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 Non-destructive evaluation (NDE) is very essential in measuring the 

properties of materials and in turn detect flaws and irregularities. Pulsed 

thermography (PT) is one of the advanced NDE technique which is used for 

detecting and characterizing subsurface defects. Recently many methods 

have been reported to enhance the signal and defect visibility in PT. In this 

paper, a novel unsupervised deep learning-based auto-encoder (AE) 

approach is proposed for enhancing the signal-to-noise ratio (SNR) and 

visualize the defects clearly. A detailed theoretical background of AE and its 

application to PT is discussed. The SNR and defect detectability results are 

compared with the existing approaches namely, higher order statistics 

(HOS), principal component thermography (PCT) and partial least square 

regression (PLSR) thermography. Experimental results show that AE 

approach provides better SNR at the cost of defect detectability. 
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1. INTRODUCTION 

In nuclear, process and petrochemical industries regular inspection of in-service components is 

important to detect and characterize service induced defects. This helps in enhancing the life cycle of the 

component and ensures the safety of the components and the workers. Non-destructive evaluation (NDE) 

methods evaluate the inherent properties of materials and identify any defect or irregularity without 

damaging it. This not only helps in detecting defects but also predicts whether a defect is probable to occur in 

future or not which is a crucial factor in preventing major crisis in an industry. Deep learning approaches are 

widely used in the field of non-destructive testing (NDT) to enhance the signal-to-noise ratio (SNR) and thus 

improving the defect visibility and to measure the size and depth of defects automatically. 

Pulsed thermography (PT) is one of the advanced NDE methods in which the front side of the object 

under inspection is exposed to a short and high energy optical pulse [1]. The front surface of the object 

absorbs the optical energy and converts it to thermal energy resulting in increase of surface temperature. As 

the rear end of the object is at ambient temperature, thermal waves diffuse from front surface to rear end 

causing decrease in front surface temperature. Any defect in the material alters this diffusion rate and the 

surface temperature above it, which is easily detected by an infrared camera [2]. It allows materials to be 

inspected very quickly for near-surface defects and bonding weakness. Compared to conventional techniques 

https://creativecommons.org/licenses/by-sa/4.0/
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like radiography and ultrasound testing, PT has advantages like non-contactless measurement and fast 

inspection rate, whereas the limitation is that it is confined to surface and subsurface defect detection. 

Noise is an unwanted but integral part of a signal. In PT, noise is associated with the temperature 

response recorded in infrared (IR) camera. This noise can affect the detection of deeper and smaller defects. 

Reduction of such noise is essential, which can be considered as a post processing step. In PT numerous 

methods have been reported for reduction of noise and thus improve SNR, an important parameter which 

indicates the effectiveness of noise reduction. Some of the important methods based on statistical and 

regression-based algorithms are higher order statistics (HOS) [3], thermal signal reconstruction (TSR) [4], 

principal component thermography (PCT) [5], and partial least square thermography (PLST) [6]. In recent 

years the trend has been shifted towards neural network (NN)-based algorithms for signal enhancement. 

Extensive work has been reported in the field of automated detection and characterization of defects in PT 

[7]–[12], [13]–[18]. Various neural networks like multilayer back-propagation NN [7]–[10], [12], [13], 

Kohonen and perceptron based NN [11], convolutional neural network (CNN) [14] and deep feed forward 

NN [15]–[17] have been used for defect detection and depth quantification in materials like plastics, 

composites and aluminium. These algorithms provide reasonable accuracy in defect detection and depth 

estimation. Apart from defect depth and size estimation, improving the defect visibility by enhancing the 

SNR is also important. SNR enhancement using neural networks has not been explored in PT. In [18] stacked 

auto-encoder (AE) method was reported for enhancing the delamination visibility in composites using PT. In 

this approach, pre-processed temporal pixel information is used to train the neural network. The study 

showed that this method significantly improved the delamination contrast. 

In this paper, an unsupervised AE based neural network approach is explored to enhance SNR in PT 

experiments for AISI 316 L Stainless Steel material and the performance is compared with other approaches, 

which gives one or few images as output, namely HOS, PCT, and PLST in terms of SNR and defect 

visibility. Similar to HOS, the output is a single image obtained from 3D raw PT data. This saves on the time 

for inspection, as one need not go through the complete image sequence to locate the defect. 

The paper is organized as follows: section 2 provides a detailed theoretical background on PT and 

the existing algorithms for signal enhancement. Section 3 elaborates the proposed algorithm for enhancing 

PT signal and section 4 provides the comparison of the performance of the proposed algorithm with the 

existing algorithms. Finally, the paper is concluded and future directions for the proposed work is provided in 

section 5. 

 

 

2. THEORETICAL BACKGROUND AND EXISTING ALGORITHMS 

2.1.  Pulsed thermography (PT) 

In PT, a short and high-power pulse is impinged on the surface of the object under inspection. The 

absorption of the optical pulse by the surface of the object results in instantaneous increase in its surface 

temperature. The diffusion of heat then results in decrease in the surface temperature which is monitored 

using an IR camera. Any interference, like a defect, alters the diffusion rate, which causes a change in the 

surface temperature picked up by the IR camera. The signal acquired by PT is of three dimensions with 

spatial information (camera pixels) recorded as a function of time. If 𝑁𝑥 × 𝑁𝑦 is the resolution or the number 

of pixels captured by the IR camera and 𝑁𝑡 = 𝐹𝑟 × 𝑡 is the total number of thermal images, where 𝐹𝑟 is the 

frame rate and 𝑡 is the duration of the PT experiment, then the raw PT data set is of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑡. The 

schematic diagram of the PT set-up is shown in Figure 1. 

 

 

 
 

Figure 1. Schematic diagram of PT experimental set-up 
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2.2.  Higher order statistics (HOS) 

HOS analysis [3] is employed to process IR images and to compress the most useful information 

into a unique image for inspection. PT response with respect to time is described through its statistical 

behaviour. This statistical behaviour is used to analyze the different characteristics of thermal images as 

higher order statistical parameters have a relation to thermal conductivity in the longitudinal direction of a 

material. Various statistical moments such as skewness, kurtosis, hyper-skewness and hyper-flatness are 

considered, and these moments are then combined to form one image for each of the statistical moment. The 

𝑛𝑡ℎ standardized central moment is calculated using (1) as skewness is 3rd order central moment, kurtosis is 

4th order central moment, hyper-skewness is 5th order and hyper-flatness is 6th order central moment: 

 

𝑀𝑛 =
𝐸[(𝑋−𝐸[𝑋])𝑛]

𝜎𝑛  (1) 

 

where 𝑋 is the data distribution, 𝜎 is the standard deviation and 𝐸[𝑋] is the mean of 𝑋. Skewness represents a 

measure of symmetry, or the lack of symmetry of a distribution. Kurtosis characterizes the heaviness of the 

tail of the distribution, compared to the normal distribution. Hyper-skewness measures the symmetry of the 

tails, while hyper-flatness measures similarly but with heavier focus on outliers than the fourth moment. Odd 

order moments quantify relative tailedness and even order moments quantify total tailedness. Standardized 

central moments of higher order provide larger values due to the higher power terms and cannot be defined 

physically as they are associated with the presence of outliers. Kurtosis and skewness are used for enhancing 

the defect visibility and SNR in PT. 

 

2.3.  Principal component thermography (PCT) 

The temperature response signals of PT tend to be monotonic and, so oscillatory basis functions are 

inappropriate. This method [5] constructs a set of empirical orthogonal functions (EOF) which are statistical 

modes that provide the strongest projection for the data and offers a very compact representation. The 

thermal behavior associated with underlying defects of a material is compactly described through a singular 

value decomposition (SVD) of the data matrix. In general, any matrix 𝐴 of size 𝑁𝑥 × 𝑁𝑦 can be decomposed 

as in (2): 

 

𝐴 = 𝑈𝑆𝑉𝑇 (2) 

 

where the three matrices are: 𝑈 whose columns comprise the set of EOF that models spatial variations, 𝑆 is a 

diagonal matrix with singular values on its diagonal and rows of 𝑉𝑇 are the principal component vectors 

which describe the characteristic time behaviour. The first few columns of matrix 𝑈 are used to reconstruct 

the data to reduce the redundancy in the original data set. 

Principal component analysis (PCA) applied to PT data in the form of thermogram sequence is 

called PCT [5] and cannot be applied directly to a 3-D thermographic data matrix. A pre-processing step of 

data unfolding is necessary which converts the 3D matrix of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑡 to a 2D expanded matrix 

((𝑁𝑥 × 𝑁𝑦 ) × 𝑁𝑡). The unfolded data matrix is normalized by subtracting the mean from each column 

divided by standard deviation of that column. The normalisation ensures that pixel to pixel variations does 

not influence the decomposition. PCT yields high levels of thermal contrast for underlying defects in 

composite materials which results in defect detection compared to conventional thermographic algorithms. 

 

2.4.  Partial least square thermography (PLST) 

In contrast to PCA where the matrix 𝑈 describes the variance, partial least squares regression 

(PLSR) [6] computes loadings (𝑃) and scores (𝑇) vectors that are correlated with the predicted matrix 𝑌, 

which describes the variation in matrix 𝑋 similar to principal component regression. The matrix 𝑋 is the 

surface temperature matrix, while 𝑌 is the observation time of the thermal images. The result of the bilinear 

decomposition is a new set of thermal images and observation time vector composed of latent variables in a 

new subspace which considers only the most important variations. 

PLSR is based on the basic latent component decomposition of 𝑋 and 𝑌 matrices into a combination 

of loadings, scores and residuals [6]. Mathematically, the PLS model is expressed as in (3) and (4). The 

scores are orthogonal and are expressed as linear combinations of the original variables 𝑋 with the 

coefficients 𝑊 as expressed in (5): 

 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (3) 

 

𝑌 = 𝑇𝑄𝑇 + 𝐹 (4) 
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𝑇 = 𝑋𝑊 (5) 

 

where 𝑇 is the score matrix, 𝑃 and 𝑄 are loading or coefficient matrices and describe how the variables in 𝑇 

relate to the original matrices 𝑋 and 𝑌. 𝐸 and 𝐹 are residual matrices and represent noise or irrelevant 

variability in 𝑋 and 𝑌 respectively. 

Once the scores matrix 𝑇 is obtained, the loading matrices 𝑃 and 𝑄 are estimated by regression of 𝑋 

and 𝑌 onto 𝑇. The residual matrices 𝐸 and 𝐹 are found by subtracting the estimated versions of 𝑇𝑃𝑇 and 

𝑇𝑄𝑇 from 𝑋 and 𝑌, respectively. The regression coefficients are obtained using (6) and the regression model 

is given as in (7). 

 

𝐵 = 𝑊𝑄𝑇 (6) 

 

𝑌 = 𝑋𝐵 + 𝐹 = 𝑋𝑊𝑄𝑇 + 𝐹 (7) 

 

2.5.  Deep learning based algorithms 

Infrared imaging-based PT is used to automatically inspect, detect, and analyse infrared images. 

Passive thermography is based on visible light and is a imaging tool for self-heating objects such as the 

human body and electrical power devices. Active thermography is a NDT method for quality and safety 

evaluation of non-self-heating objects. The rapid development of deep learning makes PT more intelligent 

and highly automated, thus considerably increasing its range of applications. This paper [19] reviews the 

principle, cameras, and PT data to discuss the applications of deep learning. 

In this study [20], artificial intelligence was applied in combination with infrared thermography to 

detect and segment defect on laminates. Segmentation was performed on both mid-wave and long-wave 

infrared sequences obtained during PT experiments through a deep neural network for each wavelength. The 

F1-score for mid-wave images based model is 92.74%, while for long-wave images is 87.39%. 

In this paper [21], synthetic data from the standard finite element models (FEM) are combined with 

experimental data to build large datasets with mask region based convolutional neural networks (Mask-

RCNN), learn essential features of objects of interest and achieve defect segmentation automatically. The 

results prove the efficiency of adapting inexpensive synthetic data together with the experimental dataset for 

training the neural networks to obtain an achievable performance from a limited collection of the annotated 

experimental data of a PT experiment. 

In this paper [22], an artificial neural network (ANN) is employed to detect depth of the defects in 

composite samples, coupled with PT. The study presents a proof of concept using a Multiphysics FEM 

simulation model of the inspection process, to generate a training dataset and the proposed NN was further 

tested experimentally to validate its accuracy and performance. The accuracy of the developed NN for the 

synthetic data was more than 97% and for the experimental data was around 90%. 

Kovács et al. [23] investigate two deep learning approaches to recover temperature profiles from PT 

images in NDT. In the first method, a deep neural network (DNN) was trained in an end-to-end fashion with 

surface temperature measurements as input. In the second method, the surface temperature measurements 

were converted to virtual waves, which was then fed to the DNN. For a dataset of 1,00,000 simulated 

temperature measurement images both the end-to-end and hybrid approach outperformed the baseline 

algorithms in terms of reconstruction accuracy. The end-to-end approach requires less domain knowledge 

and is computationally efficient. The hybrid approach requires extensive domain knowledge and is 

computationally expensive than the end-to-end approach. The virtual waves are useful features, that yields 

better reconstructions with the same number of training samples compared to the end-to-end approach. It also 

provided more compact network architectures and is suitable for NDT in two dimensions.  

In [24] Fang et al. propose a specific depth quantifying technique by using gated recurrent units 

(GRUs) in composite material samples via PT. The proposed GRU model automatically quantified the depth 

of defects and was evaluated for accuracy and performance of synthetic carbon fiber reinforced polymer 

(CFRP) data from FEM for defect depth predictions. In [25], Lou et al. propose a spatial and temporal hybrid 

deep learning architecture, which has the capability to significantly minimize the uneven illumination and 

enhance the detection rate. The results show that Visual Geometry Group-Unet (VGG-Unet) significantly 

improves the contrast between the defective and non-defective regions. 

 

 

3. AUTOENCODER BASED DEFECT VISUALIZATION 

Neural network architectures have seen tremendous success in the past few years. CNN is one of the 

key architectures which performs well on a lot of tasks such as image classification and object detection. It 

does so by capturing the inherent features of the images in the convolution layers. The convolution layers 
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perform convolution operations over the image with a set of kernels, and in this case, convolution refers to 

Hadamard product. These layers are stacked together many times and additional methods are incorporated in 

between such as pooling and activation functions. These set of layers are then optimised towards a target and 

the loss encured is backpropagated. This process modifies the kernel weights until the loss converges. Once 

the architecture is optimised, the kernels capture the subtle features in the dataset and represents them in a 

very high dimension. The integration property of CNNs aids in feature representation.  

Autoencoder is an unsupervised learning algorithm which tries to learn the function ℎ(𝑥) ≈ 𝑥. A 

well-trained function ℎ(𝑥) generates a new thermal image with better representation of features compared to 

any single input image obtained from input images used for training. The structure of the autoencoder is as 

shown Figure 2.  

 

 

 
 

Figure 2. Autoencoder structure 

 

 

In the encoder section, multiple convolution operations are applied to learn a large number of 

feature maps. These feature maps contain predominant information from the input images. These feature 

maps are reconverted back into the shape of input images in the decoder section. Training this network over 

the input images optimizes a loss function to output a new image with considerable SNR improvement. 

The architecture consists of convolution layers denoted by 𝑐𝑜𝑛𝑣𝑖 , 𝑖 = 1, 2, 3 and transpose 

convolution layers 𝑇𝑐𝑜𝑛𝑣𝑖 , 𝑖 = 1, 2, 3. After each convolution layer an activation function 𝑓(𝑥) = 𝑅𝑒𝐿𝑢(𝑥) 

is used. In the last layer of transpose convolutions, another function 𝑔(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) is used. The 

convolution operation in each layer produces a feature map after it is multiplied with predefined number of 

kernels as shown in (8), where 𝐶𝑗 is the feature map of layer 𝑗, 𝐶𝑖𝑛 is the dimension of the input to 𝑗𝑡ℎ layer 

and ‘weight’ and ‘bias’ are the parameters learnt by the network. During convolution, rectified linear units 

(ReLu) defined in (9) are inserted as activation functions to include non-linearity and to help in loss 

convergence. 

 

output(𝐶𝑗) = bias(𝐶𝑗) + ∑ weight(𝐶𝑗)input(𝑘)
𝐶𝑖𝑛−1
𝑘=0  (8) 

 

𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥) (9) 

 

In the decoder, different transpose convolution operations are stacked which upsamples the image back to its 

original size. A sigmoid activation function as shown in (10) is included at the end of last layer, which 

squashes the values between 0 and 1 providing the probability values. 

 

𝜎(𝑥) =
1

1+𝑒−𝑥 (10) 

 

To train this network, mean squared error as in (11) is used as a pixel level loss function between original and 

reconstructed images which employs Adam optimizer based gradient descent algorithm. Hyperparameters are 

chosen for loss convergence and which provides a performance exceeding a pre-defined SNR threshold. 

 

𝐿 = ∑ ∑ ∑ [𝑥(𝑚,𝑛)
𝑖 − 𝑦(𝑚,𝑛)

𝑖 ]
2𝑁

𝑛=1
𝑀
𝑚=1

𝑇
𝑖=1  (11) 

 

The proposed algorithm consists of 3 layers of convolution followed by 3 layers of transpose convolution. 

The number of input channels vary as 1–8–16–8–1 during this process. Convolution filters of size 11, 22 

and 33 is considered. A batch size of 4 was considered as there were less number of images for training and 

learning rate was set to 1 × 10−4. 
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4. PERFORMANCE COMPARISON 

4.1.  Material  

For the study, AISI 316L grade stainless steel plate of dimension 150×100×3.54 mm with 

artificially induced defects of size 10 mm, 8 mm, 6 mm, 4 mm and 2 mm at depths 0.4 mm, 1.13 mm,  

1.78 mm, 2.48 mm, 3.17 mm, and 3.36 mm was used. The front surface of the sample was coated with black 

paint to improve the emissivity and light absorption. The photograph of the sample is given in Figure 3. 

 

 

 
 

Figure 3. Photograph of a sample 

 

 

4.2.  Experimental set-up 

CEDIP Silver 420 infrared camera was used for the experiment. The camera has a focal plane array 

of 320×256 pixels which is made up of Indium Antimonide (InSb) detector with Stirling cooling system. It 

detects the infrared radiations in 3–5μm region. The maximum achievable temperature resolution is 25 mK 

with a frame rate of 176 Hz. For PT experiment, two Xenon flash lamps of power 1600 W each were used. 

The flash duration was less than 2 ms. Experiment was carried out in reflection mode. The non-defective area 

temperature decreases until stabilization is reached.  

 

4.3.  Data acquisition 

The thermal images acquired are stored as a 3D matrix. The spatial x- and y-coordinates correspond 

to the pixel locations, respectively, and the z-coordinate represents time. The acquisition frequency (fs) is  

125 Hz (Sampling time t = 1/fs = 0.008s), which is the maximum full-frame rate achieved for a 256×320-

pixel array. Furthermore, a total of N = 250 frames were collected during the cooling regime, where the 

acquisition window is t = 2s. For analysing the proposed algorithm, different defects of varying sizes and 

depths are considered as depicted in Table 1 and in the defect name R indicates the defect row number and C 

indicates the defect column number in the thermal images. 

 

 

Table 1. Defects considered for analysis 
Sl. No. Defect Name Dimensions Depth 

1. R1C2 10×10 mm 0.4 mm 

2. R2C2 8×8 mm 0.4 mm 

3. R1C3 10×10 mm 1.13 mm 
4. R2C3 8×8 mm 1.13 mm 

5. R1C4 10×10 mm 1.78 mm 

6. R2C4 8×8 mm 1.78 mm 

 

 

4.4.  Higher order statistics (HOS) 

The PT image is reconstructed using four different statistical moments. The SNR for different 

defects have been calculated and tabulated in Table 2. From the results, it is observed that maximum SNR is 

obtained with skewness based reconstruction in most of the defects. Kurtosis based reconstructed image also 

provides good SNR improvement but lower than skewness. It is also observed that hyper-skewness and 

hyper-flatness provide smaller SNR values than that of the unprocessed raw image. 
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Table 2. SNR in dB for HOS based algorithm 
Sl. No. Defect SNR (dB) 

Raw Image Skewness Kurtosis Hyper-skewness Hyper-flatness 

1.  R1C2 32.090 37.346 32.264 24.354 22.651 

2.  R1C3 20.968 27.611 27.480 17.897 16.877 

3.  R2C2 33.091 36.877 32.017 22.400 22.190 
4.  R2C3 18.639 11.198 6.689 18.464 17.290 

5.  R3C2 31.478 37.116 32.129 23.967 22.332 

 

 

4.5.  Principal component thermography (PCT) 

The first five components of the EOF matrix are reconstructed into 5 images along with the raw 

image for analysis as shown in Figure 4. These five components were extracted from the PCA of the 

reshaped thermal data. By extracting the most dominant features, the defects are predominantly seen in the 

feature space.  

The principal components provide a very high contrast image with respect to the defects. This helps 

in clear visibility of the defects and also increases the SNR. The SNR values of six defects are tabulated for 

the first five principal components and then compared with the SNR values of the defects in the raw image as 

tabulated in Table 3. From the illustrations, it is observed that the first principal component corresponding to 

EOF 1 preserves more information about the defects and also visibility and contrast reduces in further 

components, when compared with the raw image. 

 

 

 
 

Figure 4. Different components obtained through PCT 

 

 

Table 3. Different principal components obtained after applying PCT 
Sl. No. Defect SNR (dB) 

Raw Image EOF 1 EOF 2 EOF 3 EOF 4 EOF 5 

1. R1C2 32.09 56.382 39.378 39.368 43.669 35.288 
2. R2C2 33.09 61.486 45.451 40.381 45.032 35.314 

3. R1C3 31.48 58.098 44.312 41.922 42.895 33.700 

4. R2C3 18.63 59.561 46.183 44.597 43.606 34.660 
5. R1C4 14.75 55.890 44.763 44.403 41.817 32.928 

6. R2C4 7.92 63.898 47.653 47.882 44.292 35.268 

 

 

4.6.  Partial least square regression (PLSR) 

Figure 5 provides the PLS components of the defects considered for the experiment. The SNR 

values of six defects were tabulated for the first six PLS components in Table 4 and then compared with the 

SNR values of the defects in the raw image. It is observed that various defect depths achieve maximum SNR 

in different PLS components. 

 

 

 



                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 949-960 

956 

 
 

Figure 5. Different PLS components obtained after applying PLSR 

 

 

Table 4. SNR values of different defects for varying PLS components 
Sl. No. Defect SNR (dB) 

Raw Image PLS 1 PLS 2 PLS 3 PLS 4 PLS 5 PLS 6 

1.  R1C2 32.09 53.77 40.09 25.26 5.89 23.55 13.47 

2.  R2C2 33.09 54.27 38.94 10.18 2.86 23.92 13.66 

3.  R1C3 31.48 44.94 16.85 31.35 2.32 19.84 2.20 
4.  R2C3 18.63 33.41 26.57 29.62 8.63 11.44 7.69 

5.  R1C4 14.75 46.25 19.86 23.38 15.81 20.61 3.60 

6.  R2C4 7.92 54.84 6.14 23.22 14.43 18.06 4.72 

 

 

4.7.  Autoencoder based approach 

The tradeoff considered in this work is SNR improvement vs defect visibility. The autoencoder 

architecture is capable of providing output images with higher SNR, though the defects may not be visible 

always. Depending on the requirements or specifications, the parameters defined for the neural network is 

varied to maximize either SNR or defect visibility. The reconstructed images for R1C2 defect for varying 

SNR are shown in Figure 6. The images in Figure 6(a) to Figure 6(i) are the reconstructed outputs from 

randomly sampled input thermal images. The changes in SNR obtained during different epochs of training 

the autoencoder is presented in Figure 7 and maximum SNR obtained is tabulated in Table 5.  

Neural networks perform very well in optimizing an objective function. In this case, the network is 

trained to reconstruct the images. The non-linearity of the model and differing statistics of the training data 

ensure that the reconstructed image is not a copy of the input. This is utilised to select the parameters for 

which the reconstructed images provide a higher SNR and have good amount of defect visibility. This has a 

drawback of not providing the best or optimum performance unless fine tuned.  

 

4.8.  Comparison of SNR for different methods 

The performance of defect detection is compared in terms of SNR obtained by different methods 

and tabulated in Table 6. From the table it is observed that PCT performs better than other signal processing 

algorithms in terms of SNR increase. The proposed deep learning architecture based autoencoder exhibits the 

best SNR for all the defects. As shown in the table, reconstructed images from randomly sampled input 

thermal images exhibit a higher SNR for the proposed autoencoder architecture compared to other signal 

processing approaches. This observation shows promise on how further research in this area on customised 

algorithms and objective functions can result in optimal performance without any fine-tuning. 
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(a) (b) (c) 

   

   
(d) (e) (f) 

   

   
(g) (h) (i) 

 

Figure 6. Reconstructed images for R1C2 defect with varying SNR (a) SNR=32.04 dB, (b) SNR=40.17 dB, 

(c) SNR=120.82 dB, (d) SNR=42.73 dB, (e) SNR=124.08 dB, (f) SNR=37.38 dB, (g) SNR=117.84 dB, (h) 

SNR=39.08 dB, and (i) SNR=38.06 dB 

 

 

 
 

Figure 7. SNR (dB) variation for various defects 
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Table 5. Maximum SNR values of different 

defects 
Sl. No. Defect SNR (dB) 

Raw Image AE 

1. R1C2 32.09 65.180 

2. R2C2 33.09 73.430 

3. R1C3 31.48 73.120 

4. R2C3 18.63 77.670 
 

Table 6. SNR in dB of different algorithms 
Sl. 

No. 

Defect SNR (dB) 

Raw 
Image 

HOS PCT PLSR AE 

1. R1C2 32.09 37.346 56.382 53.770 65.180 

2. R2C2 33.09 27.611 58.098 44.940 73.430 
3. R1C3 31.48 36.877 61.486 54.270 73.120 

4. R2C3 18.63 11.198 59.561 33.410 77.670 
 

 

 

5. CONCLUSION 

The evaluation and extensive analysis of standard signal processing approaches provided a good 

baseline for SNR improvement and defect visibility. HOS not being used for defect visualization improved 

the SNR of the defects. PCT displayed considerable contrast enhancement between defect and non-defect 

regions which led to better defect visualization and higher SNR values as compared to other algorithms. 

PLSR provided the best performance among all the algorithms in terms of SNR improvement, defect 

visibility and contrast enhancement. The proposed autoencoder architecture-based algorithm performs better 

than signal processing approaches with noticeable increase in SNR. It improves defect visibility in some 

cases and this can be attributed to embedding the input data into higher dimensions using convolution kernels 

and using non-linear activation functions in this space. During reconstruction, activation function is used only 

at the last layer to normalise the output. The advantage is that large convolution filters are not necessary for 

this task. This is due to the fact that representation in a higher dimensional space is more important than 

learning large dimensions spatial information for this task. This network when optimised can represent and 

reconstruct any given image effectively. It also helps in data compression with the architecture able to learn 

the important features. Some of the limitations of this algorithm is that neural network architectures do not 

perform well with distribution shift, i.e., when the test set is statistically very different from the training set. 

Normalization or adaptative algorithms may ensure that test data is similar to the data the model is trained on. 

These models are still in its nascent stage compared to signal processing approaches and neural networks are 

indeed a high dimensional learnable black-box function, and so the generated models are not explainable. To 

conclude, signal processing and neural network based algorithms provide a set of tools to increase the SNR, 

enhance defect visibility and provide data compression in many applications for thermal imaging of stainless 

steel material with PT approach. Neural network architectures show a lot of promise for this application. 

Emerging neural network-based approaches such as generative adverserial networks (GANs), variational 

autoencoders (VAE) and attention-based networks can be considered to represent thermal images for better 

SNR and defect visibility as compared to autoencoders. 

 

 

REFERENCES 
[1] S. K. Lau, D. P. Almond, and J. M. Milne, “A quantitative analysis of pulsed video thermography,” NDT E Int., vol. 24, no. 4,  

pp. 195–202, Aug. 1991, doi: 10.1016/0963-8695(91)90267-7. 
[2] X. Maldague, Theory and practice of infrared technology for non-destructive testing. Wiley-Interscience, 2001. 

[3] F. J. Madruga, C. Ibarra-Castanedo, O. M. Conde, J. M. López-Higuera, and X. Maldague, “Infrared thermography processing 
based on higher-order statistics,” NDT E Int., vol. 43, no. 8, pp. 661–666, Nov. 2010, doi: 10.1016/j.ndteint.2010.07.002. 

[4] S. M. Shepard, “Reconstruction and enhancement of active thermographic image sequences,” Opt. Eng., vol. 42, no. 5, May 2003, 

doi: 10.1117/1.1566969. 
[5] N. Rajic, “Principal component thermography for flaw contrast enhancement and flaw depth characterisation in composite 

structures,” Compos. Struct., vol. 58, no. 4, pp. 521–528, Dec. 2002, doi: 10.1016/S0263-8223(02)00161-7. 

[6] F. Lopez, C. Ibarra-Castanedo, V. de Paulo Nicolau, and X. Maldague, “Optimization of pulsed thermography inspection by 
partial least-squares regression,” NDT E Int., vol. 66, pp. 128–138, Sep. 2014, doi: 10.1016/j.ndteint.2014.06.003. 

[7] P. Bison, C. Bressan, R. Di Sarno, E. Grinzato, S. Marinetti, and G. Manduchi, “Thermal NDE of delaminations in plastic 

materials by neural network processing,” 1994., doi: 10.21611/qirt.1994.032. 
[8] H. Trétout, D. David, J. Y. Marin, M. Dessendre, M. Couet, and I. Avenas-Payan, “An evaluation of artificial neural networks 

applied to infrared thermography inspection of composite aerospace structures,” in Review of Progress in Quantitative 

Nondestructive Evaluation, Boston, MA: Springer US, 1995, pp. 827–834., doi: 10.1007/978-1-4615-1987-4_103. 
[9] G. Manduchi, S. Marinetti, P. Bison, and E. Grinzato, “Application of neural network computing to thermal non-destructive 

evaluation,” Neural Comput. Appl., vol. 6, no. 3, pp. 148–157, Sep. 1997, doi: 10.1007/BF01413826. 

[10] M. B. Saintey and D. P. Almond, “An artificial neural network interpreter for transient thermography image data,” NDT E Int., 
vol. 30, no. 5, pp. 291–295, Oct. 1997, doi: 10.1016/S0963-8695(96)00071-0. 

[11] S. Vallerand and X. Maldague, “Defect characterization in pulsed thermography: a statistical method compared with Kohonen and 

perceptron neural networks,” NDT E Int., vol. 33, no. 5, pp. 307–315, Jul. 2000, doi: 10.1016/S0963-8695(99)00056-0. 
[12] A. Darabi and X. Maldague, “Neural network based defect detection and depth estimation in TNDE,” NDT E Int., vol. 35, no. 3, 

pp. 165–175, Apr. 2002, doi: 10.1016/S0963-8695(01)00041-X. 

[13] N. Saeed, M. A. Omar, and Y. Abdulrahman, “A neural network approach for quantifying defects depth, for non-destructive 
testing thermograms,” Infrared Phys. Technol., vol. 94, pp. 55–64, Nov. 2018, doi: 10.1016/j.infrared.2018.08.022. 

[14] N. Saeed, N. King, Z. Said, and M. A. Omar, “Automatic defects detection in CFRP thermograms, using convolutional neural 



Int J Artif Intell  ISSN: 2252-8938  

 

A deep learning approach based defect visualization in pulsed thermography (Sethu Selvi Selvan) 

959 

networks and transfer learning,” Infrared Phys. Technol., vol. 102, Nov. 2019, doi: 10.1016/j.infrared.2019.103048. 
[15] D. Müller, U. Netzelmann, and B. Valeske, “Defect shape detection and defect reconstruction in active thermography by means of 

two-dimensional convolutional neural network as well as spatio-temporal convolutional LSTM network,” Quant. Infrared 

Thermogr. J., vol. 19, no. 2, pp. 126–144, 2022, doi: 10.1080/17686733.2020.1810883. 
[16] N. Saeed, H. Al Zarkani, and M. A. Omar, “Sensitivity and robustness of neural networks for defect depth estimation in CFRP 

composites,” J. Non-destructive Eval., vol. 38, no. 3, Sep. 2019, doi: 10.1007/s10921-019-0607-4. 

[17] Y. Duan et al., “Automated defect classification in infrared thermography based on a neural network,” NDT E Int., vol. 107, Oct. 
2019, doi: 10.1016/j.ndteint.2019.102147. 

[18] C. Xu, J. Xie, C. Wu, L. Gao, G. Chen, and G. Song, “Enhancing the visibility of delamination during pulsed thermography of 

carbon fiber-reinforced plates using a stacked autoencoder,” Sensors, vol. 18, no. 9, Aug. 2018, doi: 10.3390/s18092809. 
[19] Y. He et al., “Infrared machine vision and infrared thermography with deep learning: a review,” Infrared Phys. Technol., vol. 116, 

Aug. 2021, doi: 10.1016/j.infrared.2021.103754. 

[20] Z. Wei, H. Fernandes, H.-G. Herrmann, J. R. Tarpani, and A. Osman, “A deep learning method for the impact damage 
segmentation of curve-shaped CFRP specimens inspected by infrared thermography,” Sensors, vol. 21, no. 2, Jan. 2021,  

doi: 10.3390/s21020395. 

[21] Q. Fang, C. Ibarra-Castanedo, and X. Maldague, “Automatic defects segmentation and identification by deep learning algorithm 
with pulsed thermography: synthetic and experimental data,” Big Data Cogn. Comput., vol. 5, no. 1, Feb. 2021,  

doi: 10.3390/bdcc5010009. 

[22] N. Saeed, Y. Abdulrahman, S. Amer, and M. A. Omar, “Experimentally validated defect depth estimation using artificial neural 
network in pulsed thermographyy,” Infrared Phys. Technol., vol. 98, pp. 192–200, May 2019,  

doi: 10.1016/j.infrared.2019.03.014. 

[23] P. Kovács, B. Lehner, G. Thummerer, G. Mayr, P. Burgholzer, and M. Huemer, “Deep learning approaches for thermographic 
imaging,” J. Appl. Phys., vol. 128, no. 15, Oct. 2020, doi: 10.1063/5.0020404. 

[24] Q. Fang and X. Maldague, “Defect depth estimation in infrared thermography with deep learning,” in 3rd International 

Symposium on Structural Health Monitoring and Non-destructive Testing, 2020, pp. 1–12. 
[25] Q. Luo, B. Gao, W. L. Woo, and Y. Yang, “Temporal and spatial deep learning network for infrared thermal defect detection,” 

NDT E Int., vol. 108, p. 102164, Dec. 2019, doi: 10.1016/j.ndteint.2019.102164. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Sethu Selvi Selvan     Professor, Department of ECE, Ramaiah Institute of 

Technology obtained her Ph.D. from Indian Institute of Science in 2001 under Prof. Anamitra 

Makur in the area of Image Compression. She completed her B.E. from Thiagarajar College of 

Engineering, Madurai in 1992 and M.E. from Anna University in 1994. She joined the Faculty 

of Department of Electronics and Communication at M.S. Ramaiah Institute of Technology, 

Bangalore, in 2002 as Assistant Professor. She has numerous publications to her name in the 

field of Machine Learning, Pattern Recognition and Signal and Image Processing. Her fields of 

interests are Digital Image Processing, Machine/Deep Learning, Video Processing, Character 

Recognition and Biometrics. She has authored a chapter titled “Image Algebra and Image 

Fusion” in the book “Data Fusion Mathematics: Theory and Practice”, CRC Press, 2017 and 

has been listed as a noteworthy technical contributor by Marquis Who's Who (World), 2009. 

She can be contacted at email: selvi@msrit.edu. 

  

 

Sharath Delanthabettu     is working as Research Scientist in Center for Imaging 

Technologies at M.S. Ramaiah Institute of Technology, Bengaluru. He has obtained his Ph.D. 

from Homi Bhabha National Institute, IGCAR Kalpakkam Campus in 2015. He is working in 

the areas of Infrared Imaging and its applications in Non-Destructive Evaluation and health 

care, and image processing. He has published 18 articles in international and national journals. 

He can be contacted at email: sharathd@msrit.edu. 

  

 

Menaka Murugesan     is a postgraduate in Physics and has over 19 years of 

experience in the field of NDE for materials characterization. She has specialized in the areas 

of thermal imaging, image processing and digital radiography. She is presently heading 

Radiation Application and Metrology section at Radiological Safety Division of IGCAR, 

Kalpakkam. Her field of interests are material characterization using thermal NDE and thermal 

imaging as diagnostic tool in healthcare. She is an American Society for NDT certified Level – 

III in Infrared Thermal Testing. She can be contacted at email: menaka@igcar.gov.in. 

  

https://orcid.org/0000-0001-8575-292X
https://scholar.google.co.in/citations?user=rDTmbE4AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6506018426
https://publons.com/researcher/4223725/sethu-selvi-s/
https://orcid.org/0000-0001-7488-9779
https://scholar.google.co.in/citations?user=4qXEwocAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=55071068900
https://publons.com/researcher/4211211/sharath-d/
https://orcid.org/0000-0002-9956-2059
https://scholar.google.co.in/citations?user=eFgrLRwAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=8980783900
https://publons.com/researcher/3942215/menaka-murugesan/


                ISSN: 2252-8938 

Int J Artif Intell, Vol. 11, No. 3, September 2022: 949-960 

960 

 

Venkatraman Balasubramaniam     is Distinguished Scientist and Director of 

IGCAR, Kalpakkam and CMD of BHAVINI, Kalpakkam. He post-graduated in Physics from 

St. Joseph College (Autonomous), Tiruchirappalli and obtained his Ph. D from Madras 

University. With a research career spanning 37 years, he has combined the physics of Non-

Destructive Evaluation (NDE) with engineering and technology and consistently provided 

excellent R & D support and robust NDE-based solutions to technologically challenging 

problems in nuclear and other strategic and core industries. His significant milestone activities 

for the nuclear industry include - Procedures for X-ray and neutron radiography of highly 

irradiated fuel pins, comprehensive NDE for evaluation of tube-to-tube sheet welds of PFBR 

steam generator and radiometric testing of shielding structures. He has been primarily 

responsible for establishing the conventional and digital X-ray, neutron radiography and 

thermal imaging facilities at IGCAR. He is recipient of various prestigious awards and 

fellowships. He can be contacted at email: bvenkat@igcar.gov.in. 

  

 

Sathvik Udupa     is working as a Research Associate in Indian Institute of Science 

(IISc), Bangalore. He obtained his B.E. from Ramaiah Institute of Technology, 2019. He is 

working in the areas of speech recognition, speech synthesis and multimodal machine learning. 

He can be contacted at email: sathvikudupa66@gmail.com. 

  

 

Tanvi Khandelwal    graduated in Electronics and Communication from Ramaiah 

Institute of Technology, Bangalore in 2019. She is working as ATC Application Design 

Engineer in Alstom, Bangalore. Her interests are in image processing and AI. She can be 

contacted at email: tanvi.khandelwal717@gmail.com. 

  

 

Touqueer Mulla     graduated in Electronics and Communication from Ramaiah 

Institute of Technology, Bangalore in 2019. He is working as Program Analyst for Cognizant, 

India. His interests are in AI and embedded systems. He can be contacted at email: 

touqeer.004@gmail.com. 

  

 

Varun Ittigi     graduated in Electronics and Communication from Ramaiah Institute 

of Technology, Bangalore in 2019. He has worked in Innocirc Ventures as an Artificial 

Intelligence Research Engineer. His interests are in AI and Robotics. He can be contacted at 

email: varunittigi10@gmail.com. 

 

https://orcid.org/0000-0002-2963-5988
https://scholar.google.com/citations?user=irW1vCgAAAAJ&hl=en&oi=ao
https://orcid.org/0000-0002-2225-5464
https://scholar.google.com/citations?user=Bi1QvpIAAAAJ&hl=en&oi=ao
https://www.scopus.com/authid/detail.uri?authorId=57218450061
https://publons.com/researcher/5043232/sathvik-udupa/
https://orcid.org/0000-0002-2165-9627
https://publons.com/researcher/5046729/tanvi-khandelwal/
https://orcid.org/0000-0001-5389-8641
https://publons.com/researcher/5046273/touqeer-mulla/
https://orcid.org/0000-0003-1962-2208
https://publons.com/researcher/5043524/varun-ittigi/

