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 In this paper, we present an upgraded U-Net technique for satellite-based 

cloud detection, with additional features, such as, more relevant spatial 

information, improvement in gradient propagation, feature reuse and 

controlling the network parameters using growth rate by adding dense 

connections. Furthermore, incorporation of attention module helps to learn 

strong inter-spatial and inter-channel relationships of feature maps by adding 

a few trainable parameters to the network. The two attention blocks namely 

position attention module (PAM) and channel attention module (CAM) 

focus on important parts of the image by neglecting the redundant 

information. The experimental results prove that the put forward technique 

with dense and attention modules could detect cloud with an accuracy of 

95.69%. 
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1. INTRODUCTION 

Satellite remote sensing (RS) is the science of acquisition of knowledge regarding areas from 

satellite by capturing the energy emitted or reflected from earth’s surface. Remote sensing images contain 

diverse information which is useful in understanding and exploring environmental changes, resource 

management, natural calamities management, and object recognition. There are various types of satellites for 

observing the earth surface and to capture various information with respect to sensor payload, orbit and 

different resolution (spectral, temporal or spatial). Based on necessity and applications, orbits have different 

revisit frequency (low and high), resolution (low and high) and wide swaths. One of the longest-running 

satellite is Landsat satellites which enables users to utilize the earth’s observation information. Every 16 

days, Landsat 8 satellite sensors capture images with different bands such as multispectral bands from 

operational land imager (OLI) and two bands from thermal infrared sensors (TIRS). However, the 

interpretation, analysis, and utilization of remote sensing images suffer greatly due to cloud coverage. The 

cloudy image causes difficulty in acquiring complete information of earth’s land surface area. The 

requirement is to obtain remote sensing images without any cloud coverage, but it is merely impossible to 

capture cloud free images. With the aim to improve the interpreability and analysis of remote sensing images, 

indentification of the cloud is a vital task. Accurate, automatic and reliable image segmentation is a vital  

pre-processing step for interpretation and investigation of remote sensing images in different  

applications [1]–[7]. 

In recent times, different algorithms have been introduced for cloud detection which are broadly 

classified as traditional and algorithm based. The traditional algorithms are simple threshold based  

methods [8]–[11] or statistical based methods such as histogram [12], clustering [13] and textures [14]–[17]. 

https://creativecommons.org/licenses/by-sa/4.0/
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The cloud, cloud shadow and detection of snow can be classified with some of the effective traditional 

algorithms such as automated cloud cover assessment (ACCA) [18], function of mask (F-Mask) [19] and 

haze optimized transformation (HOT) [20]. The cloud detection is a more challenging task and these methods 

are limited in utility and have to overcome the drawbacks; thus, the machine learning techniques have 

evolved with better efficiency. Machine learning techniques such as support vector machine, random forest, 

discriminant analysis, Markov fields, Naïve Bayes, nearest neighbour and others have promising 

performance. As the cloud detection methods based on machine learning use hand-crafted features that are 

tedious, error prone and time consuming, the automatic feature extraction based deep learning techniques 

have evolved for accurate cloud detection. 

In last decade, a deep learning (DL) has made tremendous breakthroughs in many remote sensing 

applications. convolutional neural network (CNN) approach that uses patch-to-pixel or encoder-decoder 

segmentation architectures have proven successful due to the availability of the increasing computational 

power and their inherent ability to perceive spatial information. The algorithm which is combination of 

machine learning techniques and superpixel algorithm [21] is further modified with deep learning. Instead of 

using machine learning algorithm for classification, CNN is utilized to classify the cloud in the image [22]. A 

multilevel cloud detection was designed by Xie et al. [23] with improved superpixel segmentation and two 

branch convolutional neural network to improve the accuracy. Further, [24] used adaptive simple linear 

iterative clustering with multiple convolutional neural networks which extract multiscale features and 

multilevel clouds to detect thin, thick and non-cloud areas. However, the initial superpixel segmentation 

should be correctly done in order to get good results and also the performance of algorithm depends on size 

of input image. All these techniques are based on superpixel segmentation instead of pixel-wise 

segmentation. 

In last few years, CNN is widely used in semantic segmentation which is the task of designating a 

class label to each pixel in the image. Instead of fully connected layer, the network utilizes stack of 

convolution layers to maintain same input and output size. The pixel-wise segmentation using encoder 

decoder structure helps increasing the model accuracy and also reduces the number of parameters. Fully 

convolutional network (FCN) [25], U-Net [26], SegNet [27], and deeplab are widely utilised methodologies 

for semenatic based image segmentation. Generally, the structure is made up of both convolution and 

transposed convolution which helps to learn the semantic transformation between input and output image. 

Their performance is outstanding in many applications because of their automated feature extraction. 

Motivated by these networks, researchers are utilizing these techniques in the remote sensing applications. 

Fully convolutional network is implemented to distinguish the cloud and snow from the multispectral images, 

by integrating the spatial information and semantic information with a multiscale prediction module [28]. 

Similarly using FCN [29] presence of cloud is detected in the Landsat 8 four spectral band red, green, blue 

and near infra-red (RGBNIR) image. Modification to SegNet and GoogleNet techniques helped to emerging 

P_SegNet and NP_SegNet based algorithms [30]. On spatial procedures for automated removal of cloud and 

shadow (SPARCS) landsat dataset, [31] developed the simple lightweight based U-Net technique combined 

with Legall 5/3 wavelet transform. The cloud and shadow of Landsat 8 and GF-1 satellite dataset was 

detected by authors in [32] with encoder decoder structure and feature pyramid module and boundary 

refinement. RS-Net [33] was developed based on U-Net architecture to detect the cloud in Landsat 8 dataset. 

Although satisfactory results are obtained using above mentioned methods, still significant research is 

progressing using U-Net as the backbone architecture. In the proposed work, U-Net is utilized as basic 

model, further it is modified to get more robust results. The main novelty of our proposed algorithm is as: 

i) We implemeted an architecture which utilizes dense connection for maximum flow of information 

between the layers in the encoder-decoder structure of U-Net. It combines both low-level  

high-resolution features and high-level semantic strong features to segment the image more accurately. 

ii) We also integrate the attention module into the network to focus on more powerful inter spatial and 

inter spectral based representative features. By neglecting irrelevant details, it improves the discriminate 

ability between non-cloud and cloudy pixels. 

iii) The proposed algorithm is evaluated on benchmark dataset for cloud understanding without using  

pre-trained parameters or post-processing. 

The paper is organized: section 2 presents the detailed framework of dense module and attention 

module. In section 3, the description of the information of dataset, experimental results and cloud detection 

performance are discussed. The final conclusions of this paper are presented in section 4. 

 

 

2. RESEARCH METHOD 

Ronneberger et al. [26] developed U-Net architecture which is based on CNN for bio-medical image 

segmentation which is combination of convolution layer and maxpooling layer. As the convolutional layer 
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depth increases, the semantic information of the image increases which extracts more relevant and accurate 

features. The U-Net architecture is an encoder and decoder based structure with contractive and expansive 

parts that combines higher-level detail information and lower-level semantic information from the satellite 

image. Generally, U-Net architecture has four down-sampling and up-sampling blocks with convolution 

along with batch normalisation and ReLU layer with lesser number of parameters. The U-Net architecture 

can be improved by making the network deeper and wider, which allows the network to adapt more 

meaningful features that retain lower-level details along with extraction of high-level semantic feature 

information which has direct impact on accuracy. But as the layers increase, difficulty increases in training 

the huge network and also chance of introducing gradient vanishing issues increases. Hence, the drawbacks 

of traditional U-net based semantic segmentation can be removed by adding densely connected convolutional 

network with extra feature extractor to improve overall performance. The dense connection architecture is 

shown in Figure 1. 
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Figure 1. Dense connections with four dense layers 

 

 

Dense connectivity reduces the overfitting problem for small dataset by proper regularization and 

reduced number of parameters by utilizing the feature reuse concept. In general, for dense connectivity, the 

lth layer will receive all the featuremaps staged by the previous (𝑙 − 1) layers. Each layer is receiving a 

“collective knowledge” from all preceding layers which can be specified as 

 

𝑝𝑙 =  𝐻𝑙([𝑝0, 𝑝1, … , 𝑝𝑙−1]) 

 

where (𝑝0, 𝑝1, … , 𝑝𝑙−1) describes combination of the output featuremaps in (l − 1) layers. Here each layer l 

with function 𝐻𝑙 produces k featuremaps where k is referred as growth rate parameter, which is generally a 

small value, so that the (l+1)th layer has 𝑘 × (𝑙 − 1) + 𝑘0 input featuremaps [34]. The growth rate k 

regulates the amount of information which can be added to each layer, network parameter space and 

performance. 

Additionally, attention module is integrated with this dense U-net to make it learn the pixel-wise and 

channel-wise relationship over the images. The attention module consists of two modules namely the channel 

attention module (CAM) and the position attention module (PAM). The two attention blocks can reduce the 

redundancy among channels and focus on the most important parts of an image. It is implemented using 

sequential network (e.g. convolution layer, addition or multiplication) and activation function (e.g. a softmax 

or sigmoid) which adds a few trainable parameters to the network. These two modules shown in Figure 2 are 

explained below: 

Let the input featuremap K ∈ ℝC×H×W be feed into the convolution layer of attention module where 

C and W, H are number of channels and width and height of featuremap K. It generates two new featuremaps 

L ∈ ℝC×H×W and M ∈ ℝC×H×W that removes irrelevant features and edge information. Then, these two 

features are reshaped to ℝC×N, where N = H × W is number of pixels. The M transpose is multiplied with L 

and by applying a softmax function to produce 
N NP R  : 

 

𝑝𝑗𝑖 =  
𝑒𝑥𝑝 (𝐿𝑖 ∙ 𝑀𝑗

𝑇)

∑ 𝑒𝑥𝑝 (𝐿𝑖 ∙ 𝑀𝑗
𝑇)𝑁

𝑖=1
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where, 𝑝𝑗𝑖  measures the 𝑖𝑡ℎposition effect on the 𝑗𝑡ℎposition. Later, input featuremap K is fed to convolution 

layer to generate a new featuremap O ∈ ℝC×H×W which is reshaped as ℝC×N. Then, the matrix multiplication 

between O and P is performed to produce a matrix of size ℝC×N and the result is reshaped as ℝC×H×W. At the 

end, the element-wise summation is performed with original feature K to obtain final output featuremap of 

size ℝC×H×W. This resulting featuremap is a weighted sum of features across all positions and original input 

features. Thus, it provides global contextual view and selectively aggregates long range contexts as per the 

spatial attention map [35]. Furthermore, the channel attention map is calculated based on input features 

𝐾 ∈ ℝC×H×W by reshaping it to ℝC×N and then performing matrix multiplication between K and the transpose 

of K. Afterwards softmax function is applied to obtain channel attention map X ∈ ℝC×C which is expressed 

as: 

 

𝑥𝑗𝑖 =  
𝑒𝑥𝑝 (𝐾𝑖 ∙ 𝐾𝑗

𝑇)

∑ 𝑒𝑥𝑝 (𝐾𝑖 ∙ 𝐾𝑗
𝑇)𝐶

𝑖=1

 

 

where 𝑥𝑗𝑖 measures the 𝑖𝑡ℎchannel’s impact on the 𝑗𝑡ℎ  channel. Further, the matrix multiplication between X 

and K is performed and reshaped to ℝC×H×W. This channel map emphasizes on interdependent 

featuremapping and improves feature identification. Each channels’ last feature is calculated by taking 

weighted sum of the all channels features and original features, which models the long-range semantic 

dependencies between featuremaps. CAM is able to highlight class-dependent featuremaps and 

discriminatively support a feature boost that cannot be produced by the convolution layers [35]. Finally, 

element-wise summation operation is performed on the outputs of channel and position attention module to 

obtain the final featuremap T ∈ ℝC×H×W. 
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Figure 2. Detailed structure of position and channel attention module 

 

 

In the proposed architecture, the main components are the encoder having dense block along with 

down-sampling, decoder consisting of dense block with up-sampling and skip connections between each 

layers of encoder decoder with attention module as in Figure 3. In the dense connection block, there is a set 

of two convolutional layers 1×1 and 3×3, likewise four sets are stacked together where each layer is 

concatenated with its preceeding layer as shown in Figure 1. This dense block has total 8 convolution layers 

which utilizes features extracted at each layer and maintain the resolution loss. Encoder part consists of four 

convolutional layers where each has different kernel size as 32, 64, 128 and 256 respectively. In each block 

number of features increases because of multiple dense connectivity. These can be reduced by using 
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transition layer (downsampling). The downsampling is used for feature dimensionality reduction from 

previous dense layer connections. This layer has batch normalization and convolutional layer of 1×1 and 

lastly pooling layer. The number of channels reduces by two using 1×1 convolution while the size of the 

featuremap reduces by two using 2×2 average-pooling layers. In decoder part, the convolution layer is 

replaced by dense block while upsampling path is substantially like the U-Net mechanism. In the encoding 

path, each convolution is followed by a concatenation of features from corresponding layers. Lastly, the 1×1 

convolution with sigmoid activation function is utilized to output the final pixel-wise classification. The 

overall performance of the U-Net technique is furthermore improved by utilising attention mechanism with 

dense connection module technique. Then the encoder side features are fed into two different attention  

blocks CAM and the PAM. The attention mechanism helps to improve the featuremap representation.  

 

 

 
 

Figure 3. Implementation diagram of technique which consist of U-Net along with dense and attention 

module 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Dataset 

The M. Joseph Hughes devolped SPARCS dataset in Oregon State University [28]. The Landsat 8 

satellite acquired 80 images of 1000×1000 pixels with 11 spectral bands cloud data from OLI/TIRS sensor. It 

has different classes with manually generated mask for the different classes such as “snow/ice”,” water”, 

“cloud”, “cloud shadow”, and “flooded”. The dataset is downloaded from https://landsat.usgs.gov/spar:cs. 

Here the mask for broadly annotated into cloud and non-cloud class. The original dataset is splitted as 80% 

training and 20% for testing. Further the images are processed and cropped into 256×256 resulting into 1024 

and 256 images are training and testing.  

 

3.2.  Evaluation metrics: 

This section helps to compare the segmentation results which are being evaluated by the metrics 

which are precision, recall, F1-score and overall accuracy. The F1-score is the harmonic mean of recall and 

precision. These metrics helps to analyse and aid to improve the state-of-the-art technique. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

https://landsat.usgs.gov/spar:cs


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 2, June 2022: 699-708 

704 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 

 

F1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Where TP, TN, FP and FN are true positive, true negative, false positive and FN is false negative respectively 

for each class of label. 

 

3.3.  Training parameter details 

The experiments were conducted on an NVIDIA GeForce GTX 1080 with 128 GB RAM. The main 

packages used are Python 3.6, CUDA 10.0, cuDNN 7.3 with keras and tensorflow library. The input image of 

size 256×256 is feed to the network. The hyper-parameters of the model play vital role and model accuracy is 

improve based on empirical hyperparameter values. The Adam optimizer is used with 16 batch size and 

0.00001 learning rate. He initialiser [36] initializes all convolution kernel weights. Horizontal and vertical 

augmentation techniques helped to avoid overfitting. The sigmoid activation function is utilized to produce 

the final pixel values probability map. The loss function is binary cross entropy which is used to find the loss 

between ground truth image and predicted segmented output. 

 

3.4.  Numerical and visual results 

Quantitative results obtained using attentional dense-U-Net architecture are tabulated in Table 1. 

These results show that the proposed technique can attain accurate segmentation results than some of  

state-of-the-art methods. From the experimental results using metrics such as precision, recall, f1-score and 

overall accuracy, it is clear that as epoch increases the accuracy increases. We tested for three different 

epochs 50, 100, and 200 separately which reveals that three architectures achieve a better result with 200 

epochs as shown in Table 1. But with 100 epochs better result is achieved in a short time. First, we observe 

the results by utilizing simple U-Net architecture for semantic segmentation giving an accuracy of 93.18%, at 

the cost of overfitting. The dense connectivity helps to improve the performance by reducing the overfitting 

problem and improving the accuracy upto 94.87%. Dense connectivity requires significantly few parameters, 

encourage feature reuse and also does not have any performance degradation or overfitting. Lastly, three 

blocks namely U-net, dense module and attention module are integrated, so that the overall performance of 

the network is improved. The objective of proposed architecture is to extract more relevant features through 

multiple layers using dense connection as well as keep inter-spatial and inter-spectral information using 

attention block. The overall accuracy has improved to 96.02%. As in Table 1, three different architectures 

with its quantitative are tabulated. The U-Net inference time is 17.41, U-Net and Dense module takes 18.26 

and combination of U-Net, Dense and Attention requires average time of 18.98 seconds. 

 

 

Table 1. Results for detection of cloud using different proposed models based on U-Net techniques for 

different epochs 
Models Epoch Precision (%) Recall (%) F1-score (%) Accuracy (%) 

U-Net 50 84.13 81.36 81.89 86.78 

U-Net+Dense module 88.47 87.01 87.13 89.12 
U-Net+Dense+attention 89.76 87.45 89.24 91.40 

U-Net 100 89.84 85.67 86.79 92.68 

U-Net+Dense module 91.65 90.54 91.00 94.38 

U-Net+Dense+attention 92.09 91.86 92.05 95.69 

U-Net 200 90.46 86.74 87.47 93.18 
U-Net+Dense module 92.87 91.48 92.42 94.87 

U-Net+Dense+attention 93.14 92.71 93.00 96.02 

 

 

The misclassified areas for different techniques are highlighted with red round circle as shown in 

Figure 4. It indicates that U-Net misidentifies small tiny cloud with non-cloud. U-Net with dense 

connectivity is able to remove artifacts, extract more accurate boundaries and hence a segmented image with 

higher quality is obtained. Further, incorporating attention module strengthens feature representation 

effectively. As shown in Figure 4(a) we have test images along with its groundtruth as in Figure 4(b). The 

results for U-Net, U-Net+dense module, and U-Net+dense+attention module is as shown in Figures 4(c)-(e) 

respectively. Figure 4(e) reveals better visualization results of image using attention module. With reduced 

misclassifications i.e clear boundaries between cloud and non-cloud pixels is the key benefits of the attention 
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module. The cloud consisting of both thin and thick clouds are also identified properly. The result 

demonstrates that using attention module improves the performance of cloud and non-cloud discrimination.  

 

 

 
(a) (b) (c) (d) (e) 

 

Figure 4. Remote sensing-based cloud detection visual analysis for different models (a) test images (b) 

groundtruth (c) U-Net (d) U-Net+dense module, and (e) U-Net+dense+attention module 

 

 

3.5.  Comparison with existing methods 

We can observe the overall performance of all popular existing algorithms as compared with the 

proposed model of U-Net+dense net+attention module. These results are given in Table 2 and Figure 5. The 

various techniques compared are FCN, SegNet, multi-scale convolutional feature fusion (MSCFF) and 

CloudNet. Our implementations are performing better as compared to some of the existing methodologies 

such as FCN, SegNet and MSCFF. As shown in Figure 5(a) we have test images along with its groundtruth 

as in Figure 5(b). The results for FCN, SegNet, MSCFF and CloudNet are as shown in Figures 5(c)-(f). The 

modified U-Net model as in Figure 5(g) identifies the cloudy pixels more accurately with clear boundaries 

and has less chance of misclassifying tiny and thin cloudy pixels. The proposed technique is giving better 

results which are rich in multiscale information with clear and fine boundaries, while other techniques are 

failing in case of few less cloudy areas and finer boundaries. 

 

 
Table 2. Comparison of different techniques along with metrics 

Models Precision (%) Recall (%) F1-score (%) Accuracy (%) 

FCN [29] 85.48 87.45 85.21 87.17 

SegNet [27] 81.54 89.01 90.40 90.29 

MSCFF [37] 92.01 89.45 90.36 92.48 
CloudNet [38] 90.46 88.48 90.14 94.01 

U-Net+Dense+attention module 91.58 90.65 90.68 96.26 
 

 

 

a) b) c) d) e)
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 

 

 
(g) 

 

Figure 5. Various techniques results for cloud detection of remote sensing images (a) satellite image,  

(b) ground truth image, (c) FCN methodology, (d) SegNet methodology, (e) MSCFF methodology, 

(f) cloudNet methodology, and (g) proposed method 
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4. CONCLUSION 

In these implementations, a U-Net architecture is utilized for detection of cloud to accurately 

segment cloudy and non-cloudy regions from high-resolution satellite images. Experiment performed on 

Landsat 8 images showed that the proposed techniques have good inference speed and less computational 

cost. We added dense connections to U-Net which boosted the reusabilty of the low-level features and 

maximization of the information flow between the layers. The attention module was incorporated into the 

existing architecture to enhance the productivity of semantic information dissemination by skip connections. 

It also adds only few parameters with stronger representative information, and the segmentation performance 

has improved effectively. The experimental accuracy of cloud detection significantly increased with dense 

connection and more improvement is observed with attention module. The proposed Dense-Net with 

attention module is able to achieve nearly 3% more accuracy compared to U-Net on SPARCS dataset. The 

overall analysis demonstrates that the proposed architecture can be utilized as a pre-processing step in remote 

sensing applications. As future work, modified attention module with residual connection can be utilized for 

better accurate segmentation. 
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