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 The premature convergence of the simulated annealing algorithm, to solve 

many complex problems of artificial intelligence, refers to a failure mode 

where the process stops at a stable point that does not represent to an overall 

solution. Accelerating the speed of convergence and avoiding local solutions 

is the concern of this work. To overcome this weakness in order to improve 

the performance of the solution, a new hybrid approach is proposed. The 

new approach is able to take into consideration the state of the system during 

convergence via the use of Hopfield neural networks. To implement the 

proposed approach, the problem of maximum constraint satisfaction is 

modeled as a quadratic programming. This problem is solved via the use of 

the new approach. The approach is compared with other methods to show 

the effectiveness of the proposed approach. 
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1. INTRODUCTION 

Constraint programming is closely related to constraint satisfaction theory, which offers a simple 

formal scheme for representing and solving combinatorial problems of artificial intelligence [1]. Among the 

tasks solved by constraint programming: checking electronic circuits, calendar planning, schedule planning, 

as well as many combinatorial tasks [2]–[4]. Constraint programming is a programming paradigm in which 

relationships between variables are specified in the form of constraints. Formally, the maximum constraint 

satisfaction problem (Max-CSP) is defined by a set of variables which are linked by a set of constraints 

following a domain of definition for each variable. Max-CSP solution is an instantiation to satisfy the 

maximum of constraints [5]. 

The concept introduction of Max-CSP leads to extensive research for choosing an appropriate 

resolution method. In addition, exact methods require very high computational time due to the size and 

complexity of the problem. Whereas approximate methods are necessary for the mission to find an 

instantiation for the maximum constraint satisfaction problem. 

The simulated annealing algorithm, in recent years, has been used to solve real problems especially 

optimization problems [6]. The peculiarity of the simulated annealing algorithm lies in its flexibility to adapt 

with any optimization problem [7]. This makes the simulated annealing algorithm more efficient, faster and 

easier to program to solve many optimization problems [8]. 

In view of the attention given to the simulated annealing approach to solve many optimization 

problems, this work adopted this approach as a method of solving Max-CSP. The simulated annealing 

method is able to avoid local minima to find the optimal solution. The optimal choice of a set of parameters 

like the cooling model, the initial temperature and the final temperature is essential to ensure good 
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convergence. The limitation of the simulated annealing method lies in the inability of the method to take into 

account the behavior of the problem during convergence. In contrast, Hopfields neural network has proven its 

ability in the field of machine learning. 

In this article, we propose a hybrid approach for solving maximum constraint satisfaction problems. 

The idea is to improve the simulated annealing algorithm in order to build a powerful system that can be 

adapted with any type of quadratic problem. To achieve this goal, we adopt the Hopfield network which is 

capable of taking the system state upon convergence to the simulated annealing algorithm to avoid the local 

solution. In order to perfect the proposed approach, three cooling models are used for the simulated annealing 

algorithm. 

This work is structured in five sections. The section 2 presents a quadratic model for the maximum 

constraint satisfaction problem. The section 3 describes the hybrid approach which combines the neural 

network and simulated annealing. The section 4 allows to implement the proposed approach to solve the 

Max-CSP. The section 5 gives a conclusion and proposes an alternative avenue of research on another field 

of application. 
 

 

2. MODELLING OF MAX-CSP 

The constraint satisfaction problem can be defined as a network of variables that are related to each 

other. In this network, the assignment of a value to a variable with the satisfaction of all the constraints 

between each pair of variables is necessary to find a solution for the constraint satisfaction problem [9]. In 

some cases, satisfaction of all constraints is impossible given the complexity and size of the problem [10]. To 

deal with this problem, reducing the number of violated constraints is necessary as a partial solution [11]. 

This paradigm is known in the literature by the maximum constraint satisfaction problem. The Max-CSP 

consists in assigning a value to a variable for the entire network with the maximum constraint satisfaction 

[12]. More formally, the maximum constraint satisfaction problem is a form of model that is represented by a 

set of variables and a set of constraints.  The aim of this work is to study the binary constraints of Max-CSP. 

The maximum constraint satisfaction problem is defined by a tuple 𝑃 = < 𝑋, 𝐷, 𝐶, 𝑓 > such that: 

𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}: Set of 𝑛 variables 

𝐷 = {𝐷(𝑥1), 𝐷(𝑥2),⋯ , 𝐷(𝑥𝑛)}: Set of domains 

𝐶 = {𝐶1, 𝐶2, ⋯ , 𝐶𝑚}: Set of 𝑚 constraints 

𝑓: objective function 

The basic idea for solving the maximum constraint satisfaction problem is based on assigning a 

value to a variable with minimization of number of violated constraints. In this context, a quadratic model 

under linear constraints is proposed. The modeling phase requires the declaration of the following 

mathematical notations: 𝑥𝑖  is a decision variable, 𝑑𝑖  is the size of decision variable 𝑥𝑖, 𝑣𝑟  is the value 

assigned to the decision variable 𝑥𝑖, and 𝑁 is the sum of the size of all variables. 

The decision variable is defined by (1): 
 

𝑥𝑖𝑟 = {
1        𝑖𝑓  𝑥𝑖 = 𝑣𝑟
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

A unique value is selected for each decision variable. This expression is defined by (2): 
 

∑ 𝑥𝑖𝑟 = 1
𝑑𝑖
𝑟=1         ∀𝑖 ∈ {1,2, … , 𝑛} (2) 

 

A relation 𝑅𝑖𝑗 between the variable 𝑥𝑖 and the variable 𝑥𝑗 makes it possible to define a binary constraint 𝐶𝑖𝑗. 

In this modelization, a matrix 𝑞 of dimension 𝑁 is built starting from the checking of each constraint between 

the two variables 𝑥𝑖 and 𝑥𝑗 . An element of matrix 𝑞 of row 𝑖 (i.e. variable 𝑥𝑖) and column 𝑗 (i.e. variable 𝑥𝑗) is 

defined: 
 

𝑞𝑖𝑟𝑗𝑠 = {
1   𝑖𝑓 (𝑣𝑟 , 𝑣𝑠)  ∉ 𝑅𝑖𝑗
0   𝑖𝑓 (𝑣𝑟 , 𝑣𝑠)  ∈ 𝑅𝑖𝑗

 \  𝑖 ∈ {1, … , 𝑛} , 𝑗 ∈ {1, … , 𝑛} (3) 

 

The constraint  𝐶𝑖𝑗 is expressed: 
 

 𝑆𝑖𝑗 = ∑ ∑ 𝑞𝑖𝑟𝑗𝑠𝑥𝑖𝑟𝑥𝑗𝑠
𝑑𝑗
𝑠=1

𝑑𝑖
𝑟=1  (4) 

 

The objective function is defined: 
 

𝑓(𝑥) = ∑ ∑ ∑ ∑ 𝑞𝑖𝑟𝑗𝑠𝑥𝑖𝑟𝑥𝑗𝑠
𝑑𝑗
𝑠=1

𝑑𝑖
𝑟=1

𝑛
𝑗=1

𝑛
𝑖=1  (5) 
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The matrix form of the objective function 𝑓 (𝑥) is expressed 
 

𝑓(𝑥) = 𝑥𝑇𝑄𝑥 (6) 
 

The Max-CSP problem is modeled as a new quadratic programming, which constitutes an objective function 

subjected to a linear constraint. 
 

(𝑄𝑃) =

{
 
 

 
 

   

𝑀𝑖𝑛 𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥

𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  
𝐴𝑥 = 𝑏       
𝑥 ∈ {0,1}𝑁 

 (7) 

 

The matrix 𝑄 is a symmetric matrix of dimension 𝑁 × 𝑁 that represents the relationship between the 

decision variables. The matrix 𝐴 is of dimension 𝑁 × 𝑛, which represents the linear constraint. The vector 𝑞 

is of dimension 𝑁. To solve this proposed model of Max-CSP, a new approach is proposed to solve it. 
 

 

3. THE PROPOSED MODEL SOLVED BY NEW APPROACH 

This section gives a representation of a hybrid approach that combines the simulated annealing 

method and the Hopfield neural network to solve the maximum constraint satisfaction problems. In the 

subsection of the simulated annealing approach, different cooling models are represented. Then Hopfield's 

neural network is represented as an adaptive approach to solving any quadratic problem. The last subsection 

presents a new hybrid approach that combines simulated annealing and the Hopfield neural network. First, a 

detailed description of the simulated annealing approach is shown in the next subsection. 

 

3.1.  Simulated annealing 

The simulated annealing method mimics the physical phenomenon of crystallization [13]–[16]. 

Crystallization is an operation that allows a substance to transition from a liquid phase to a solid phase. This 

process was used in the simulated annealing method to solve an optimization problem. The operation of the 

simulated annealing method is related to a set comprises the initial temperature, final temperature and cooling 

model. Controlled cooling participates to ensure good convergence. The following notations are used for the 

simulated annealing method: 𝑥 is a possible solution, 𝐸(𝑥) is an energy function, 𝑇𝑚𝑎𝑥  ihe maximum 

temperature, 𝑇𝑚𝑖𝑛  ihe minimum temperature, 𝐹𝑡𝑟𝑎𝑛𝑠 is a random transformation function, 𝐹𝑔𝑒𝑛𝑒𝑟  function 

generating a new state, and 𝑃 is the transition probability defined by the following expression: 
 

𝑃(∆E, T) = {
1               ∆E ≤ 0  

𝑒
−∆E
𝑇𝑖         ∆E > 0   

 

 

The application of the simulated annealing method requires the use of a good cooling model to 

reduce the temperature of the energy function [17]–[19]. Controlled cooling makes it possible to switch from 

a high energy level to a low energy level. In the simulated annealing algorithm, choosing a good cooling 

model is important for better convergence. The following subsection describes the cooling models used in 

this work. 
 

Simulated annealing algorithm pseudocode 
Simulated-annealing(𝑻𝒎𝒂𝒙, 𝑻𝒎𝒊𝒏, 𝒙𝟎) 
𝒊 ≔ 𝟏  
𝑻𝟎 ≔ 𝑻𝒎𝒂𝒙  
𝒙𝒃𝒆𝒔𝒕 ≔ 𝒙𝟎  

While 𝑻𝟎 > 𝑻𝒎𝒊𝒏 do 
𝒙𝒃𝒆𝒔𝒕: = 𝑭𝒈𝒆𝒏𝒆𝒓(𝒙𝒊−𝟏)  

∆𝑬:= 𝑬(𝒙𝒃𝒆𝒔𝒕) − 𝑬(𝒙𝒊−𝟏)  
If  𝑷(∆𝐄,𝑻𝒊) ≥ 𝒓𝒂𝒏𝒅𝒐𝒎(𝟎, 𝟏) then 
 𝒙𝒊: = 𝒙𝒃𝒆𝒔𝒕 
Else 

 𝒙𝒊 ≔ 𝒙𝒊−𝟏 
End if 

If 𝑬(𝒙𝒊) < 𝑬(𝒙𝒃𝒆𝒔𝒕) then  
 𝒙𝒃𝒆𝒔𝒕 ≔ 𝒙𝒊 
End if 

𝒊 ≔ 𝒊 + 𝟏  
𝑻𝒊+𝟏 ≔ 𝑭𝒕𝒂𝒏𝒔 (𝑻𝒊)  

Return 𝒙𝒃𝒆𝒔𝒕 
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3.1.1. Geometric model 

The geometric cooling model is inspired by an arithmetic-geometric sequence in which each term 

makes it possible to deduce the next by multiplication by a constant factor [20]. This model is defined by the 

relation 𝑇𝑘 = 𝛼𝑇𝑘−1 + 𝛽. The factor 𝛼 is selected from the interval [0.1]. The relation is an arithmetic 

sequence when 𝛼 = 1 and is a geometric sequence when 𝛽 = 0. Therefore, the parameter 𝛼 must be different 

from 0 and 1. 
 

3.1.2. Logarithmic model 

The logarithmic model was first proposed by Geman and Geman by the following formula :  𝑇𝑘+1 =
𝑐 × (𝑙𝑜𝑔(𝑘 + 1) )−1 [21]. The logarithmic model proposes a relationship between the initial temperature and 

the final temperature. The temperature decreases in two phases: the first phase marks a rapid change in 

temperature in only a few first iterations. The second phase is characterized by a very slow change in 

temperature. Therefore, the convergence of this model is very slow and this requires considerable 

computation time. 
 

3.1.3. Logarithmic model 

The Lundy-Mees model is temperature cooling technique described by the following formula 

 𝑇𝑘+1 = 𝑐 × (1 + 𝛽 𝑇𝑘)
−1 [22]. The parameter 𝛽 is defined by the following relation: 𝛽 = ( 𝑇0 −  𝑇𝑓) ×

(𝑀.  𝑇0.  𝑇𝑓)
−1

. The parameter  𝑇0 represents the initial temperature, the parameter  𝑇𝑓  represents the final 

temperature, and the parameter 𝑀 is the number of iterations. 
 

3.2.  Continuous hopfield network 

Physicist John Hopfield proposed the Hopfield model in 1982, it was a major breakthrough in the 

field of neural networks [23]. The Hopfield model not only allows to function as associative memory to help 

object recognition in image processing domain but also it is able to solve a lot of optimization problem such 

as the problem of installing a surveillance camera, the traveling salesman and the problems of maximum 

satisfaction of constraints [24], [25]. Due to the great use of this model, it has become the center of attraction 

for many researchers. Hopfields neural network is a fully connected network [26]. More formally, it is 

represented by a symmetrical matrix to guarantee the stability of this network. The Hopfield neural network 

is composed of n interconnected neurons [27]. The dynamics of the Hopfield neural network is described by 

the following differential (8): 
 
𝑑𝑢

𝑑𝑡
= −

𝑢

𝜏
+ 𝑇𝑣 + 𝑖𝑏 (8) 

 

The vector 𝑣 = (𝑣𝑖)  is the input vector of neurons and 𝑢 = (𝑢𝑖) is the output vector of neurons with 

1 ≤ 𝑖 ≤ 𝑛 and 𝑢𝑖 ∈ {0,1}. The weight matrix is given by 𝑇 = (𝑇𝑖,𝑗) and 𝑖𝑏 is the neuron bias. The hyperbolic 

function is used to calculate the output of each neuron. Neuron output is expressed: 
 

𝑣𝑖 = −
1

2
(1 + tanh (

𝑢𝑖

𝑢0
)),   𝑢0 > 0 (9) 

 

where 𝑢0 is a parameter used to control the gain of the activation function. Hopfield proved that the 

symmetry of the zero-diagonal matrix 𝑇 is a sufficient condition for the existence of the Lyapunov function 

[28]. Therefore, the existence of the equilibrium point is guaranteed [29]. Continuous Hopfield networks are 

capable of solving combinatorial problems that have an energy function taking the following form: 
 

{
 
 

 
 

   

𝑀𝑖𝑛 𝑓(𝑥) =
1

2
𝑥𝑇𝑄𝑥

𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  
𝐴𝑥 = 𝑏       
𝑥 ∈ {0,1}𝑁 

 (10) 

 

3.3.  Proposed hybrid approach 

A hybrid algorithm consists of combining two or more different algorithms in order to arrive at an 

optimal solution. One of the objectives achieved in this work is to propose a quadratic model for the problem 

of maximum constraint satisfaction and to solve this model via a robust hybrid algorithm. This hybrid 

algorithm is a combination of two different approaches: the Hopfield neural network and the simulated 

annealing algorithm. Hopfield's neural network methodology has been widely used in optimization problems 

since their arrival. In this work, the Hopfield network was adopted to improve the convergence of the 

simulated annealing algorithm. This section presents a hybrid algorithm that can solve different problems of 

maximum constraint satisfaction. 
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Hybrid-algorithm 
𝒊 ≔ 𝟏  
𝒉 ≔ 𝟎.𝟓  
𝑻𝟎 ≔ 𝑻𝒎𝒂𝒙  
𝒙𝒃𝒆𝒔𝒕 ≔ 𝒙𝟎  

While 𝑻𝟎 > 𝑻𝒎𝒊𝒏 do 

𝒙𝒃𝒆𝒔𝒕: = 𝑭𝒈𝒆𝒏𝒆𝒓(𝒙𝒊−𝟏)  

∆𝑬:= 𝑬(𝒙𝒃𝒆𝒔𝒕) − 𝑬(𝒙𝒊−𝟏)  
If 𝑬(𝒙𝒊) < 𝑬(𝒙𝒊−𝟏) then  
 𝒙𝒊 ≔ 𝒙𝒊−𝟏 + 𝒉𝒇(𝒙𝒊−𝟏) 
End if 

If  𝑷(∆𝐄,𝑻𝒊) ≥ 𝒓𝒂𝒏𝒅𝒐𝒎(𝟎, 𝟏) then 
 𝒙𝒊: = 𝒙𝒃𝒆𝒔𝒕 
Else 

 𝒙𝒊 ≔ 𝒙𝒊−𝟏 
End if 

𝒊 ≔ 𝒊 + 𝟏  
𝑻𝒊+𝟏 ≔ 𝑭𝒕𝒂𝒏𝒔 (𝑻𝒊)  

Return 𝒙𝒃𝒆𝒔𝒕 
 
 

4. RESULTS AND DISCUSSION 

The proposed approach that combines simulated annealing and the Hopfield neural network is used 

as a solver for the maximum constraint satisfaction problem. To assess the effectiveness of the proposed 

approach, a series of instances that represent real problems is used in this work. In this section, the basic 

simulated annealing algorithm is used to solve the maximum constraint satisfaction problem. In addition, the 

proposed approach is also used to carry out the research process to ensure good convergence.  

This section presents the different instances (scens, CNF) used to evaluate the performance of the 

proposed approach. Software and hardware prerequisites are required to implement the proposed approach. 

Instances are run on a 3.0 GHs processor desktop and 4 GB RAM. The proposed algorithm is programmed 

through the use of Java object-oriented programming language. Given the stochastic nature of the proposed 

approach (the complexity of the algorithm and the structure of the test instance), the experiment was carried 

out 30 times. When implementing the proposed approach, a number of parameters can help with good 

convergence. These parameters are determined through preliminary experiment. The preliminary experiment 

made it possible to set the value of 𝛼 and 𝑐 at 0.99 and 3.5 respectively. 
 

4.1.  Experiments with scens instance 

The scens  instance represents that are used to compare the proposed approach with other methods. 

Figure 1(a) shows the average execution time for instance scenes with a fixed number of variables that is 

equal to 100 and a number of constraints varies between 1,178 and 1,222. Figure 1(b) shows the same 

instance scens but relatively large with a number of variables ranging from 82 to 458 and with a number of 

constraints varying from 382 to 5,286. The hybrid approach that combines the Hopfield neural network and 

simulated annealing with the Lundy cooling model (HA+ Lundy) has proven to be the most robust solver in 

terms of quality and runtime. 
 
 

  
(a) (b) 

 

Figure 1. Instance scens (a) number of variable is fixed at 100 and  

(b) number of variables beetwen 82 and 458 
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4.2.  Experiments with CNF instance 

In this experiment, the conjunctive normal form (CNF) instance is used to evaluate the performance 

of the proposed approach. The first step in this experiment is to extract the data from extensible markup 

language (XML) file. The second step is to represent the relationships that lie between the variables in a 

decision function that evaluate the maximum constraint satisfaction problem. Figure 2(a) shows the average 

execution time of the CNF instance with a number of variables fixed at 40. Figure 2(b) shows the average 

execution time of the CNF instance with a number of variables fixed at 80. 

 

 

  
(a) (b) 

 

Figure 2. CNF instance (a) number of variable is fixed at 40 and (b) number of variable is fixed at 80 

 

 

5. CONCLUSION  

Hopfield's neural network was used in this work to improve the simulated annealing algorithm. This 

makes it possible to build a new hybrid approach. Hopfield's neural network is a robust algorithm that takes 

into account the previous information to improve the direction of the algorithm towards a better solution. The 

simulated annealing is fed by Hopfield's neural network during the research process. The proposed approach 

gives better results comparing with other conventional methods. The proposed approach has made it possible 

to solve the scens instance of variable number between 82 and 458 in a better execution time. And also 

allows to solve the CNF instance of variable number is set to 40 and to 80 in a better execution time better 

compared to other approaches. Future research should attempt to model and solve the quadratic model 

associated with the query optimization problem in databases. 
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