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 Sound event detection (SED) assists in the detainment of intruders. In recent 

decades, several SED methods such as support vector machine (SVM),  

K-Means clustering, principal component analysis, and convolution neural 

network (CNN) on urban sound have been developed. Advanced work on 

SED in a rare sound event is challenging because it has limited exploration, 

especially for surveillance in a forest environment. This research provides an 

alternative method that uses informative features of sound event data from a 

natural forest environment and evaluates the CNN capabilities of the 

detection performances. A hybrid CNN and random forest (RF) are proposed 

to utilize a distinctive sound pattern. The feature extraction involves mel log 

energies. The detection processes include refinement parameters and post-

processing threshold determination to reduce false alarms rate. The proposed 

CNN-RF and custom CNN-RF models have been validated with three types 

of sound events. The results of the suggested approach have been compared 

with well-regarded sound event algorithms. The experiment results 

demonstrate that the CNN-RF assesses the superiority with remarkable 

improvement in performance, up to a 0.82 F1 score with a minimum false 

alarms rate at 10%. The performance shows a functional advantage over 

previous methods. 
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1. INTRODUCTION 

Sound event detection (SED) recognizes a sound event’s presence using artificial intelligence 

methods. Applying SED in detecting intrusions for wildlife reserves seems appropriate as the sound of 

poachers’ activities are very distinctive within the natural ambience. Previous works on SED have used 

various types of machine learning (ML) and deep learning (DL) algorithms such as random forest (RF) and 

convolutional neural network (CNN). SED solutions were reviewed on an artificial dataset for detecting and 

classifying acoustic scenes and events [1], [2]. The database comprised isolated sound events with unique 

sources of background recording, baby crying, gunshots, and glass breaking. The dataset was a mixture of 

noises and sound events. The researchers used CNN-long short-term memory (CRNN-LSTM) to obtain 93% 

F1 score [3]. CNN obtained 91% [4], multilayer layer perceptron (MLP-CNN) with 84% [5] and ensemble 

with 78% [2]. Although these experiments used artificial datasets, they have demonstrated how SED is 

feasible for industrial applications. The real-world environment sounds are far from noise-free [6]. The SED 

performances on noisy data can be rather challenging. Sound event’s effective detection rate varies n recent 
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SED experiments and to a certain extent, can be biased to the context [7]. Many sounds overlap on 

frequency, making it more perplexing to conduct SED. The noises in a forest environment are unique due to 

the species of animals and plants within the vicinity. 

In the SED application, features need to be extracted from the raw audio data to a piece of tailored 

information. This is done to distinguish sound events more effectively. A common feature used in recent 

SED studies is mel-log energies (MLE) features that are rich with essential values that contribute to class 

recognition. The methods explored by the previous research works frequently report that using MLE features 

with CNN produce good results [8], [9]. These features significantly support models’ performance [10]. MLE 

features are an extraction process that includes fast Fourier transform (FFT). It separates sound frequency 

within a sound signal. Frequency separation helps in detection as each sound has a specific frequency range. 

The process would increase the feature determination among the sound events. 

CNN is well known for its excellent detection of images [11], [12]. Therefore, CNN is believed to 

be reliable for SED. CNN uses a large amount of data to work best and overcome challenges such as 

overfitting, exploding gradient, and class imbalance in the training process [10], [13]. One solution created is 

by using data augmentation in an urban environment [14], [15]. However, limited research work has been 

done within the forest environment. The solutions are RF, distance-based [16] and DL methods [11], [12], 

[17], [18]. The overall performance of these solutions is less than 80% accuracy and has a high false alarms 

rate. Many solutions have been established mainly in an urban environment with a hybrid approach such as 

convolution recurrent neural network (CRNN) [19], LSTM-CNN, CNN-support vector machine (SVM) [20]. 

A study using ensemble methods obtained 85% accuracy on urban rare sound event detection [21]. Recent 

works on SED with hybrid approaches using CRNN with ensembles achieved 91% accuracy on the artificial 

and urban datasets [22]. A type of hybrid CNN acts as a feature extractor that improves the feature quality. A 

hybrid method of CNN and RF also has advantages. CNN-RF’s attempts have improved accuracy than earlier 

methods on pattern recognition tasks on PlantCLEF 2019 dataset [23]. RF algorithm depends on good 

features like any other algorithms. Without CNN pre-processing high correlated features may affect 

performance [24]. Hence, the SED field requires more research to be conducted in obtaining the appropriate 

method of SED solution for surveillance in a forest environment. This research, then should act as an 

extension to increase the security performance to stop poachers and illegal activities in the forest. The 

contributions of this study are to provide an alternative solution for SED in the forest environment, to extract 

the most important features from sound events with a suitable method, to introduce an enhanced solution of 

hybrid CNN-RF, to provide post-processing thresholding with a minimum false alarm rate of 10%, to 

evaluate the proposed method using a real dataset and to compare the new solution with other machine 

learning methods. 

This article is organized into several sections. Section 2 presents detailed research method that 

includes the proposed CNN-RF and post-processing thresholds. Section 3 presents the computational results, 

comparisons of custom CNN, pre-built CNN, and the relevant discussions. Finally, in section 4, the 

conclusion and future work are briefly highlighted. 

 

 
2. PROPOSED MODEL 

CNN model is used from a pre-trained model that has been proven to deliver performance for image 

recognition and the custom CNN produced by the study. The CNN model is based on the VGG16 

architecture with the pre-trained weights [11], [12]. Many resources are required to optimized weights. Thus, 

the use of the trained weights can reduce training time. The customized CNN model used for feature 

extraction to compare performances of CNN developed from scratch. This is a transfer learning method. 

Figure 1 shows the flow of the process for the CNN-RF model.  

The CNN part of the hybrid model acted as a feature extraction layer. The extracted features would 

be optimized to be the most useful for the sound classification. The RF performed the prediction from a CNN 

output. At the end of the process, we applied post-processing to optimize the results. The first step is a sound 

with a 5-second segment is based applied MLE extraction into MLE features. The CNN model used as a 

feature extraction method to obtain meaningful features from the MLE features. CNN output was used as the 

input for the RF model to compute the prediction. The RF ensemble size could be changed to find the best 

producing parameters. Once the best model was found, the post-processing was performed. The 

performances between models were compared to analyze the improvements of the hybrid method.  
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Figure 1. The process flow for the proposed CNN-RF model 

 

 

3. RESEARCH METHOD  

This section provides the explainations on the research steps taken. The steps included data 

collection, feature extraction, analysis of features, and the classification models of CNN, SVM, RF, and 

CNN-RF. The steps were done within the respective parameters and configurations. 

 

3.1.  Data acquisition 

Wildlife reserve intrusion sound detection variables include illegal activities done by poachers. 

Poachers’ equipment detained are mostly axes, machetes, and tools in the forest [25]. These sounds can be 

the solution to detect incoming threats. These sounds could be good indicators in detecting the presence of 

poachers in a reserve forest. Therefore, we performed data collection at Taman Negara Endau Rompin, 

Malaysia. Sound events were emulated to get the sound in the jungle with its current condition and 

environment. Each location had sound emulations of tree cutting, chainsaw, and vehicle activities. The 

distance from the sound source was the distance from the source emission point to the recording point in 

metres. It was scattered into three different distances, approximately at 30 m, 60 m, and 100 m in which were 

based on an average person’s hearing capability [26].  

 

3.2.  Sound data feature extraction  

MLE was selected as the feature extraction method for its high reliability on rare sound detection in 

past studies [10], [27], [28]. The steps involved were input signals, Hamming window, FFT, mel-scale filter 

bank and log. Hamming windows were recommended in this experiment for their properties for the 

frequency-selective analysis. Hamming windows and the corresponding spectrum form were adapted from 

[27], [28]. The cepstral features were computed by taking the FFT of the warped logarithmic spectrum. They 

contained each spectrum band’s rate of change [27]. The pth filter bank utilized (1). This showed that f(p) 

was the middle frequency of the pth filter [29]. This work extended the heatmap representations of the illegal 

intrusion activities [9], [10].  
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3.3.  Data preparation 

For data preparation, the best practices found in recent studies and suitable for CNN training were 

employed. The data was divided into two subsets: in-sample and out-of-sample data. In-sample data was used 
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for training and validation of the CNN model. Meanwhile, the 30% out-of-sample data was used for the 

evaluation of the trained model. The model utilized 70% in-sample data training and 30% validation data. 

After the model was trained, then it was evaluated using the out-of-sample data. The out-of-sample data was 

based on both the thick forest and forest roadside environment. 

 

3.4.  Evaluation 

The algorithms ran on the same machine to avoid any hardware performance inconsistency. The 

model evaluation metrics used were F1, precision and recall score performed on the out-of-sample data. The 

prediction results of a ML model were in the form of a collection of TP, TN, FP and FN [30], [31]. The 

efforts to maintain consistency were to control the hardware and software configurations with Intel Xeon E5 

v4 8 Core 16 Threads, Geforce GTX 1080 Graphics Card 8GB GDDRX5, 16 GB DDR4 2666 MHz, and 

1TB SATA SSD. 

 

3.5.  Thresholding prediction post-processing  

Thresholding post-processing on prediction reduced the false alarm by rejecting the low confidence 

predictions as an additional effort. The determination of predicted class was based on the confidence 

probability value of each class. By default, a class with the highest value of confidence was selected. The 

thresholding method was expected to improve performance.   

 

 

4. COMPUTATIONAL RESULTS AND DISCUSSION 

This section presents the computation results of the SED performances. The experiments were 

conducted on all SED datasets and post-processing measurement on the false alarm rates. A detailed 

discussion is also provided to elaborate the findings and initiations in this section. 

 

4.1.  Model hyperparameters optimization 

Several strategies were employed to avoid overfitting. This study used hyperparameters by reducing 

250 batch sizes to 125, including a drop out layer of 0.5 on the dense layer, and adjusted the learning rate by 

decay staircase starting at 1.0 and reduced 90% at each epoch to reduce time to reach early convergence of 

training data on the early epochs. The design was inspired by the VGG16 model [32], which has half its 

previous convolutional layer. The new model 32-16-Conv 32 was compared with the previous model and it 

showed less overfitting. A detailed observation of the results is tabulated in Table 1. The performing model 

was 32-16-Conv32, 32-32-Conv 32 with early stopping at the 26th epoch with the lowest validation loss 

while having a considerable loss gap.  

 

 

Table 1. Performance of custom CNN-RF models 
Model Stop Epoch Validation Accuracy Validation Loss Training Loss Loss Gap 

16-32-Conv 32 26 0.7298 0.7487 0.7155 0.0332 

32-32-Conv 32 26 0.8705 0.3824 0.2257 0.1567 

32-16-Conv 32 26 0.8526 0.4659 0.5236 0.0577 

16-32-Conv 64 21 0.8602 0.367 0.1036 0.2634 
32-32-Conv 64 29 0.8975 0.2748 0.1087 0.1661 

32-16-Conv 64 28 0.8677 0.3066 0.1759 0.1307 

 

 

4.2.  Computational results of the custom CNN-RF and VGG16-CNN-RF 

CNN model of 32-16-Conv 32 implemented in this experiment was the model produced from tuning 

hyperparameters. The weights trained on this model in layer 32-16 convolutional layers were extracted to be 

used as a feature extraction layer for the hybrid CNN-RF model. A series of experiments was executed in 

search of the best parameters for an optimized model with the best performing results. Table 2 demonstrates 

the performance result of multiple RF models varying in ensemble size, from 10 to 1000. The peak 

performance of 32-16 CN-RF was achieved at the ensemble size of 500 with an accuracy of 0.7812, F1 of 

0.7696, precision 0.7722 and recall of 0.7711.  

The results were saturated at 0.7812 at the ensemble size of 300 to 500. The performance started 

dropping at 1000 ensembles, it seemed that more ensembles were not always better but may cause the model 

to perform otherwise. The research found that the model of 500 ensembles was the optimized model. The 

CNN model VGG16 implemented in this experiment was the model acquired from ImageNet [33]. It was 

found that the ensemble size of 400 trees had produced the best results F1 score of 0.8250, precision 0.8370, 

and recall 0.8187. 
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4.3.  Post-processing results 

After post-processing, the best model maintained a good performance while reducing false alarms. 

At 75% threshold, the model produced under 10% false alarm rate while maintaining the performance. The 

threshold reduced all false alarm rates to about 10% while maintaining performance. The post-processing 

step has improved the model’s F1 score by 2.46%, precision by 0.30% and recall reduced by 0.73%. The 

post-processing improved the overall performance without affecting the performance on F1, precision and 

recall scores. Figure 2 shows the confusion matrix results of the CNN-RF model. The confusion matrix 

shows the performance of each class. The results after post-processing reduced the false alarm rate to about 

10% and maintained the prediction rate of Hatchet class at 77.5%, Chainsaw 88.9% and Vehicle 88.8%. 

 

 

Table 2. 32-16-CNN-RF results on different ensemble sizes 
Ensemble Size 32-16-CN-RF VGG16-CNN-RF 

 Accuracy (%) F1 Precision Recall Accuracy (%) F1 Precision Recall 

10 0.7705 0.7187 0.7220 0.7156 0.7725 0.7781 0.7885 0.7724 

20 0.7761 0.7454 0.7548 0.7460 0.7855 0.7982 0.8072 0.7931 

50 0.7759 0.7596 0.7610 0.7627 0.7933 0.8158 0.8251 0.8109 

100 0.7755 0.7614 0.7626 0.7643 0.7964 0.8194 0.8299 0.8138 

200 0.7793 0.7700 0.7726 0.7717 0.7962 0.8200 0.8312 0.8143 
300 0.7784 0.7693 0.7716 0.7708 0.7965 0.8218 0.8331 0.8159 

400 0.7802 0.7692 0.7715 0.7708 0.7969 0.8250 0.8370 0.8187 

500 0.7812 0.7696 0.7722 0.7711 0.7968 0.8240 0.8358 0.8180 

1000 0.7791 0.7698 0.7723 0.7710 0.7976 0.8229 0.8332 0.8177 

 

 

 
 

Figure 2. CNN-RF after post-processing confusion matrix 

 

 

The results show a significant improvement for RF and CNN-RF, as demonstrated in Table 3. The 

CNN-RF had 12.55% F1 score. The ensemble size was then lowered to produce the best results. It was 

demonstrated that it was more efficient as it used a smaller ensemble size. The CNN-RF achieved was less 

than 10% FP rate at 75% Hatchet threshold than 85% on RF. 

The accepted threshold value setting was the value when FP rates reached approximately 10%. The 

FP rate was essential for the evaluation of the algorithm. Another aspect to consider was that the ensemble 

size contributed to more computational time requirement. Small ensembles size should be relatively more 

efficient. However, this study did not include an in-depth evaluation on this aspect.  
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The performance of each model was compared before the post-processing and after thresholding. 

Table 4 presents the comparison in performance between models after the post-processing prediction. The 

study listed the scores in which the thresholding effort produced lower than 10% for the false alarm rate. 

Based on the obtained FP rate, the misclassification of classes could be identified. 

Based on the observation, the average VGG16-CNN-RF model performed good results with an  

F1-score 0.8215, but it also reduced the performance of individual class accuracy, the Chainsaw and Hatchet 

class detections to 88.9% and 88.8% respectively. The 32-16-CNN-RF model acquired the best results in 

detecting Chainsaw and Vehicle class with 98.8% and 92.2% accuracy. The combination of CNN and RF 

could improve the individual class accuracy of the hatchet. The VGG16 was well-trained, but within the 

domain of images, perhaps a well-trained CNN for SED could be established using a more variety of real 

datasets in the future. 

 

 

Table 3. Comparison between VGG16-CNN-RF and RF 

 

 

Table 4. Comparison between models with post-processing 

Algorithm 
Key performance scores False alarm rate (approx. 10%) 

Individual class performance 

accuracy (%) 

F1 Precision Recall Reliable Threshold (%) Hatchet Chainsaw Vehicle 

RF 0.6960 0.7606 0.7535 85 27.z2 99.3 85.0 

32-16-Conv CNN-RF 0.6304 0.7112 0.6965 88 12.2 98.8 92.2 
VGG16-CNN-RF 0.8215 0.8280 0.8297 75 77.5 88.9 88.8 

32-16-Conv 32 CNN 0.7762 0.8007 0.8018 80 80.0 99.8 86.4 

SVM 0.5694 0.6515 0.6296 92 20.7 84.4 71.3 

 

 

4.4.  Discussion 

The research explored three methods, namely CNN, RF and SVM. A proposed method of CNN-RF 

has been exclusively established and studied for SED solutions in a forest environment. The results of the 

CNN-RF model showed considerable improvement with the F1 score of 0.7762. However, the loss function 

of multi-class cross-entropy was 0.42, which demonstrated that it needed more data to improve prediction 

quality. In contrast, the RF results were further enhanced with the CNN-RF model. The CNN-RF has shown 

some improvements as the CNN was used as the feature extractor. Besides, the RF was employed as the 

hypothesis of this combination that may improve performance. This study believes that an image similar to 

the one of hotspots has emerged based on the MLE pattern analysis done on the collected sound. The CNN 

2D layer extracts more spatial features allowing the RF to improve performance with the tuned feature by the 

hybrid portion of CNN. The observation conducted has found an anomaly of difference in sound event class 

performance, especially at the Hatchet class. It always shows a lower detection regardless of any models.  

The nature hatchet sound is different compared to others. Instead of a long sustaining event like the others,  

it is in multiple bursts. The results show that the model can detect the hatchet event at 77% accuracy and a 

high FP rate at 30%. The other sound events provide better results of more than 85% and low FP under 10%. 

The thresholding method can be optimized on individual classes tailored to their respective difficulty in 

reducing FP. 

Each model suffers a high degree of false prediction rate, confuses between ambience event and 

intruder event. The false prediction is not aligned with the intended purpose of the research for a security 

surveillance system. Hence, a post-processing layer is considered mandatory. The earliest result is considered 

too loose with false prediction rates. Thresholding post-processing is applied to the point of approximately 

10% false prediction on any intruder events. It is not a good prediction with low confidence of about 51% 

over the other 49% [34]. Hence, increasing the threshold will avoid this problem. The variable threshold level 

is optimized until the target of 10% false detection rate is achieved. CNN and CNN-RF can be considered 

reliable for security in wildlife reserves. However, the findings do not apply in all of the SED cases.  

Further research is required to set the foundation to implement the use of SED in a vast area of surveillance 

in forests. 

 

 

Algorithm 
Key performance scores 

Threshold (%) 
Individual class performance 

F1 Precision Recall Hatchet Chainsaw Vehicle 

RF 0.696 0.761 0.754 0.85 27.2 99.3 85 

VGG16-CNN-RF 0.822 0.828 0.83 0.75 77.5 88.9 88.8 

Difference +0.126 +0.067 +0.076 -0.10 +50.3 -11.6 +3.0 
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5. CONCLUSION 

In conclusion, this study has discovered that many algorithms and techniques in solving SED have 

feasible application in industries.  The CNN-RF has been proven to demonstrate an overall improvement in 

performance. It has also been discovered that it requires less configuration and optimization efforts due to the 

capabilities of CNN transfer learning. RF is recommended to be a suitable classifier in the SED task for 

forest environment compared to others because it is a hybrid approach in tackling SED in the domain. A 

post-processing method of thresholding has been applied to the prediction results in reducing the FP rate. 

Thresholding is reduced FP rate from 30% to 10% with an accuracy penalty between 94.6% and 77.5% on 

Hatchet class. The VGG16 based CNN-RF model and thresholding combination have enhanced performance 

for surveillance applications with 80% accuracy average and less than 10% of FP rate. Recommendations for 

subsequent research are to investigate the use of noise cancellation to isolate the featured sound events, to 

make use of the advantages of other deep learning methods such as Generative Adversarial Network and 

Attention CNN and to acquire a more optimal thresholding degree on the post-processing threshold. In 

addition, more experiments with real-world sound samples to understand the contributing factors such as 

different sound events, environment, noise, location, and weather can also be conducted. 
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