
IAES International Journal of Artificial Intelligence (IJ-AI)

Vol. 11, No. 4, December 2022, pp. 1213~1222

ISSN: 2252-8938, DOI: 10.11591/ijai.v11.i4.pp1213-1222  1213

Journal homepage: http://ijai.iaescore.com

New implementation of the abstract design for non-iterative

hash functions with 1024 digest length NIHF-1024

Abouchouar Abdallah, Fouzia Omary
Department of Computer Science, Faculty of Computer Science, Mohammed V University in Rabat, Rabat, Morocco

Article Info ABSTRACT

Article history:

Received Jul 18, 2021

Revised Jun 14, 2022

Accepted Jul 3, 2022

 The non-iterative hash function design is a domain extension that uses a novel

concept to fill a gap in existing cryptographic designs. This design avoids the

structural issues that plagued prior paradigms, particularly those applying the

Merkel-Damgârd design, by presenting a novel approach. Non-iterative hash

function design, on the other hand, is an abstract idea that necessitates the

specification of the internal transformation in order to test and experiment it.

To achieve this goal, this article describes the algorithm that implements the

internal transformation based on the main characteristics of the new model.

The avalanche effect's results are provided in the experiment section, as well

as a preliminary validation stage of the national institute of standards and

technology (NIST's) cryptographic algorithm validation program (CAVP),

which employs a set of test vectors to verify algorithm accuracy and

implementation errors.

Keywords:

Authentication

Cryptographic hash function

Domain extension

National institute of standards

and technology

Security
This is an open access article under the CC BY-SA license.

Corresponding Author:

Abouchouar Abdallah

Department of Computer Science, Faculty of Computer Science, Mohammed V University in Rabat

Avenue des Nations Unies, Agdal 10000, Rabat, Morocco

Email: abdollah.abouchouar@gmail.com

1. INTRODUCTION

Cryptographic primitives, especially hash functions, are used to secure data and privacy. They're

essential for ensuring high levels of security in digital transactions, web applications, and anywhere else

security is necessary. Both theoretical and proved collision attacks, now benefit from recent advancements in

digital platforms and architectures. As consequence, current algorithms are in a critical position to counter

serious coming threats. National institute of standards and technology (NIST) has released a request for

candidate method submissions for secure hash algorithm (SHA-3) [1], a new cryptographic hash algorithm that

out performs or improves on (SHA-2) [2]. At the end of this competition, NIST designated the (SHA-3) official

standardized algorithm [3], also known as Keccak-based on wipe function design [4]. However, as

demonstrated in previous studies [5], [6], there are still possible concerns because practically all algorithms

inherit the attributes of a classic domain extension Merkle-Damgârd [7], [8], which have been found to be

vulnerable [9], [10]. Moreover, several surveys discussed the vulnerabilities in authentication methods [11],

internet of things (IoT) systems [12]–[14], and network design [15], and called for creative solutions to address

these issues.

Thus, the non-iterative hash function (NIHF) design emerges as an abstract concept that avoids

construction issues and suggests an alternative to the current paradigms. However, implementing the internal

transformation of NIHF is a critical step to allow experiments and assess the security level. Following this

approach, the current article describes a new implementation of the NIHF design, presents the experimentations

and results through basic validation test programs.

https://creativecommons.org/licenses/by-sa/4.0/

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1213-1222

1214

This article is organized as: in the second section, a preliminary about domain extensions and hash

functions. The third section describes and discus the implementation security level. The fourth section presents

the experimentations, test results and comments on the security level. Finally, section five concludes this work

and open perspectives to the next contributions.

2. PRELIMINARY

2.1. Cryptographic hash functions

Hash functions map input strings of arbitrary length to a fixed length strings output, called hash-

values, message digest or fingerprint. Theoretically a cryptographic hash function must satisfy the following

properties [16]: i) Ease of computation ➔ for a kwon function H with input x, H(x) is easy to compute; ii)

One-way function ➔ for each y=H(x) in range of H, using “y” it is computationally infeasible to find x in the

domain of H; iii) Preimage resistance ➔ for a given digest y of H, it is infeasible to find x with H(x)=y; iv)

2nd preimage resistance ➔ for a given x, it is infeasible to find x’ such that x’≠x and H(x’)=H(x); and v)

Collision resistance ➔ it is infeasible to find separate x and x’ such that x’≠x and H(x’)=H(x). In practice, due

to the birthday theory [16] not all these properties are satisfied.

2.2. Construction design

The construction design, domain extension, or operation mode paradigm is used to overcome the

complexity of processing a non-fixed length message and producing a fixed output length to manage the

internal compression transformation of any hash function. Merkle, Damgârd [7], [8] is the most well-known

construction design in this sector; it was the first solution proposed independently by Damgârd [7] and

Merkle [8] in this subject. This structure allows for iterative behavior, which has an influence on the design of

a number of popular hash algorithms.

The Merkle-Damgârd construction [7], [8] operates with arbitrary-length messages subdivided into

fixed-length input blocks. During the process, an initialization vector (IV) is employed. The internal

compression algorithm iteratively processes the current message block as an input and the result of the previous

iteration as an IV block, as shown in Figure 1.

Figure 1. The Merkle-Damgârd construction

Through this concept a resistant hash function can be reduced to a resistant internal compression

function. An iterated construction with an internal collision resistant compression function can be extended to

a collision resistant hash function [16]. Because of its efficiency, most well-known structures, such as

Maurer and Tessaro [17], empirical mode decomposition (EMD) [18], random-oracle XOR (ROX) [19], and

hash iterative framework (HAIFA) [20], are based on the Merkel-Damgârd [7], [8], and were designed to

improve and remedy the Merkle-Damgârd vulnerabilities [7], [8].

3. DESCRIPTION OF THE NEW HASH FUNCTION

NIHF [5] is an abstract concept that requires implementation to the internal transformation, as

described in the abstruct. In fact, the construction properties are very important to define the behavior of the

whole implemented hash function; however, the way the internal transformation is described also defines the

security level and strength of the entire function. The internal implementation of the NIHF design is described

in this section.

3.1. Applied construction design

Almost cryptographic hash functions take advantage from operational mode to simplify the way how

to process a non-fixed input length and generate fixed length output, here we call back some specific

Int J Artif Intell ISSN: 2252-8938 

New implementation of the abstract design for non-iterative hash functions … (Abouchouar Abdallah)

1215

characteristics of the non-iterative domain extension [5] implemented with the new hash function: i) There is

no initialization vector to handle; ii) The internal transformation has a role to extend the input blocks, not to

compress them as in the classic paradigm; iii) Each input block is processed separately; iv) This model can

provide a pseudo parallel processing based on separate input blocks; v) It applies a sequential a sequential

eXclusive OR XOR addition, involving all extended outputs; and vi) This construction design joins a pseudo

parallel behavior to an iterative one. The Figure 2 illustrates the design characteristics:

Figure 2. Non-iterative domain extension

3.2. Internal transformation description

The internal transformation affects the level of security expected from any cryptographic hash

function. Additionally, randomness is a recommended characteristic that enhance the security level. To match

with these characteristics, the proposed internal transformation is based on random block construction as well

as possible following the next: i) The random input block content intervenes in the internal operations process;

the initial and extended part of the output block is a set of operations that handle the random input to produce

new values. ii) Avoiding use of the initialization vector increases the randomness and prevents any content

manipulation. iii) By extending the input block this function prevents any local collision attack, then to ensure

the compression role a sequential XOR is applied on all output blocks. As illustrated in Figure 3. this internal

transformation processes a fixed size input block “Mi” and generates an extended output block “A”. Sections

3.3.2 and 3.4.2 go over the actions (transformation 1,2,3, and 4) in further detail.

3.3. Algorithm and implementation

A description of the algorithm can be found in this section. The following values define this hash

function: the input block size is 512 bits, and the output block size is 1024 bits. (NIHF-1024), which stands for

non-iterative hash function with a digest of 1024 bits, is the name of this version.

This algorithm consists of three operations. Beginning with a pre-processing phase in which the input

message is padded and prepared to be subdivided into input blocks. The internal transformations can then be

executed in one of two options, sequential input-blocks extension and XOR operation, or parallel input-blocks

extension followed by XOR operation involving all extended input-blocks. Finally, a 1024-bit digest of the

compressed block is generated.

The sequential input-blocks extension and XOR operation are implemented in this paper’s

experiment. For the upcoming version research, the parallel mode will be implemented. The processing mode

is explained in the following subsections.

3.3.1. Pre-processing phase

The purpose of the padding process is to make the overall length of the padded message a multiple of

512 bits. NIHF-1024 computes at least two blocks of 512 bits to construct the final digest. The following

describes how this padding should be done, based on the (SHA-256) padding algorithm [2]: i) To the original

message, append a single '1' bit; ii) append as many '0' bits to the original message as feasible, so that the sum

of the padded '0' and the original message length +1+64 is a multiple of 512; and iii) append the 2-word

representation of the original message length value to the padded message's last 64 bits.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1213-1222

1216

3.3.2. Block extension process

One of the innovative main concepts that constitutes the NIHF design is processing the input blocks

individually. In fact, without initialization vectors, implementing the extension transformation is a reel

challenge. The illustration in Figure 2 shows the proposed algorithm to overcome this obstacle. Each input

block has a four-step cycle to complete, as shown in Figure 3. each step specifies a number of iteration rounds

and arithmetic operations. The following sub-sections describ these steps. The following defines some

notations: i) Let Mi the current 512 bits input block which is made up of 16 Integers of 32-bits size; ii) Let A1

and A2 the first and second half of the 1024 bits output block; iii) Let rotRight (val, x): performs a right rotation

on “val” with “x” shifts; iv) Let index the current indexed Integer in the array block; iv) Let

getRandomInputIndex(x): return a value from 0 to the input block length; v) Let getRandomOutputIndex(x):

return a value from 0 to the output block length; and vi) msgLength: is the input length after the padding.

Figure 3. Internal transformation

a) Step1: rounds from 0 to 2

Processing (Mi) the input block of Integers, a random index value is used to select an integer from

Mi, if the integer is a zero value the (Max Integer) value is used instead, then a rotation to the right is performed

with a specific number of shifts to avoid getting the same integer value. This operation is repeated for the

second elected integer with a slice change in the index value, and the zero value is substituted by (Max Integer

value-Magic Number), where the (Magic Number) is a binary representation that improves the exclusive

addition property. The two Integers are then added together to fill the appropriate cell in (A1).

These operations are repeated in two rounds (0=< rounds <2) while filling up (A1). The purpose is to

substitute any zero values for pseudo random values. Here's a quick rundown of what was said:

repVal1=replaceZeroValue (Mi [getRandInputIndex (index)], intMaxValue)

repVal2=replaceZeroValue (Mi [getRandInputIndex(index+1)], intMaxValue-MagicNumber)

A1 [index]=rotRight (repVal1, 32-index-3) + rotRight (repVal2, 32-index-2)

b) Step2: rounds from 2 to 10

The purpose of the second step is to make additional pseudo random alterations without using the

input block (Mi). So, in (A1), it consists of performing a rotation to the right on the current selected integer

Int J Artif Intell ISSN: 2252-8938 

New implementation of the abstract design for non-iterative hash functions … (Abouchouar Abdallah)

1217

from (A1), then elect another integer by a random index value in (A1) and apply a rotation to the right on this

integer. The old integer value in (index) is substituted by the XOR operation over the two new integers.

val1=rotRight (A1 [index], 32-index-1)

val2=rotRight (A1 [getRandInputIndex (A1 [index])], 32-index-3)

A1[index]=val1 ^ val2

(A1) integers are then transformed and used to fill (A2). Except rotation operation, almost the same

instructions are done.

val1 = A1 [getRandInputIndex (index)]

val2 = A1 [(A1 [index])% (Mi.length)]

A2[index] = val1 ^ val2

c) Step3: rounds from 10 to 15

In step 3, the (reverseNumber) method is introduced, which reverses the digits order in the number

value, in addition to rotation, XOR addition, and pseudo random selection operations. This combination

increases the output value's variability and randomness. The reverse technique, in general, generates new values

rather than using predefined values as initial vectors and registries. The steps for carrying out the instructions

are outlined below.

In (A1) :

val1 = reverseNumber(A1[index])

val2 = A1[getRandomInputIndex(msgLength-(index+1))]

A1[index] = val1 ^ val2

In (A2):

val1 = rotRight(reverseNumber(A2[getRandomOutputIndex(index)]), index)

val2 = A2 [getRandomInputIndex(index)]

A2 [index] = val1 ^ val2

d) Step4: rounds from 15 to 32

The goal of the fourth step is to spread the pseudo random behavior across the entire output block (A),

which increases the avalanche effect property. Here, the same instructions are performed:

val1 = rotRight(A[getRandomOutputIndex(index)],index)

val2 = rotRight(A[getRandomOutputIndex(index+1)],index+1)

val3 = rotRight(A[getRandomOutputIndex(index+2)],index+2)

A[index] = val1 + val2 + val3

3.3.3. XOR operation process

The extended output blocks generated in the previous step should be aggregated to form one final

output block with a fixed length, even if the construction design does not use iterative and chained input blocks

processing. In this stage, the XOR addition is used to sum the extended output blocks and to take use of the

one-time pad property, which ensures a high level of complexity and ambiguity, resulting in increased

randomness and system security [21].

Due to the XOR commutativity and associativity properties, the extended output blocks can be

handled in two implemention mode, which can be either sequential sub-block extension and XOR operation,

or parallel sub-block extension and XOR operation. While the implemented mode is sequential block extension

and XOR operations, a binary XOR operation is performed over the current extended block and the preceding

one. The last result output block is the final hash, or digest.

3.4. NIHF-1024 pseudo-code

As presented in previous paragraphes, the algorithm consists of three operations. Beginning with a

pre-processing phase, the internal transformations and the XOR operation involving all extended input-blocks.

This pseudo-code section describes the main function algorithm which is the sequential input-blocks extension

and XOR operation mode, then details the pseudo-code of the extention operaion and the XOR operation. The

following is a view on the algorithms covering the important phases of NIHF-1024.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1213-1222

1218

3.4.1. The main function: NIHF-1024 sequential extension and XOR operations

The main function manages and combines the extension and XOR addition operations, starting with

the padding procedure and input block preparation. As previously stated, the implemented mode in this case

study is the sequential mode, in which the two operations are processed in order. In other words, except for the

first extended input block, each extended input block in a loop instruction is subjected to an XOR addition with

the previously extended input block. Pseudo-code of NIHF-1024 as shown in Algorithm 1.

Algorithm 1. Pseudo-code of NIHF-1024
 Input : msg //the input message in byte array

 inputBlockSize //the input byte block size parameter

 outputBlockSize //the output byte block size parameter

 Output : digest //the final extended and xored block

 Begin

 Let extBlock1  array()

Let extBlock2  array()

 // Pre-processing : a padding process to the input message

Let msgArrayBlocks  padding (msg, inputBlockSize, outputBlockSize)

Let paddedInputMsghLength  msgArrayBlocks.length() * 32 //count in bits

 // Extend the initial bloc

extBlock1  extendInputBlock(msgArrayBlocks[0], inputBlockSize,

outputBlockSize, paddedInputMsghLength)

// A loop on the blocks from the second one, sequential extension and XOR

operations

 for each block in msgArrayBlocks

 extBlock2  extendInputBlock(block,inputBlockSize,

outputBlockSize,paddedInputMsghLength)

extBlock1  xorOpperation(extBlock1, extBlock2, inputBlockSize,

outputBlockSize)

 End for

digest  extBlock1

return digest

 End

3.4.2. Extension operation: extendInputBlock

In this implementation, the extension operation serves a consistent role; it enlarges the input blocks

and gives the processing steps a random behavior. It does not rely on initial vectors IV, but rather on random

input values. It performs 32 rounds of binary, logic, rotation, and substitution operations in the round ranges

supplied. Each of the four round ranges is described in pseudo-code as shown in Algorithm 2.

Algorithm 2. Pseudo-code of extendInputBlock
Input : block //the current input block

 inputBlockSize //the input block size parameter

 outputBlockSize //the output block size parameter

 paddedInputMsghLength //the input message length after padding

Output : extBlock //the extended block

Begin

Let integerInputBlockSize  16 //input Integer(32bits) block size parameter

Let integerOutputBlockSize  32 //output Integer(32bits) block size parameter

Let integerMagicNumber  0xAAAAAAAA //binary representation of this number

enhance the exclusive addition

Let integerMAXValue  0x7fffffff //Max int value in 32bits representation =

0x7fffffff]

Let integerBitSize  32 //number of bits used to represent an int value in

two's complement binary form

// in 32 rounds, apply the binary operations according to the round range

// ranges: 1=<round>2; 2=<round>10; 10=<round>15 or 15=<round>32

for round from 1 to 32

 if round < 2 then

 for i from 0 to inputBlockSize

 if (integerBitSize-(i+3)) % integerBitSize == 0 then

 temp1 | ((bloc[|i % integerInputBlockSize|] == 0 ?

integerMAXValue :

bloc[|i % integerInputBlockSize|])

 >> (integerBitSize-(i+3)+1)) |

Else

 temp1 | ((bloc[|i % integerInputBlockSize|] == 0 ?

integerMAXValue :

bloc[|i % integerInputBlockSize|])

>> (integerBitSize-(i+3))) |

Int J Artif Intell ISSN: 2252-8938 

New implementation of the abstract design for non-iterative hash functions … (Abouchouar Abdallah)

1219

End if

if (integerBitSize-(i+2)) % integerBitSize == 0 then

 temp2  | ((bloc[|i+1| % integerInputBlockSize] == 0 ?

(integerMAXValue-integerMagicNumber): bloc[|i+1| %

integerInputBlockSize])

>> (integerBitSize-(i+2))+1) |

Else

 temp2  | ((bloc[|i+1| % integerInputBlockSize] == 0 ?

(integerMAXValue-integerMagicNumber): bloc[|i+1| %

integerInputBlockSize])

>> (integerBitSize-(i+2))) |

 End if

extendArray[i]  temp1 + temp2

 End for

 End if

 if round >= 2 && round < 10 then

 // on the first part of the extended block, process operations (J<

integerInputBlockSize)

for j from 0 to integerInputBlockSize

 extendArray[j]  (extendArray[j] >> (integerBitSize-(j+1))) ^

(extendArray[| extendArray[j] | %integerInputBlockSize] >>

(integerBitSize-(j+3)))

 End for

 //on the second part of the extended block, process operations

(integerInputBlockSize =< i< integerOutputBlockSize)

for i from integerInputBlockSize to integerOutputBlockSize

 extendArray[i]  (extendArray[|i| % integerInputBlockSize]) ^

 (extendArray[|extendArray[i]| %

integerInputBlockSize])

 End for

if round >= 10 && round < 15 then

 for j from 0 to integerInputBlockSize

 extendArray[j]  reverseNumber(extendArray[j]) ^

 extendArray[| paddedInputMsghLength - (j+1)

| % integerInputBlockSize]

 End for

 for i from integerInputBlockSize to integerOutputBlockSize

 extendArray[i] (reverseNumber(extendArray[| i %

integerOutputBlockSize |]) >> i) ^

extendArray[| i % integerInputBlockSize |]

 End for

 End if

 if round >= 15 && round < 32 then

 for i from 0 to integerOutputBlockSize

 extendArray[i]  (extendArray[| i % integerOutputBlockSize |] >>

i)

 + (extendArray[| i+1 % integerOutputBlockSize |]

>> i+1)

 + (extendArray[| i+2 %

integerOutputBlockSize |] >> i+2)

 End for

 End if

End for

return extendArray

End

3.4.3. Xor operation over extended blocks: xorOpperation

The XOR operation is a binary XOR addition over two extended input blocks. This method is used to

deal with input blocks extension, replacing and avoiding the classic block chaining strategy while

simultaneously giving high levels of embiguity and cryptanalysis protection. As a result, the output digest is

compressed and has a set length at the end of the processing.

4. RESULTS AND DISCUSSION

For evaluating cryptographic hash functions, specific tests and validation programs are recommended,

such as the avalanche effect [22], [23], the statistical test suite (STS) [24], and the cryptographic algorithm

validation program (CAVP) [25] tools from NIST. Some of these programs, particularly the avalanche effect

and the test vectors provided by CAVP-check the behavior while processing the test vectors, are discussed in

this section. The remaining CVAP phases and STS will be carried out in future research initiatives. The

following are the system configurations used in the execution environment: i) Implementation with JAVA

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1213-1222

1220

jdk7; ii) Laptop processor Intel® Core™ i5-7440HQ CPU @ 2.80 GHz 2.80 GHz; iii) Memory of 16 GB; and

iv) Windows 10 (64 bits) system.

4.1. Avalanche test

The avalanche test was introduced by Feistel with the data encryption standard (DES) S-Box [22].

The avalanche effect is a desired characteristic that strengthens the hash function security. The concept is “if a

function is to satisfy the strict avalanche criterion (SAC), then each of its output bits should change with a

probability of one half”, i.e. if any single bit input is complemented, each of the output bits changes with a

probability of one half [23].

Calculating the Hamming distance for a hash function F and input (m), i.e. measuring the difference

between the outputs F(m) and F(m'), where (m') is an input after complementing a random single bit in the

input (m), is part of the validation test procedure. To check this property with NIHF-1024, we generate a

random input message of 128 byte, then process it in a loop of 10,000 rounds, by complementing a random

single bit each round and comparing the current output with the prior output. At least perform a Hamming

distance comparison on 10,000 output messages.

For a 1024-bit output digest, the Hamming distance between two consecutive digests should

theoretically be close to 512. The Hamming distance with the NIHF-1024 avalanche effect is near to the

expected value. According to the data gathered throughout the experiments, the Hamming distance varies

between 465 and 560. This metric prompted us to conclude that the generated outputs are practically

independent of the inputs, which is a desirable property. Figure 4 shows the avalanche impact of NIHF-1024

in the first 5,200 rounds.

4.2. Test vectors

The NIST CAVP conducts validation testing of certified cryptographic algorithms and their

constituent components by using any of the accredited laboratories to test the algorithm implementations [25].

The experiments in this paper are limited to using only the test vectors provided by the CAVP to informally

verify and detect pointer problems, insufficient space allocation, improper error handling, incorrect function

behavior, or potential collision detection; the remainder of the CAVP procedure is not covered. The

constituents of the test vectors, as well as the test results, are presented in this section

The secure hash algorithm-3 validation system SHA-3VS-which outlines the validation testing criteria

for the SHA-3 family-[26] provides the specifications and design of test vectors. The test vectors, as well as

the Short messages test files, Long messages test files, and pseudo-randomly generated messages (Monte

Carlo) test files, are all related to SHA-3 requirements. All are in the bits and bytes encoding format and may

be found in the test vectors section [25].

Only the short and long input files will be considered in the test. The (Monte Carlo) test files have

been postponed till later. The NIHF-1024 process, generates and records the resulting digest by parsing the

content files and for each input message defined in. Throughout the experiment, the NIHF-1024 algorithm was

updated and reviewed to remedy implementation issues until all test vectors were correctly processed. To

summarize the test vectors' findings, we've included two tables, Table 1. and Table 2., that show used file name,

input message count, detected error, collision detection and execution time for both Byte and Bit input files.

According to the given results in Table 1 and Table 2, the NIHF-1024 passed these test vectors without error

or collision detection. To be clear, the purpose of this experiment is to examine the NIHF-1024 implementation

and behavior, not to compare it to the SHA-3 implementation.

Figure 4. Avalanche test results

Int J Artif Intell ISSN: 2252-8938 

New implementation of the abstract design for non-iterative hash functions … (Abouchouar Abdallah)

1221

Table 1. Test vector input files, Byte oriented message
Byte Input file Input message count Error detection Collision detection Time (ms)

SHA-3_224LongMsg.rsp 100 0 0 509

SHA-3_224ShortMsg.rsp 145 0 0 10

SHA-3_256LongMsg.rsp 100 0 0 467
SHA-3_256ShortMsg.rsp 137 0 0 11

SHA-3_384LongMsg.rsp 100 0 0 355

SHA-3_384ShortMsg.rsp 105 0 0 6
SHA-3_512LongMsg.rsp 100 0 0 243

SHA-3_512ShortMsg.rsp 73 0 0 6

Table 2. Test vector input files, Bit oriented message
Bit Input file Input message count Error detection Collision detection Time (ms)

SHA-3_224LongMsg.rsp 100 0 0 559

SHA-3_224ShortMsg.rsp 1153 0 0 83

SHA-3_256LongMsg.rsp 100 0 0 455

SHA-3_256ShortMsg.rsp 1089 0 0 77

SHA-3_384LongMsg.rsp 100 0 0 346

SHA-3_384ShortMsg.rsp 833 0 0 53
SHA-3_512LongMsg.rsp 100 0 0 243

SHA-3_512ShortMsg.rsp 577 0 0 27

5. CONCLUSION AND PERSPECTIVES

To recap, we've stated that it's safe to look for a new concept in cryptographic constructions in order

to avoid future security problems. Thus, the pillar of this work was to think outside the box about how to

innovate a new cryptographic design, first by resolving structural issues with a new paradigm, then proposing

a new implementation to the new concept -which is the main subject of this paper, and finally challenging the

potential of this new solution. By the way, we detailed and discussed the algorithm implementation in the

previous sections, which is based on random and independent processing and so adheres to the paradigm

properties. We set an objective to challenge the implementation of NIHF-1024 with several validation test

programs, such as the avalanche effect and NIST vector tests, at this stage of the continuous work. The test

results were promising, prompting us to try more validation programs and explore new options in parallel or

distributed architectures with new variants of NIHF-1024 in order to uncover its potential. Now, we have a

perspective to challenge more experimentations and more environment configurations in a continuous

progression to achieve a considerable status for this new approach of cryptographic hash functions.

REFERENCES
[1] NIST, “Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm (SHA-3) family,” Federal

Register Noties, vol. 72, no. 212, pp. 62212–62220, Nov. 2007.

[2] Q. H. Dang, “Secure Hash Standard,” Gaithersburg, MD, Jul. 2015. doi: 10.6028/NIST.FIPS.180-4.

[3] M. J. Dworkin, “SHA-3 standard: permutation-based hash and extendable-output functions,” Gaithersburg, MD, Jul. 2015. doi:
10.6028/NIST.FIPS.202.

[4] G. Bertoni, J. Daemen, and G. Van Assche, "The KECCAK Reference. Submission to NIST (Round 3)", 2011. Accessed:2022. [Online].

Available: http://keccak.noekeon.org/Keccak-reference-3.0.pdf.
[5] A. Abouchouar, F. Omary, and K. Achkoun, “New concept for cryptographic construction design based on noniterative behavior,” IAES

International Journal of Artificial Intelligence (IJ-AI), vol. 9, no. 2, pp. 229–235, Jun. 2020, doi: 10.11591/ijai.v9.i2.pp229-235.

[6] A. T. Hashim, A. M. Hasan, and H. M. Abbas, “Design and implementation of proposed 320 bit RC6-cascaded encryption/decryption
cores on altera FPGA,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 6, pp. 6370–6379, Dec.

2020, doi: 10.11591/ijece.v10i6.pp6370-6379.

[7] I. B. Damgård, “A design principle for hash functions,” in Advances in Cryptology — CRYPTO’ 89 Proceedings, Springer New York,
1990, pp. 416–427.

[8] R. C. Merkle, “One way hash functions and DES,” in Advances in Cryptology — CRYPTO’ 89 Proceedings, Springer New York, 1990,

pp. 428–446.
[9] Wang, X., Yin, Y.L., Yu, H. (2005). Finding Collisions in the Full SHA-1. In: Shoup, V. (eds) Advances in Cryptology – CRYPTO

2005. CRYPTO 2005. Lecture Notes in Computer Science, vol 3621. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535218_2.
[10] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The first collision for full SHA-1,” in Advances in Cryptology –

CRYPTO 2017, Springer International Publishing, 2017, pp. 570–596.

[11] T. Mehraj, M. A. Sheheryar, S. A. Lone, and A. H. Mir, “A critical insight into the identity authentication systems on smartphones,”
Indonesian Journal of Electrical Engineering and Computer Science, vol. 13, no. 3, pp. 982–989, Mar. 2019, doi:

10.11591/ijeecs.v13.i3.pp982-989.

[12] M. Imdad, D. W. Jacob, H. Mahdin, Z. Baharum, S. M. Shaharudin, and M. S. Azmi, “Internet of things: security requirements, attacks
and counter measures,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 3, pp. 1520–1530, Jun. 2020,

doi: 10.11591/ijeecs.v18.i3.pp1520-1530.

[13] R. Chetan and R. Shahabadkar, “A comprehensive survey on exiting solution approaches towards security and privacy requirements of

IoT,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 4, pp. 2319–2326, Aug. 2018, doi:

10.11591/ijece.v8i4.pp2319-2326.

  ISSN: 2252-8938

Int J Artif Intell, Vol. 11, No. 4, December 2022: 1213-1222

1222

[14] A. H. Aly, A. Ghalwash, M. M. Nasr, and A. A. A.-E. Hafez, “Formal security analysis of lightweight authenticated key agreement

protocol for IoT in cloud computing,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 24, no. 1, pp. 621–636,
Oct. 2021, doi: 10.11591/ijeecs.v24.i1.pp621-636.

[15] V. M. S. and M. C. Patil, “Reviewing effectivity in security approaches towards strengthening internet architecture,” International

Journal of Electrical and Computer Engineering (IJECE), vol. 9, no. 5, pp. 3862–3871, Oct. 2019, doi: 10.11591/ijece.v9i5.pp3862-
3871.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryptography. CRC Press, 1996.

[17] U. Maurer and S. Tessaro, “Domain extension of public random functions: Beyond the birthday barrier,” in Advances in Cryptology -
CRYPTO 2007, Springer Berlin Heidelberg, 2007, pp. 187–204.

[18] M. Bellare and T. Ristenpart, “Multi-property-preserving hash domain extension and the EMD transform,” Advances in Cryptology -

ASIACRYPT 2006, Lecture Notes in Computer Science, vol. 4284, pp. 299–314, 2006, doi: 10.1007/11935230_20.
[19] E. Andreeva, G. Neven, B. Preneel, and T. Shrimpton, “Seven-property-preserving iterated hashing: ROX,” in Advances in Cryptology

– ASIACRYPT 2007, Springer Berlin Heidelberg, 2007, pp. 130–146.

[20] E. Biham and O. Dunkelman, “A framework for iterative hash functions - HAIFA,” IACR Cryptology ePrint Archive, p. 278, 2007.
[21] A. I. Salih, A. M. Alabaichi, and A. Y. Tuama, “Enhancing advance encryption standard security based on dual dynamic XOR table

and MixColumns transformation,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 19, no. 3, pp. 1574–1581,

Sep. 2020, doi: 10.11591/ijeecs.v19.i3.pp1574-1581.
[22] H. Feistel, “Cryptography and computer privacy,” Scientific American, a division of Nature America, Inc., vol. 228, no. 5, pp. 15–23,

May 1973, doi: 10.1038/scientificamerican0573-15.

[23] R. Forrié, “The strict avalanche criterion: Spectral properties of boolean functions and an extended definition,” in Advances in
Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference, Springer New York, 1990, pp. 450–468.

[24] L. E. Bassham et al., “A statistical test suite for random and pseudorandom number generators for cryptographic applications,” National

Institute of Standards and Technology, 2010. doi: 10.6028/nist.sp.800-22r1a.
[25] P. D. O’Reilly, K. Rigopoulos, G. Witte, and L. Feldman, “2017 annual report: NIST/ITL cybersecurity program,” Gaithersburg, MD,

Sep. 2018. doi: 10.6028/NIST.SP.800-203.
[26] L. E. B. III and T. A. Hall, “The secure hash algorithm validation system (SHAVS),” 2004.

BIOGRAPHIES OF AUTHORS

Abdallah Abouchouar is a Ph.D. student in computer science at Mohammed V

University in Rabat, where he works as a researcher in the Intelligent Processing & Security

of Systems (IPSS) lab. He specializes in cryptography and security systems, with an emphasis

on cryptographic hash function concepts and implementations. His research topic's goal is to

propose and develop a novel cryptographic hash function concept. He can be contacted at

email: abdollah.abouchouar@gmail.com.

Fouzia Omary is a Professor of Higher Education at - Mohammed V University

in Rabat. Having obtained her master's degree in applied mathematics and her DEA in

computer science, she joined the Department of Mathematics of the Faculty of Sciences of

Rabat, as a teacher. Three years later, she obtained her 3rd cycle Doctorate in Computer

Science in the field of compilation to obtain the position of Assistant Professor In Computer

Science. She evolved her professional career and became a Professor of Higher Education by

obtaining the State Doctorate in Computer Science in the context of Cryptography in 2006.

She also obtained the certificate "Blockchain Developer Mastery Award (2018) » issued by

IBM. From 2012 to 2016 she was Director of the LRI research structure. And from 2016 she

is Head of the “Intelligent Processing & Security of Systems” (IPSS) Research Structure. She

can be contacted at email: omaryfouzia@gmail.com.

http://orcid.org/0000-0003-0512-1293
https://scholar.google.com.eg/citations?view_op=list_works&hl=en&user=iOAPb14AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55648054200
https://publons.com/researcher/5000209/abdallah-abouchouar/
https://orcid.org/0000-0001-5216-0119
https://scholar.google.com/citations?hl=fr&user=I2Go_6AAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=55936028200

