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 The non-iterative hash function design is a domain extension that uses a novel 

concept to fill a gap in existing cryptographic designs. This design avoids the 

structural issues that plagued prior paradigms, particularly those applying the 

Merkel-Damgârd design, by presenting a novel approach. Non-iterative hash 

function design, on the other hand, is an abstract idea that necessitates the 

specification of the internal transformation in order to test and experiment it. 

To achieve this goal, this article describes the algorithm that implements the 

internal transformation based on the main characteristics of the new model. 

The avalanche effect's results are provided in the experiment section, as well 

as a preliminary validation stage of the national institute of standards and 

technology (NIST's) cryptographic algorithm validation program (CAVP), 

which employs a set of test vectors to verify algorithm accuracy and 

implementation errors. 
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1. INTRODUCTION 

Cryptographic primitives, especially hash functions, are used to secure data and privacy. They're 

essential for ensuring high levels of security in digital transactions, web applications, and anywhere else 

security is necessary. Both theoretical and proved collision attacks, now benefit from recent advancements in 

digital platforms and architectures. As consequence, current algorithms are in a critical position to counter 

serious coming threats. National institute of standards and technology (NIST) has released a request for 

candidate method submissions for secure hash algorithm (SHA-3) [1], a new cryptographic hash algorithm that 

out performs or improves on (SHA-2) [2]. At the end of this competition, NIST designated the (SHA-3) official 

standardized algorithm [3], also known as Keccak-based on wipe function design [4]. However, as 

demonstrated in previous studies [5], [6], there are still possible concerns because practically all algorithms 

inherit the attributes of a classic domain extension Merkle-Damgârd [7], [8], which have been found to be 

vulnerable [9], [10]. Moreover, several surveys discussed the vulnerabilities in authentication methods [11], 

internet of things (IoT) systems [12]–[14], and network design [15], and called for creative solutions to address 

these issues.  

Thus, the non-iterative hash function (NIHF) design emerges as an abstract concept that avoids 

construction issues and suggests an alternative to the current paradigms. However, implementing the internal 

transformation of NIHF is a critical step to allow experiments and assess the security level. Following this 

approach, the current article describes a new implementation of the NIHF design, presents the experimentations 

and results through basic validation test programs. 

https://creativecommons.org/licenses/by-sa/4.0/
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This article is organized as: in the second section, a preliminary about domain extensions and hash 

functions. The third section describes and discus the implementation security level. The fourth section presents 

the experimentations, test results and comments on the security level. Finally, section five concludes this work 

and open perspectives to the next contributions. 

 

 

2. PRELIMINARY 

2.1.  Cryptographic hash functions 

Hash functions map input strings of arbitrary length to a fixed length strings output, called hash-

values, message digest or fingerprint. Theoretically a cryptographic hash function must satisfy the following 

properties [16]: i) Ease of computation ➔ for a kwon function H with input x, H(x) is easy to compute; ii) 

One-way function ➔ for each y=H(x) in range of H, using “y” it is computationally infeasible to find x in the 

domain of H; iii) Preimage resistance ➔ for a given digest y of H, it is infeasible to find x with H(x)=y; iv) 

2nd preimage resistance ➔ for a given x, it is infeasible to find x’ such that x’≠x and H(x’)=H(x); and v) 

Collision resistance ➔ it is infeasible to find separate x and x’ such that x’≠x and H(x’)=H(x). In practice, due 

to the birthday theory [16] not all these properties are satisfied. 

 

2.2.  Construction design 

The construction design, domain extension, or operation mode paradigm is used to overcome the 

complexity of processing a non-fixed length message and producing a fixed output length to manage the 

internal compression transformation of any hash function. Merkle, Damgârd [7], [8] is the most well-known 

construction design in this sector; it was the first solution proposed independently by Damgârd [7] and  

Merkle [8] in this subject. This structure allows for iterative behavior, which has an influence on the design of 

a number of popular hash algorithms. 

The Merkle-Damgârd construction [7], [8] operates with arbitrary-length messages subdivided into 

fixed-length input blocks. During the process, an initialization vector (IV) is employed. The internal 

compression algorithm iteratively processes the current message block as an input and the result of the previous 

iteration as an IV block, as shown in Figure 1. 

 

 

 
 

Figure 1. The Merkle-Damgârd construction 

 

 

Through this concept a resistant hash function can be reduced to a resistant internal compression 

function. An iterated construction with an internal collision resistant compression function can be extended to 

a collision resistant hash function [16]. Because of its efficiency, most well-known structures, such as  

Maurer and Tessaro [17], empirical mode decomposition (EMD) [18], random-oracle XOR (ROX) [19], and 

hash iterative framework (HAIFA) [20], are based on the Merkel-Damgârd [7], [8], and were designed to 

improve and remedy the Merkle-Damgârd vulnerabilities [7], [8]. 

 

 

3. DESCRIPTION OF THE NEW HASH FUNCTION 

NIHF [5] is an abstract concept that requires implementation to the internal transformation, as 

described in the abstruct. In fact, the construction properties are very important to define the behavior of the 

whole implemented hash function; however, the way the internal transformation is described also defines the 

security level and strength of the entire function. The internal implementation of the NIHF design is described 

in this section. 

 

3.1.  Applied construction design 

Almost cryptographic hash functions take advantage from operational mode to simplify the way how 

to process a non-fixed input length and generate fixed length output, here we call back some specific 
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characteristics of the non-iterative domain extension [5] implemented with the new hash function: i) There is 

no initialization vector to handle; ii) The internal transformation has a role to extend the input blocks, not to 

compress them as in the classic paradigm; iii) Each input block is processed separately; iv) This model can 

provide a pseudo parallel processing based on separate input blocks; v) It applies a sequential a sequential 

eXclusive OR XOR addition, involving all extended outputs; and vi) This construction design joins a pseudo 

parallel behavior to an iterative one. The Figure 2 illustrates the design characteristics: 

 

 

 
 

Figure 2. Non-iterative domain extension 

 

 

3.2.  Internal transformation description 

The internal transformation affects the level of security expected from any cryptographic hash 

function. Additionally, randomness is a recommended characteristic that enhance the security level. To match 

with these characteristics, the proposed internal transformation is based on random block construction as well 

as possible following the next: i) The random input block content intervenes in the internal operations process; 

the initial and extended part of the output block is a set of operations that handle the random input to produce 

new values. ii) Avoiding use of the initialization vector increases the randomness and prevents any content 

manipulation. iii) By extending the input block this function prevents any local collision attack, then to ensure 

the compression role a sequential XOR is applied on all output blocks. As illustrated in Figure 3. this internal 

transformation processes a fixed size input block “Mi” and generates an extended output block “A”. Sections 

3.3.2 and 3.4.2 go over the actions (transformation 1,2,3, and 4) in further detail. 

 

3.3.  Algorithm and implementation 

A description of the algorithm can be found in this section. The following values define this hash 

function: the input block size is 512 bits, and the output block size is 1024 bits. (NIHF-1024), which stands for 

non-iterative hash function with a digest of 1024 bits, is the name of this version. 

This algorithm consists of three operations. Beginning with a pre-processing phase in which the input 

message is padded and prepared to be subdivided into input blocks. The internal transformations can then be 

executed in one of two options, sequential input-blocks extension and XOR operation, or parallel input-blocks 

extension followed by XOR operation involving all extended input-blocks. Finally, a 1024-bit digest of the 

compressed block is generated. 

The sequential input-blocks extension and XOR operation are implemented in this paper’s 

experiment. For the upcoming version research, the parallel mode will be implemented. The processing mode 

is explained in the following subsections. 

 

3.3.1. Pre-processing phase 

The purpose of the padding process is to make the overall length of the padded message a multiple of 

512 bits. NIHF-1024 computes at least two blocks of 512 bits to construct the final digest. The following 

describes how this padding should be done, based on the (SHA-256) padding algorithm [2]: i) To the original 

message, append a single '1' bit; ii) append as many '0' bits to the original message as feasible, so that the sum 

of the padded '0' and the original message length +1+64 is a multiple of 512; and iii) append the 2-word 

representation of the original message length value to the padded message's last 64 bits. 
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3.3.2. Block extension process 

One of the innovative main concepts that constitutes the NIHF design is processing the input blocks 

individually. In fact, without initialization vectors, implementing the extension transformation is a reel 

challenge. The illustration in Figure 2 shows the proposed algorithm to overcome this obstacle. Each input 

block has a four-step cycle to complete, as shown in Figure 3. each step specifies a number of iteration rounds 

and arithmetic operations. The following sub-sections describ these steps. The following defines some 

notations: i) Let Mi the current 512 bits input block which is made up of 16 Integers of 32-bits size; ii) Let A1 

and A2 the first and second half of the 1024 bits output block; iii) Let rotRight (val, x): performs a right rotation 

on “val” with “x” shifts; iv) Let index the current indexed Integer in the array block; iv) Let 

getRandomInputIndex(x): return a value from 0 to the input block length; v) Let getRandomOutputIndex(x): 

return a value from 0 to the output block length; and vi) msgLength: is the input length after the padding. 

 

 

 
 

Figure 3. Internal transformation 

 

 

a) Step1: rounds from 0 to 2 

Processing (Mi) the input block of Integers, a random index value is used to select an integer from 

Mi, if the integer is a zero value the (Max Integer) value is used instead, then a rotation to the right is performed 

with a specific number of shifts to avoid getting the same integer value. This operation is repeated for the 

second elected integer with a slice change in the index value, and the zero value is substituted by (Max Integer 

value-Magic Number), where the (Magic Number) is a binary representation that improves the exclusive 

addition property. The two Integers are then added together to fill the appropriate cell in (A1). 

These operations are repeated in two rounds (0=< rounds <2) while filling up (A1). The purpose is to 

substitute any zero values for pseudo random values. Here's a quick rundown of what was said: 

 

repVal1=replaceZeroValue (Mi [getRandInputIndex (index)], intMaxValue) 

repVal2=replaceZeroValue (Mi [getRandInputIndex(index+1)], intMaxValue-MagicNumber) 

A1 [index]=rotRight (repVal1, 32-index-3) + rotRight (repVal2, 32-index-2) 

 

b) Step2: rounds from 2 to 10 

The purpose of the second step is to make additional pseudo random alterations without using the 

input block (Mi). So, in (A1), it consists of performing a rotation to the right on the current selected integer 
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from (A1), then elect another integer by a random index value in (A1) and apply a rotation to the right on this 

integer. The old integer value in (index) is substituted by the XOR operation over the two new integers. 

 

val1=rotRight (A1 [index], 32-index-1) 

val2=rotRight (A1 [getRandInputIndex (A1 [index])], 32-index-3) 

A1[index]=val1 ^ val2 

 

(A1) integers are then transformed and used to fill (A2). Except rotation operation, almost the same 

instructions are done. 

 

val1 = A1 [getRandInputIndex (index)] 

val2 = A1 [(A1 [index])% (Mi.length)] 

A2[index] = val1 ^ val2 

 

c) Step3: rounds from 10 to 15 

In step 3, the (reverseNumber) method is introduced, which reverses the digits order in the number 

value, in addition to rotation, XOR addition, and pseudo random selection operations. This combination 

increases the output value's variability and randomness. The reverse technique, in general, generates new values 

rather than using predefined values as initial vectors and registries. The steps for carrying out the instructions 

are outlined below. 

 

In (A1) : 

val1 = reverseNumber(A1[index]) 

val2 = A1[getRandomInputIndex(msgLength-(index+1))] 

A1[index] = val1 ^ val2 

In (A2): 

val1 = rotRight( reverseNumber(A2[getRandomOutputIndex(index)]), index) 

val2 = A2 [getRandomInputIndex(index)] 

A2 [index] = val1 ^ val2 

 

d) Step4: rounds from 15 to 32 

The goal of the fourth step is to spread the pseudo random behavior across the entire output block (A), 

which increases the avalanche effect property. Here, the same instructions are performed: 

 

val1 = rotRight(A[getRandomOutputIndex(index)],index ) 

val2 = rotRight(A[getRandomOutputIndex(index+1)],index+1) 

val3 = rotRight(A[ getRandomOutputIndex(index+2)],index+2) 

A[index] = val1 + val2 + val3 

 

3.3.3. XOR operation process 

The extended output blocks generated in the previous step should be aggregated to form one final 

output block with a fixed length, even if the construction design does not use iterative and chained input blocks 

processing. In this stage, the XOR addition is used to sum the extended output blocks and to take use of the 

one-time pad property, which ensures a high level of complexity and ambiguity, resulting in increased 

randomness and system security [21]. 

Due to the XOR commutativity and associativity properties, the extended output blocks can be 

handled in two implemention mode, which can be either sequential sub-block extension and XOR operation, 

or parallel sub-block extension and XOR operation. While the implemented mode is sequential block extension 

and XOR operations, a binary XOR operation is performed over the current extended block and the preceding 

one. The last result output block is the final hash, or digest. 

 

3.4.  NIHF-1024 pseudo-code 

As presented in previous paragraphes, the algorithm consists of three operations. Beginning with a 

pre-processing phase, the internal transformations and the XOR operation involving all extended input-blocks. 

This pseudo-code section describes the main function algorithm which is the sequential input-blocks extension 

and XOR operation mode, then details the pseudo-code of the extention operaion and the XOR operation. The 

following is a view on the algorithms covering the important phases of NIHF-1024. 
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3.4.1. The main function: NIHF-1024 sequential extension and XOR operations 

The main function manages and combines the extension and XOR addition operations, starting with 

the padding procedure and input block preparation. As previously stated, the implemented mode in this case 

study is the sequential mode, in which the two operations are processed in order. In other words, except for the 

first extended input block, each extended input block in a loop instruction is subjected to an XOR addition with 

the previously extended input block. Pseudo-code of NIHF-1024 as shown in Algorithm 1. 

 

Algorithm 1. Pseudo-code of NIHF-1024 
 Input : msg           //the input message in byte array 

  inputBlockSize      //the input byte block size parameter 

  outputBlockSize    //the output byte block size parameter 

 Output : digest        //the final extended and xored block 

 Begin  

  Let extBlock1  array() 

Let extBlock2  array()  

  // Pre-processing : a padding process to the input message 

Let msgArrayBlocks  padding (msg, inputBlockSize, outputBlockSize) 

Let paddedInputMsghLength  msgArrayBlocks.length() * 32  //count in bits  

  // Extend the initial bloc 

extBlock1  extendInputBlock(msgArrayBlocks[0], inputBlockSize, 

outputBlockSize, paddedInputMsghLength) 

// A loop on the blocks from the second one, sequential extension and XOR 

operations 

 for each block in msgArrayBlocks 

   extBlock2  extendInputBlock(block,inputBlockSize, 

outputBlockSize,paddedInputMsghLength) 

extBlock1  xorOpperation(extBlock1, extBlock2, inputBlockSize, 

outputBlockSize)  

  End for 

digest  extBlock1 

return digest  

 End  

 

3.4.2. Extension operation: extendInputBlock 

In this implementation, the extension operation serves a consistent role; it enlarges the input blocks 

and gives the processing steps a random behavior. It does not rely on initial vectors IV, but rather on random 

input values. It performs 32 rounds of binary, logic, rotation, and substitution operations in the round ranges 

supplied. Each of the four round ranges is described in pseudo-code as shown in Algorithm 2. 

 

Algorithm 2. Pseudo-code of extendInputBlock 
Input :  block           //the current input block 

 inputBlockSize      //the input block size parameter 

 outputBlockSize    //the output block size parameter 

 paddedInputMsghLength    //the input message length after padding 

Output : extBlock        //the extended block 

Begin  

Let integerInputBlockSize  16 //input Integer(32bits) block size parameter 

Let integerOutputBlockSize  32 //output Integer(32bits) block size parameter 

Let integerMagicNumber  0xAAAAAAAA //binary representation of this number 

enhance the exclusive addition 

Let integerMAXValue  0x7fffffff //Max int value in 32bits representation = 

0x7fffffff] 

Let integerBitSize  32 //number of bits used to represent an int value in 

two's complement binary form 

// in 32 rounds, apply the binary operations according to the round range 

// ranges: 1=<round>2; 2=<round>10; 10=<round>15 or 15=<round>32 

for round from 1 to 32  

 if round < 2 then 

  for i from 0 to inputBlockSize 

   if (integerBitSize-(i+3)) % integerBitSize == 0 then 

 temp1 | ((bloc[ |i % integerInputBlockSize| ] == 0 ? 

integerMAXValue :  

bloc[ |i % integerInputBlockSize| ]) 

 >> (integerBitSize-(i+3)+1)) | 

Else 

 temp1 | ((bloc[ |i % integerInputBlockSize| ] == 0 ? 

integerMAXValue :  

bloc[ |i % integerInputBlockSize| ])   

>> (integerBitSize-(i+3))) | 
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End if 

if (integerBitSize-(i+2)) % integerBitSize == 0 then 

 temp2  | ((bloc[ |i+1| % integerInputBlockSize ] == 0 ?  

(integerMAXValue-integerMagicNumber): bloc[ |i+1| % 

integerInputBlockSize ])  

>> (integerBitSize-(i+2))+1) | 

Else 

 temp2  | ((bloc[ |i+1| % integerInputBlockSize ] == 0 ? 

(integerMAXValue-integerMagicNumber): bloc[ |i+1| % 

integerInputBlockSize ])  

>> (integerBitSize-(i+2))) | 

   End if 

extendArray[i]  temp1 + temp2 

  End for 

 End if 

 if round >= 2 && round < 10 then  

  // on the first part of the extended block, process operations (J< 

integerInputBlockSize) 

for j from 0 to integerInputBlockSize 

   extendArray[j]  (extendArray[j] >> (integerBitSize-(j+1))) ^ 

( extendArray[ | extendArray[j] | %integerInputBlockSize] >> 

(integerBitSize-(j+3))) 

 End for 

 //on the second part of the extended block, process operations 

(integerInputBlockSize =< i< integerOutputBlockSize) 

for i from integerInputBlockSize to integerOutputBlockSize 

  extendArray[i]  (extendArray[ |i| % integerInputBlockSize ] ) ^  

                            (extendArray[ |extendArray[i]| % 

integerInputBlockSize ]) 

 End for 

    

if round >= 10 && round < 15 then 

 for j from 0 to integerInputBlockSize 

   extendArray[j]  reverseNumber(extendArray[j]) ^  

                            extendArray[ | paddedInputMsghLength - (j+1) 

| % integerInputBlockSize] 

  End for 

  for i from integerInputBlockSize to integerOutputBlockSize 

   extendArray[i] (reverseNumber(extendArray[ | i % 

integerOutputBlockSize | ]) >> i) ^  

extendArray[ | i % integerInputBlockSize | ] 

  End for 

 End if 

 if round >= 15 && round < 32 then 

  for i from 0 to integerOutputBlockSize 

   extendArray[i]  (extendArray[ | i % integerOutputBlockSize |]  >> 

i ) 

              + (extendArray[ | i+1 % integerOutputBlockSize | ] 

>> i+1) 

                             + (extendArray[ | i+2 % 

integerOutputBlockSize | ] >> i+2) 

  End for 

 End if 

End for 

return extendArray 

End  

 

3.4.3. Xor operation over extended blocks: xorOpperation 

The XOR operation is a binary XOR addition over two extended input blocks. This method is used to 

deal with input blocks extension, replacing and avoiding the classic block chaining strategy while 

simultaneously giving high levels of embiguity and cryptanalysis protection. As a result, the output digest is 

compressed and has a set length at the end of the processing. 

 

 

4. RESULTS AND DISCUSSION 

For evaluating cryptographic hash functions, specific tests and validation programs are recommended, 

such as the avalanche effect [22], [23], the statistical test suite (STS) [24], and the cryptographic algorithm 

validation program (CAVP) [25] tools from NIST. Some of these programs, particularly the avalanche effect 

and the test vectors provided by CAVP-check the behavior while processing the test vectors, are discussed in 

this section. The remaining CVAP phases and STS will be carried out in future research initiatives. The 

following are the system configurations used in the execution environment: i) Implementation with JAVA 
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jdk7; ii) Laptop processor Intel® Core™ i5-7440HQ CPU @ 2.80 GHz 2.80 GHz; iii) Memory of 16 GB; and 

iv) Windows 10 (64 bits) system. 

 

4.1.  Avalanche test 

The avalanche test was introduced by Feistel with the data encryption standard (DES) S-Box [22]. 

The avalanche effect is a desired characteristic that strengthens the hash function security. The concept is “if a 

function is to satisfy the strict avalanche criterion (SAC), then each of its output bits should change with a 

probability of one half”, i.e. if any single bit input is complemented, each of the output bits changes with a 

probability of one half [23]. 

Calculating the Hamming distance for a hash function F and input (m), i.e. measuring the difference 

between the outputs F(m) and F(m'), where (m') is an input after complementing a random single bit in the 

input (m), is part of the validation test procedure. To check this property with NIHF-1024, we generate a 

random input message of 128 byte, then process it in a loop of 10,000 rounds, by complementing a random 

single bit each round and comparing the current output with the prior output. At least perform a Hamming 

distance comparison on 10,000 output messages. 

For a 1024-bit output digest, the Hamming distance between two consecutive digests should 

theoretically be close to 512. The Hamming distance with the NIHF-1024 avalanche effect is near to the 

expected value. According to the data gathered throughout the experiments, the Hamming distance varies 

between 465 and 560. This metric prompted us to conclude that the generated outputs are practically 

independent of the inputs, which is a desirable property. Figure 4 shows the avalanche impact of NIHF-1024 

in the first 5,200 rounds. 

 

4.2.  Test vectors 

The NIST CAVP conducts validation testing of certified cryptographic algorithms and their 

constituent components by using any of the accredited laboratories to test the algorithm implementations [25]. 

The experiments in this paper are limited to using only the test vectors provided by the CAVP to informally 

verify and detect pointer problems, insufficient space allocation, improper error handling, incorrect function 

behavior, or potential collision detection; the remainder of the CAVP procedure is not covered. The 

constituents of the test vectors, as well as the test results, are presented in this section 

The secure hash algorithm-3 validation system SHA-3VS-which outlines the validation testing criteria 

for the SHA-3 family-[26] provides the specifications and design of test vectors. The test vectors, as well as 

the Short messages test files, Long messages test files, and pseudo-randomly generated messages (Monte 

Carlo) test files, are all related to SHA-3 requirements. All are in the bits and bytes encoding format and may 

be found in the test vectors section [25]. 

Only the short and long input files will be considered in the test. The (Monte Carlo) test files have 

been postponed till later. The NIHF-1024 process, generates and records the resulting digest by parsing the 

content files and for each input message defined in. Throughout the experiment, the NIHF-1024 algorithm was 

updated and reviewed to remedy implementation issues until all test vectors were correctly processed. To 

summarize the test vectors' findings, we've included two tables, Table 1. and Table 2., that show used file name, 

input message count, detected error, collision detection and execution time for both Byte and Bit input files. 

According to the given results in Table 1 and Table 2, the NIHF-1024 passed these test vectors without error 

or collision detection. To be clear, the purpose of this experiment is to examine the NIHF-1024 implementation 

and behavior, not to compare it to the SHA-3 implementation. 

 

 

 
 

Figure 4. Avalanche test results 
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Table 1. Test vector input files, Byte oriented message 
Byte Input file Input message count Error detection Collision detection Time (ms) 

SHA-3_224LongMsg.rsp 100 0 0 509 

SHA-3_224ShortMsg.rsp 145 0 0 10 

SHA-3_256LongMsg.rsp 100 0 0 467 
SHA-3_256ShortMsg.rsp 137 0 0 11 

SHA-3_384LongMsg.rsp 100 0 0 355 

SHA-3_384ShortMsg.rsp 105 0 0 6 
SHA-3_512LongMsg.rsp 100 0 0 243 

SHA-3_512ShortMsg.rsp 73 0 0 6 

 

 

Table 2. Test vector input files, Bit oriented message 
Bit Input file Input message count Error detection Collision detection Time (ms) 

SHA-3_224LongMsg.rsp 100 0 0 559 

SHA-3_224ShortMsg.rsp 1153 0 0 83 

SHA-3_256LongMsg.rsp 100 0 0 455 

SHA-3_256ShortMsg.rsp 1089 0 0 77 

SHA-3_384LongMsg.rsp 100 0 0 346 

SHA-3_384ShortMsg.rsp 833 0 0 53 
SHA-3_512LongMsg.rsp 100 0 0 243 

SHA-3_512ShortMsg.rsp 577 0 0 27 

 

 

5. CONCLUSION AND PERSPECTIVES 

To recap, we've stated that it's safe to look for a new concept in cryptographic constructions in order 

to avoid future security problems. Thus, the pillar of this work was to think outside the box about how to 

innovate a new cryptographic design, first by resolving structural issues with a new paradigm, then proposing 

a new implementation to the new concept -which is the main subject of this paper, and finally challenging the 

potential of this new solution. By the way, we detailed and discussed the algorithm implementation in the 

previous sections, which is based on random and independent processing and so adheres to the paradigm 

properties. We set an objective to challenge the implementation of NIHF-1024 with several validation test 

programs, such as the avalanche effect and NIST vector tests, at this stage of the continuous work. The test 

results were promising, prompting us to try more validation programs and explore new options in parallel or 

distributed architectures with new variants of NIHF-1024 in order to uncover its potential. Now, we have a 

perspective to challenge more experimentations and more environment configurations in a continuous 

progression to achieve a considerable status for this new approach of cryptographic hash functions. 
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