Quantification of walking parameters 

by the gait cycle is important for a deeper understanding of human locomotion and for the regulation of assistive 

devices. A gait can be divided into stance and swing phases, separated by initial contact and foot-off events as 

https://creativecommons.org/licenses/by-sa/4.0/
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shown in Figure 1. The stance and swing phases are divided into 60% and 40% of the gait cycle. Gait patterns 

can be recognized from kinetic and kinematic parameters during gait progression. 

 

 

 
 

Figure 1. Gait cycle phases [13] 

 

 

Research conducted by Farah et al. [14] determined gait phase detection can be implemented by using 

machine learning techniques. The parameters used in the study were knee angle, thigh angular velocity, and 

thigh center of gravity acceleration for all planes of gait progression. The study was done in the laboratory 

setting, with more than 97% accuracy for the identification of gait events. However, the used of all three 

sagittal, coronal, and transverse planes of gait progression for detection of gait cycle may lead to difficulties in 

usage of the detection model. On the other hand, despite using the above-mentioned parameters, Mahdavian et 

al. [15], developed the model for lower limb motion by using machine learning techniques from ground 

reaction forces (GRF) parameter. The model developed successfully predicted the user’s gait steps with more 

than 80% accuracy, which was then incorporated with the hip exoskeleton control scheme. However, the 

detected GRFs value at all planes of gait regression may not identically represent the gait cycle itself. Susanto 

et al. [16], investigated the use of artificial neural network (ANN) for a prediction of the assistive torque 

required for lower limb exoskeleton from previous human walking gait cycles and the center of pressure (CoP). 

The study successfully controlled the lower limb exoskeleton from the prediction of ANN on the different 

walking speed situations. It is suggested that more input variables should be given to ANN so that better 

prediction models can be developed. Another research by Young et al. [17] and Kilmartin et al. [18] used 

dynamic Bayesian networks (DBN) to determine the current state and make a prediction of what the next state 

will be, which takes into account previous data and states. Subject-independent algorithms that include 

generalized gait and transition prediction classification have also shown promise for both able-bodied subjects 

and users of prostheses. In the laboratory setting, these algorithms were highly accurate, with greater than 95% 

accuracy for the detection of gait events. Building on the success of previous work stated above, artificial 

intelligence algorithms have been put in place to leverage the temporal nature of gait data and to optimize the 

classification or prediction of gait events. These algorithms require large sensory arrays, i.e., multiple 

mechanical and neuromuscular sensors for classification and predictions. From these scenarios it seems that 

the prediction of gait cycle during gait progression is vital and better control schemes can be developed for 

rehabilitation assistive devices such as orthosis and exoskeleton. The goal of this research work is to predict 

the gait cycle using the selected features that includes knee angle, hip angle and GRF at sagittal plane using 

machine learning algorithms. In this work, Gaussian process regression (GPR), support vector machine (SVM) 

and decision trees (DT) were used and compared to predict gait cycle. 

 

 

2. RESEARCH METHOD 

The studies conducted in this research included developing the gait cycle prediction model using three 

different machine learning algorithms that were GPR, SVM and DT. In order to develop the model, the study 

work was begun with data preparation for the training, parameter selection and sliding window, constructing 

the gait cycle prediction model and model performance evaluation via root means square error (RMSE) and R-

Squared (R-Value) values. Figure 2 shows the flowchart of work carried out in this research. 
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Figure 2. Prediction of gait cycle methodology 

 

 

2.1.  Data preparation 

Dataset from the volunteers consisting of 24 young adults (age 27.6 ± 4.4 years, height 171.1 ± 10.5 

cm, and mass 68.4 ± 12.2 kg) were retrieved from Fukuchi et al. [19]. The dataset contains kinematics data of 

joint angles and moment of the hip, knee, and ankle joints and of the pelvis and foot segments during 

overground walking at various speeds. Figure 3 shows joint angle of hip and knee and GRF at the sagittal, 

frontal, and transverse planes. 

All gait trials were performed at three different speeds: comfortable speed, and then at a speed of 30% 

faster and a speed of 30% slower than the comfortable speed. The dataset used as the parameters for this study 

are the volunteer information namely weight and height, joint angles of hip and knee, and GRF at sagittal plane. 

There are several techniques that have previously been used for gait cycle detection, for instance, using angle 

measurement using goniometers at hip, knee, and ankle joints [20] and ground reaction force measurement 

using pressure sensors [21]. 

The input parameters extracted from the dataset used in this study are weight (Kg), height (cm), hip 

angle (deg) and knee angle (degree) and one output data, which is the gait cycle (%). Initially, the gait cycle 

prediction model is developed by using the current step of all the input parameters used. Then the model 

training data in each step was combined with one of the previous ones in order to better observe the effect of 

gait cycle in the model and enhance the accuracy. This approach is called sliding window technique, where the 

idea is to feed not only input parameters at current gait cycle, but also previous input parameters, thus it can 

incorporate auto correlation information into the model as suggested by Khairuddin et al. [22]. This way the 

variation in each input could be better counted for by the models. All input and output parameters are listed in 

Table 1. These input and output parameters are used as the equation variables for all machine learning 

techniques used in this study. 

 

 

 
 

Figure 3. Joint angle of hip and knee and GRF at the frontal (x-axis), transverse (y-axis) and sagittal planes 

(z-axis) [19] 
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Table 1. Input and output parameters to machine learning models 
Input Output 

Weight, Height, Hip Angle, Knee Angle, Ground Reaction Force Gait Cycle 

 

 

2.2.  Machine learning technique 

Machine learning (ML) discipline is a subset of artificial intelligence (AI) concerned with the ability 

of computer systems or machines to improve performance automatically throughout its input parameter during 

data training process [23]. ML algorithms were used to implement into the different models. According to 

recent study in prediction of using ML, it shows that Gaussian process regression (GPR), support vector 

machine (SVM) and decision tree (DT) yield advantage in speedup the ability to predict in generalization 

performance and in case of small sample [24]-[26]. Thus, by knowing the advantages of those ML algorithms 

we used GPR, SVM and DT in this study to develop the gait cycle prediction model. 

 

2.2.1. Gaussian process regression 

GPR method is a supervised machine learning method. GPR is completely specified by its mean 

function and covariance function. As explained by Quinonero-Candela et al. [27], the learning regressor is 

quantified in terms of the Bayesian estimation problem, for which predictive role is inferred from the 

deployment of an arbitrary procedure derived from the Gaussian distribution. Given a training input parameter 

data 𝑥∗ the best estimate of the output value, gait cycle, 𝑓∗ connected with it is represented by the anticipation 

of the anticipated output quantity to L and 𝑥∗: 

 

𝑓∗̂| L, 𝑥∗  ~E{𝑓∗ | L, 𝑥∗} = ∫ 𝑓∗𝑝(𝑓∗ | L, 𝑥∗) 𝑑𝑓∗ (1) 

 

The gait cycle predictive distribution 𝑝(𝑓∗ | L, 𝑥∗) can be shown in: 

 

𝑝(𝑓∗|L,𝑥∗)∼N (𝜇∗,𝜎∗
2) (2) 

 

where 

 

𝜇∗ = 𝑘∗
𝑡 [𝐾 + 𝜎𝑛

2𝐼]−1 ⋅ 𝑦 + 𝑏 (3) 

 

𝜎∗
2 = k(𝑥∗,𝑥∗) – 𝑘∗

𝑡 [𝐾 + 𝜎𝑛
2𝐼]−1𝑘∗ (4) 

 

And, given a covariance function 𝑘(𝑥, 𝑥′), K and 𝑘∗ represent training samples covariance matrix and 

covariance vector between training samples and sample x∗ respectively. In addition, 𝑏, 𝜎𝑛 and I are bias factor, 

noise variance, and identified matrix, respectively. It is indeed possible to restore two critical components from 

them: i) the mean 𝜇∗ which implies the best estimate of the output value according to (1) for the sample 

considered; ii) the variance 𝜎∗
2 which reflects a confidence measurement linked to the output by the model. 

The covariance function 𝑘(𝑥, 𝑥′) plays a pivotal role as it embeds the geometrical formation of the training 

samples. Squared exponential function is a normal choice for the covariance function: 

 

𝑘(𝑥, 𝑥′) = 𝜎𝑓
2 𝑒𝑥𝑝 (−

|𝑥−𝑥′|

2𝑙2 ) (5) 

 

where, respectively, the two hyperparameters 𝜎𝑓
2 and 𝑙 are described as process variance and length scale. 

 

2.2.2. Support vector machine (SVM) 

The training data (𝑥𝑘 , 𝑦𝑘)𝑘=1
𝐼  in that, 𝑥𝑘 ∈ 𝑅𝑛 is n dimension sample input, 𝑦𝑘  ∈ R is the sample 

output. From nonlinear map function 𝜑(·), the trained dataset was plotted non-linearly to a high dimension 

feature space (Hilbert space), then the nonlinear system recognition complexity was translated into a linear 

function that estimates the problem in a high dimension feature space. Complete formulation and deviation of 

SVM for regression can be found at [28]. Supposed the gait cycle prediction function as shown in (6). 

 

𝑓(𝑥) = 𝜔Τ 𝜑 (𝑥𝑘) + 𝑏 𝜔 ∈  𝑅𝑛ℎ  , 𝑏 ∈ R (6) 

 

In the formula, the input space is plotted by nonlinear functions to an unclear dimension of feature 

space. The function estimation problem involves finding the minimum of the function f(x), based on the 

structure risk minimization principle of Vapnik: 
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𝑅𝑟𝑒𝑔 =
1

2
 ∥ 𝜔 ∥2 + C ∙  𝑅𝑒𝑚𝑝

𝑡  (7) 

 

where ‖𝜔‖2 describes the complexity of model function 𝑓(𝑥), the constant C > 0 can be regulated to 

compromise between the error of the train and complexity of the model. The experiential risk: 

 

𝑅𝑒𝑚𝑝
𝑡  = 

1

𝐼
∑ | 𝑦 − 𝑓(𝑥)𝑡

𝑖=1 |𝑡 (8) 

 

Insensitiveness loss function |𝑦 = 𝑓(𝑥)|𝜖 is defined as (9): 

 

𝑦 − 𝑓(𝑥)|𝜖 = 𝑚𝑎𝑥{𝑂, |𝑦 − 𝑓(𝑥)| − 𝜀} (9) 

 

Then (7) minimum risk function is equal to optimizing the following problem. The object function: 

 

𝑚𝑖𝑛
𝜔𝑏𝜉𝜉∗

𝐽 =
1

2
∥ 𝜔 ∥2+ 𝐶 ∑ (𝜉𝑗 + 𝜉𝑗

∗)
𝑙

𝑖=1
 (10) 

 

The constraints: {
∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝐼

𝑖=1
= 0

𝛼𝑖 , 𝛼𝑖
∗ ∈ [0, 𝐶]

 . The output of support vector machine is: 

 

{
𝜔 = ∑ (𝑎𝑖 − 𝑎𝑖

∗)4(𝑥𝑖)
𝑛5𝑣

𝑖=1

𝑓(𝑥) = ∑ (𝑎𝑖 − 𝑎𝑖
∗)𝑘(𝑥𝑖 , 𝑥)

𝑛𝑠𝑣

𝑖=1
+ 𝑏

 (11) 

 

where 𝑥𝑖 in (𝑎𝑖 − 𝑎𝑖̇
∗) ≠ 0 is support vector, 𝑎𝑖 − 𝑎𝑖̇

∗ is support value, and 𝑛𝑠𝑣 is the number of support vector. 

The kernel function 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝑇𝜑(𝑥𝑗) is an arbitrary symmetry function that is acceptable with the 

Mercer condition. 

 

2.2.3. Decision trees (DT) 

A DT is a recursive binary division into a set of rectangles for a future space. The tree is a simple 

function of the input in every rectangle; it is usually a constant. Therefore, the input-output map of a DT has 

the form of as refer from classification and regression tree [29] developed by Breiman in 1984 which the 

algorithm for DT: 

 

𝒴 = 𝑡(𝓍) = ∑ 𝐶𝑖
𝑘
𝑖=1 𝐼(𝑥 ∈ 𝑅𝑖  (12) 

 

where 𝓍 is the input parameter data N-dimensional vector, 𝓍 = (𝑥1 ,𝑥2 , ...,𝑥𝑛 ) and I is the input indicator 

function which assumes a value of 1 if the input is true and 0 otherwise. Whenever the input 𝓍 is in rectangle 

𝑅𝑖 , the tree takes outputs the value 𝐶𝑖 . Complex functions can be recognized by using a good enough partition. 

It is possible to extract the output of a DT very soon by performing a couple of observations. There is a pair 

(𝑗, 𝒮)at each node of the tree, where 𝑗 is the index of a variable 𝑥𝑗 in the input vector 𝓍, and 𝒮 is the threshold. 

If 𝑥𝑗 < 𝒮, the tree is descends to the left, otherwise it descends to the right. In the tree, leaf nodes differ from 

regular nodes in that they store only a constant value. When a tree descends, the output is the constant value ci 

for that node upon reaching a leaf node. Although comparisons are made with the 𝓍 elements, the sides of the 

𝑅𝑖 regions are parallel to the axes of the coordinates. 

 
2.3.  Sliding window data (SWD) 

To improve the accuracy on the prediction of gait cycle, an SWD prediction scheme was proposed. A 

SWD is normally used to segment a data sequence [30], which in our study SWD on the input parameter of hip 

angle, knee angle and ground reaction force is used. This study used three different window size of 3 gait cycles 

for training and validation of the gait cycle prediction models. The SWD is represented in (13). 

 

SWD = [(𝑥𝑡  , 𝑦𝑡̂), (𝑥𝑡   ̶1 , 𝑦𝑡̂  ̶ 1), . . . . , (𝑥𝑡 ̶ N ̶ 1 , 𝑦𝑡̂  ̶ N ̶ 1)] (13) 

 

where N is the sliding window width, 𝓍 and 𝑦 are output and output vectors, respectively. The input matrix is 

𝑥 = [𝑥𝑡 , … , 𝑥𝑡 = 𝑁 + 1] ∈ 𝑅𝑛𝑥×𝑁 and the output matrix is 𝑦 = [𝑦̂𝑡 , … , 𝑦𝑡 − 𝑁̂ + 1]
𝑇

∈ 𝑅𝑛𝑦𝑥𝑁, respectively, 

where 𝑛𝑥 and 𝑛𝑦 are input and output dimensions. Data 𝑥(𝑡 − 𝑁), 𝑥(𝑡 − 𝑁 + 1), ⋯ , 𝑥(𝑡 − 1) is the training 
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input data at gait cycle 𝑡, and 𝑥(𝑡) is the gait cycle output data. The data at gait cycle 𝑡 + 1 is the value to be 

predicted after the training period, based on the current 𝑥(𝑡 − 𝑁 + 1), 𝑥(𝑡 − 𝑁 + 2), … , 𝑥(𝑡) input update. 

Figure 4 can be used to express the scheme of SWD. 

 

 

 
 

Figure 4. SWD 

 

 

2.4.  Training and testing 

As according to study by Kumari et al. [31] and Shams-Baboli and Ezoji [32], the training and 

validation or testing dataset was set at 70% and 30% respectively, with good accuracy result. Hence, the dataset 

was divided into three part 70% of the total data was used for training, 15% used for validation, and the 

remaining 15% used for testing. In the case of small sample size data, a cross-validation method was used to 

evaluate the performance of the gait cycle prediction model. A five-fold cross-validation scheme, that is, 24 

young adult results, was divided into five segments. Firstly, the prediction model was trained and built using 

four out of the five segments, and the remaining one was used for validation. Secondly, the procedures 

described above have been replicated five times. Finally, to achieve a final output result, the five prediction 

results were averaged. The training and validation were carried out with four different SWD conditions that 

are i) 𝓍(t), ii) 𝓍(t − 1), iii) 𝓍(t − 2) and iv) 𝓍(t − 3). The RMSE and R-Value were used to measure the correlation 

between predicted gait cycle by each machine learning technique and the actual target values. These two 

criteria, RMSE and R-Value, were used as the basis for training and selecting the idealized prediction model. 

RMSE was calculated based on actual value and those predicted by GPR, SVM and DT model, respectively, 

using: 

 

RMSE = √(∑(𝑦̂𝑖 − 𝑦𝑖)2)𝑁 (14) 

 

and R-Value can be presented as (15). 

 

𝑅2 = 1 ̶ 
𝛴𝑖(𝑦𝑖−𝑦̂𝑖)2

𝛴𝑖(𝑦𝑖−𝑦̅)2  (15) 

 

where 𝑦̂i=predicted value, 𝑦𝑖=actual value, 𝑦̅=is mean of the actual value and N=number of measured data 

points. 

 

 

3. RESULTS AND DISCUSSION 

In this section, the training, validation, and testing for the gait cycle prediction model are discussed. 

As discussed in the methodology section, different types of machine learning technique GPR, SVM and DT 

are used to develop gait cycle prediction model. The model is with and without the enhanced SWD, and the 

RMSE and R-Value results are compared and discussed. Then, the gait cycle prediction model is tested with 

the RMSE and R-Value results are compared from subjects’ data that was not used during the training and 

validation process. 

 

3.1.  Training and validation: Gait cycle prediction model using GPR, SVM and DT 

We applied GPR, SVM and DT to gait cycle prediction using joint angles of hip and knee and GRF 

dataset of humans during normal gait without any additional input parameter of SWD technique. The training 

and validation results with different types of machine learning technique GPR, SVM and DT are summarized 

in Table 2. Results are expressed in terms of RMSE and R-Value for estimation of which is the best model to 

be used. The results on GPR, SWM and DT training show that for RMSE and R-Value of 13.297 and 0.78, 

14.059 and 0.77, and 11.535 and 0.84 for GPR, SVM and DT, respectively. Over the three models validated 
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here, SVM and GPR models had similar performance because they are exemplar-based kernel machines. In 

addition, study by Hultquist et al. [33] and Nguyen-Tuong and Peters [34] shows that SVM often gives a sparse 

model that is fitted only from a subset of training samples, whereas GPR is a full model based on all the training 

samples. At this stage, DT model had the highest performance result compared to GPR and SVM model, where 

the prediction result is shown in Figure 5. The performance result for GPR in Figure 5(a) and SVM in  

Figure 5(b) was low as compared to DT model in Figure 5(c), because at gait cycle 0%−10% and 90%−100%, 

the prediction did not fitted nearly to the accurate prediction level. However, from 10%−90% of gait cycle, the 

prediction fitted at the accurate prediction level, indicating that all GPR, SVM and DT model have good 

performance for gait cycle prediction. 
 

 

Table 2. Result on different training model for gait cycle prediction 
 Training Validation 

 GPR SVM DT GPR SVM DT 

RMSE 13.297 14.059 11.535 14.983 14.665 12.234 

R-Value 0.78 0.77 0.84 0.76 0.76 0.82 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 5. Model prediction result without SWD, straight line indicates accurate prediction level; (a) GPR 

model, (b) SVM model, (c) DT model 

 

 

3.2. Training and validation: Gait cycle prediction model enhancement using SWD  

The training results with different types of sliding window (𝑡 = 0, 𝑡 − 1, 𝑡 − 2, 𝑡 − 3) data are 

summarized in Table 3. The results for sliding window 𝑥(𝑡 − 3) for GPR, SWM and DT models are shown in 

Figure 6 and gait cycle prediction accuracy with RMSE and R-Value of each machine learning technique are 

presented in Table 4. For all the training models, the RMSE and R-Value decreased when the sliding window 

of input data increased. This is because more previous information can be fed into the training model so that it 

will enhance the accuracy in the prediction gait cycle. Among the three different models, DT model gives good 

results with accuracy of 11.535 (RMSE) and 0.84 (R-Value) at 𝓍(𝑡 = 0) and 3.7769 (RMSE) and 0.98 (R-

Value) at 𝓍(𝑡 − 3). From the training results also, during sliding window 𝓍(𝑡 − 3), all the models show good 

accuracy with 9.3034 and 0.90, 7.3247 and 0.94, and 3.7769 and 0.98 for RMSE and R-Value for SVM, GPR 

and DT model, respectively. In GPR and SVM model, as according to Figure 6(a) and Figure 6(b), the predicted 
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response during early 10% and late 90% had improved compared with the results without SWD, as shown in 

Figure 5(a) and Figure 5(b). However, from 10% to 90% gait cycle the result showed a good prediction level 

as it fitted near to the accurate prediction level. In contrast, for DT model as shown in  

Figure 6(c), the predicted response fitted evenly along the accurate prediction level. Thus, the best model for 

gait cycle prediction to be used during testing was the DT model. 
 

 

Table 3. Result on different training model for different SWD 
 SWD 
  t=0 t-1 t-2 t-3 

GPR RMSE 13.297 7.4239 7.4391 7.3247 

R-Value 0.78 0.93 0.93 0.94 

SVM RMSE 14.059 9.7712 10.32 9.3034 
R-Value 0.77 0.87 0.89 0.90 

DT RMSE 11.535 5.5761 5.4101 3.7769 

R-Value 0.84 0.96 0.97 0.98 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 6. Model prediction result with SWD, straight line indicate accurate prediction level; (a) GPR model, 

(b) SWM model, (c) DT model 

 

 

Table 4. Accuracies of gait cycle prediction 
 Training Validation 

 RMSE R-Value RMSE R-Value 

SVM 9.3034 0.90 9.8183 0.89 
GPR 7.3247 0.93 7.5665 0.92 

DT 3.7769 0.98 3.3018 0.97 

 

 

Dey et al. [35] used minimum and maximum angles and moment of the hip, knee, and angle joints to 

predict values of gait pattern at different speed. The author has used quadratic regression technique in the study. 

Eslamy and Schilling [36] reported an R-Value score above 0.92 using GPR for ankle kinematic prediction for 

the trained speed levels. Dey et al. [37] reported R-Value of 0.98 for prediction of ankle joint angles by using 

SVM for level ground walking at self-selected normal speeds. However, the variation in the range of input 

features, the difference in data sets, the volume of data used and the different output quantification measures 
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make it difficult to equate directly with other studies. However, none of these studies have attempted to model 

gait cycles using machine learning regression algorithms for assistive rehabilitation device control. 
 

3.3.  Testing: Gait cycle prediction model  

Each of the models were tested using the testing data with four subjects (𝓃 = 6, 10, 13, 19). The results 

are summarized in Table 5, and Figure 7(a) and Figure 7(b) show the GPR, SVM and DT complete gait cycle 

prediction testing results for subjects 𝓃 = 6 and 10, respectively. From the results, all the model developed 

reached good accuracies in which low RMSE value was at around 3 to 7 and high R-Value which was at 0.9 

and above. Among the results, the DT model showed consistency of RMSE and R-Value which were around 

3.0 and 0.95, respectively. Figure 7(a) and Figure 7(b) shows the GPR and SVM model prediction which did 

not perform well as the graph line divert from the actual line. In contrast the DT model showed very good 

results and fitted to the actual line, thus it showed that gait cycle prediction was best using the DT model. 

 

 

 
(a) 

 

 
(b) 

 

Figure 7. Model testing result, straight line indicates accurate prediction level; (a) for subject 6 and  

(b) for subject 10 

 

 

This study demonstrates that ML with input parameter GRF, hip and knee angle can be used to predict 

human gait cycle. Unlike [24], [38] on joint moment prediction using ANN model, this study avoids the use or 

marker trajectories that could be time-consuming and complex equipment requires. It also effectively reduces 
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the number of input parameters, which makes it possible to predict gait cycle. Our methods of SWD further 

enhance high accuracy of prediction with R-Value > 0.95. The proposed method is therefore sufficient to be 

used as a model of the gait cycle for the design of control system for the assistive rehabilitation device. 

 

 

Table 5. Testing result of accuracies for each model 

Subject No 
GPR SVM DT 

RMSE R-Value RMSE R-Value RMSE R-Value 
6 5.8546 0.9597 7.4258 0.9351 3.6422 0.9844 

10 5.0207 0.9703 7.3810 0.9359 3.4768 0.9858 
13 7.1533 0.9597 11.9302 0.8326 3.6422 0.9678 
19 5.002 0.9706 7.8896 0.9268 3.7942 0.9831 

 

 

4. CONCLUSION 

This paper presents gait cycle prediction models developed using machine learning techniques. The 

DT model is presents suitable for modeling of gait cycle using input parameters of height, weight, hip, and 

knee angle, and GRF. The gait cycle prediction model is enhanced further and achieved a better accuracy once 

the sliding window was introduced. Further investigations with input parameters such as joint moment to 

predict joint angle should be explored for further studies. This research would also benefit from assistive 

rehabilitation devices for gait cycle prediction. 
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